首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complete nucleotide sequence of Chinese rape mosaic virus has been determined. The virus is a member of the tobamovirus genus of plant virus and is able to infect Arabidopsis thaliana (L.) Heynh systemically. The analysis of the sequence shows a gene array that seems to be characteristic of crucifer tobamoviruses and which is slightly different from the one most frequently found in tobamoviruses. Based on gene organization and on comparisons of sequence homologies between members of the tobamoviruses, a clustering of crucifer tobamoviruses is proposed that groups the presently known crucifer tobamovirus into two viruses with two strains each. A name change of Chinese rape mosaic virus to oilseed rape mosaic virus is proposed.Abbreviations 2-ME 2-mercaptoethanol - EDTA ethylenediaminetetraacetic acid - SDS sodium dodecyl sulfate - UTR untranslated region - MP movement protein - CP capsid protein - CRMV Chinese rape mosaic virus - TVCV turnip vein clearing virus - PaMMV paprika mild mottle virus - PMMV-I pepper mild mottle virus (Italian isolate) - PMMV-S pepper mild mottle virus (Spanish isolate) - ToMV tomato mosaic virus - TMV tobacco mosaic virus - TMGMV tobacco mild green mosaic virus - ORSV odontoglossum ringspot virus - SHMV sunn hemp mosaic virus - CGMMV cucumber green mottle mosaic virus - ORMV oilseed rape mosaic virus  相似文献   

2.
A New South Wales isolate (Ca) of capsicum mosaic virus was tested against antisera to it and capsicum tobamovirus isolates from the Netherlands (P8, P11), USA (SL), Argentina (FO) and Sicily (PM). The comparison demonstrated that the four viruses Ca, P8, PM and SL are closely related to each other, forming a series of decreasing relationship to Ca in the above order. FO was related to these but insufficiently to be considered part of the group, and P11 was only slightly related to the others. The literature on serology of tobamoviruses in Capsicum spp. was collated and it is suggested that isolates from Sicily (pepper mild mottle), Australia (capsicum mosaic), The Netherlands (P8, P14) and USA (SL) be considered as strains of a virus distinct from both tobacco mosaic and tomato mosaic viruses and that these isolates all be referred to in future as strains of pepper mild mottle virus.  相似文献   

3.
Bell Pepper Mottle Virus, a Distinct Tobamovirus Infecting Pepper   总被引:1,自引:0,他引:1  
Bell pepper mottle virus (BPeMV) can be distinguished by symptomatology and host range from other tobamoviruses but a reliable identification needs serological tests. The relationships of BPeMV to tobacco mosaic virus (TMV), Odontoglossum ringspot virus (ORSV), tobacco mild green mosaic virus (TMGMV), and pepper mild mottle virus (PMMV) were investigated using precipitin drop tests on slides, immunodiffusion gel tests, double antibody sandwich enzyme-linked immunosorbent assay (ELISA), and indirectELISA using enzyme-linked goat anti-rabbit globulins for the determination of antiserum titers and serological differentiation indices (SDI). Comparisons of SDIs and amino acid composition data demonstrated that BPeMV is a new species of the tobamovirusgroup. BPeMV, ORSV, PMMV, and TMGMV form a cluster within the genus (group) and could be considered as a subgenus of tobamoviruses.  相似文献   

4.
A Tobamovirus Causing Heavy Losses in Protected Pepper Crops in Spain   总被引:4,自引:0,他引:4  
During a four-year (1982–1985) survey of plant viruses infecting pepper cultivars grown under plastic in the Southeastern region of Spain, a tobamovirus was found to be the major disease agent of this crop. The virus produces slight or no symptoms on the leaves, but causes chlorotic mottling, malformation and reduction in size with occasional necrosis on the fruits and was able to infect all commercial pepper cultivars tested, including those resistant to other tobamoviruses, causing a catastrophic disease. The biological and serological characterization of the virus showed that it is very similar to pepper mild mottle virus (PMMV) (Wetter et al. 1984) and therefore we have termed it as Spanish strain of PMMV (PMMV-S). The need of grouping all the so-called “pepper strains” of tobacco mosaic virus (TMV) as a new distinct member of the tobamovirus group with the name of PMMV is emphasized.  相似文献   

5.
Transgenic tobacco plants expressing the coat protein (CP) gene of tobacco mosaic virus were tested for resistance against infection by five other tobamoviruses sharing 45-82% homology in CP amino acid sequence with the CP of tobacco mosaic virus. The transgenic plants (CP+) showed significant delays in systemic disease development after inoculation with tomato mosaic virus or tobacco mild green mosaic virus compared to the control (CP-) plants, but showed no resistance against infection by ribgrass mosaic virus. On a transgenic local lesion host, the CP+ plants showed greatly reduced numbers of necrotic lesions compared to the CP- plants after inoculation with tomato mosaic virus, pepper mild mottle virus, tobacco mild green mosaic virus, and Odontoglossum ringspot virus but not ribgrass mosaic virus. The implications of these results are discussed in relation to the possible mechanism(s) of CP-mediated protection.  相似文献   

6.
Kim SM  Lee JM  Yim KO  Oh MH  Park JW  Kim KH 《Molecules and cells》2003,16(3):407-412
The nucleotide sequences of the genomic RNAs of Cucumber green mottle mosaic virus Korean watermelon isolate (CGMMV-KW) and Korean oriental melon isolate (CGMMV-KOM) were determined and compared to the sequences of other tobamoviruses including CGMMV strains W and SH. Each CGMMV isolate had a genome of 6,424 nucleotides. Each also had 60 and 176 nucleotides of 5' and 3' untranslated regions (UTRs), respectively, and four open reading frames (ORF1-4). ORFs 1 to 4 encode proteins of 129, 186, 29, and 17.4 kDa, respectively. The nucleotide and deduced amino acid sequences of CGMMV-KOM and CGMMV-KW were more than 98.3% identical. When compared to other CGMMV strains in a phylogenetic analysis they were found to form a distinct virus clade, and were more distantly related to other tobamoviruses (23.5-56.7% identity).  相似文献   

7.
The partial nucleotide sequence of the 3-terminal region of the Korean isolate of odontoglossum ringspot tobamovirus (ORSV-Cy) from cool-growing Cymbidium was determined. The sequence contained a full length open reading frame (ORF) coding for the viral cell-to-cell movement protein (MP). The ORF was located upstream of the coat protein gene and 105 nucleotides longer than that of tobacco mosaic virus (TMV). The ORF predicts a polypeptide chain of 303 amino acids with a molecular weight of 33573. The ORF contained a similar region of conserved sequence motif of tobamoviruses and putative assembly origin of the viral RNA was located at about 1,100 nucleotides away from the 3 end. The predicted amino acid sequence for the MP gene of ORSV-Cy is more closely related to pepper mild mottle virus (PMMV), TMV-vulgare and TMV-Rakkyo than to tobacco mild green mosaic virus (TMGMV), TMV-L, cowpea strain of TMV (SHMV), and cucumber green mottle mosaic virus (CGMMV).  相似文献   

8.
9.
10.
The complete nucleotide sequence of the genomic RNA of odontoglossum ringspot virus Cy-1 strain (ORSV Cy-1) was determined using cloned cDNA. This sequence is 6611 nucleotides long containing four open reading frames, which correspond to 126 K, 183 K, 31 K, and 18 K proteins. Its genomic organization is similar to other tobamoviruses, TMV-V(vulgare), TMV-L (tomato strain), tobacco mild green mosaic virus (TMGMV) and cucumber green mottle mosaic virus (CGMMV). The 5′ non-coding regions of ORSV Cy-1 is 62 nucleotides. The ORFs encoded a 126 K polypeptide and a 183 K read-through product in which helicase-sequence and polymerase-sequence motifs are found. The ORFs encoding the 126 K and 183 K proteins have 61% and 63% identities with those of TMV-V. The third ORF encoded a 31 K protein homologous to TMV cell-to-cell movement protein. It has 63% identities with that of TMV-V. The fourth ORF encoded an 18 K coat protein. The 5′ non-coding region, which extends from base 1 to 62 has 2 G residues and a ribosome binding site (AUU). The 3′ non-coding region, 414 nucleotides in length, is entirely different from that of other tobamoviruses.  相似文献   

11.
Members of the genus Tobamovirus represent one of the best-characterized groups of plant positive, single stranded RNA viruses. Previous studies have shown that genomes of some tobamoviruses contain not only genes coding for coat protein, movement protein, and the cistron coding for different domains of RNA-polymerase, but also a gene, named ORF6, coding for a poorly conserved small protein. The amino acid sequences of ORF6 proteins encoded by different tobamoviruses are highly divergent. The potential role of ORF6 proteins in replication of tobamoviruses still needs to be elucidated. In this study, using biochemical and immunological methods, we have shown that ORF6 peptide is accumulated after infection in case of two isolates of Tobacco mosaic virus strain U1 (TMV-U1 common and TMV-U1 isolate A15). Unlike virus particles accumulating in the cytoplasm, the product of the ORF6 gene is found mainly in nuclei, which correlates with previously published data about transient expression of ORF6 isolated from TMV-U1. Moreover, we present new data showing the presence of ORF6 genes in genomes of several tobamoviruses. For example, in the genomes of other members of the tobamovirus subgroup 1, including Rehmannia mosaic virus, Paprika mild mottle virus, Tobacco mild green mosaic virus, Tomato mosaic virus, Tomato mottle mosaic virus, and Nigerian tobacco latent virus, sequence comparisons revealed the existence of a similar open reading frame like ORF6 of TMV.  相似文献   

12.
A virus causing ‘eyespot’ leaf symptoms in groundnut plants was transmitted by sap-inoculation and by Aphis craccivora in the non-persistent manner. It infected 16 of 72 species from five of 12 families and was easily propagated in Arachis hypogaea and Physalis floridana. The virus has particles c. 13 × 755 nm and is serologically closely related to soybean mosaic and pepper veinal mottle viruses, and more distantly to four other potyviruses. The virus differs in host range, in vitro properties and serological properties from previously described strains of soybean mosaic and pepper veinal mottle viruses. It seems to be a distinct member of the potyvirus group and we propose the name groundnut eyespot virus.  相似文献   

13.
黄瓜绿斑驳花叶病毒辽宁分离物全基因组序列测定   总被引:7,自引:0,他引:7  
以感病组织总RNA为模板,采用RT-PCR方法扩增并测定黄瓜绿斑驳花叶病毒(Cucumber green mottle mosaic virus,CGMMV)辽宁分离物(CGMMV-LN)的基因组全序列。CGMMV-LN基因组全长6 422 nt,5'非编码区(noncoding region,NCR)和3'NCR分别为59 nt和175 nt。CGMMV-LN编码的4个蛋白依次是186 kD和129kD的复制酶,29 kD的移动蛋白和17.4 kD的外壳蛋白。CGMMV-LN与其他4个CGMMV分离物基因组核苷酸序列同源性为97.6%~99.3%,与同属其他3种病毒基因组核苷酸序列同源性仅为61.7%~62.8%。基于186kD复制酶和外壳蛋白氨基酸序列的同源树显示:侵染葫芦科作物的烟草花叶病毒属病毒可分为2个亚组,亚组I包括所有CGMMV分离物,亚组II包括Kyuri绿斑驳花叶病毒(Kyuri green mottle mosaic virus,KGMMV)、黄瓜果实斑驳花叶病毒(Cucumber fruit mottle mosaic virus,CFMMV)和小西葫芦绿斑驳花叶病毒(Zucchini ...  相似文献   

14.
Immunodiagnosis of plant viruses by a virobacterial agglutination test   总被引:3,自引:0,他引:3  
A new virobacterial agglutination (VBA) test for the immunodiagnosis of plant viruses is described. The test is based on the agglutination of Staphylococcus aureus cells by virus particles after treatment of the cells with homologous antiserum. The agglutination occurs within 1–5 min. The sensitivity of the test is 0·1-0·4 μg virus/ml and is not affected by the shape of the virus particle. The use of affinity purified antibodies for sensitisation of S. aureus cells increases the sensitivity of the reaction 50-fold and enables the detection of tobacco mosaic and cucumber green mottle mosaic viruses at a concentration of 2 ng/ml. The VBA test allows the estimation of potato viruses X, S, M and Y in the eyes and sprouts of infected tubers and in the leaves of infected plants. The diagnosis of carnation mottle virus in carnation plants and of mushroom viruses in mushroom (Agaricus bisporus) fruit-bodies and mycelium are also described.  相似文献   

15.
During field surveys, three peanut green mosaic virus isolates differing in symptomatology on groundnut and a few other hosts were collected. Ultrathin sections of infected groundnut leaflets showed cytoplasmic inclusions with pin wheels and scrolls. In enzyme-linked immunosorbent assay they reacted strongly with antisera to peanut green mosaic and soybean mosaic virus antisera, and moderately with adzuki bean mosaic and peanut stripe virus antisera. All isolates also reacted positively with antisera to peanut eye spot, blackeye cowpea mosaic, pea seed-borne mosaic, potato virus Y and tobacco etch viruses, and did not react with antisera to peanut mottle, bean yellow mosaic, bean common mosaic, clover yellow vein and sugarcane mosaic viruses. SDS-PAGE analysis of purified virus preparations of the three isolates showed a single polypeptide with mol. wt. of 34,500 daltons. Based on these results, the three isolates are identified as biologically distinct strains of peanut green mosaic virus.  相似文献   

16.
Patchouli virus X, a new potexvirus from Pogostemon clabin   总被引:1,自引:0,他引:1  
This work describes a potexvirus obtained from patchouli, Pogostemon clabin, collected in São Paulo, Brazil in 1992. The plants showed mosaic and were infected by a potyvirus and a potexvirus. The potexvirus had a host range limited to Amaranthaceae, Solanaceae and Labiatae and was named Patchouli virus X (PatVX). PatVX was not transmitted by scissors pruning, in tobacco seeds or by Myzus nicotinae. The virus was purified and a specific antiserum with a titre great than 1:512 000 in dot‐ELISA was produced. The virus was serologically related to Papaya mosaic virus, Potato virus X, Viola mottle virus, White clover mosaic virus and Lily virus X. It had a coat protein of 21 071 ± 1 010 Mr. as determined by SDS‐PAGE. Immunolabelling tests demonstrated that fibrillar masses in the cytoplasm contain the coat protein. The presence of a dsRNA was detected in PatVX infected plants.  相似文献   

17.
Autumn-sown crops of broad beans (Vicia faba L.) in England often contain plants with some leaves characteristically distorted and with a chlorotic mosaic. From some of these plants true broad-bean mosaic virus was isolated in 1959 and 1960 but not in 1965 and 1966. From other plants a similar but distinct virus, which caused staining of the seeds and we call broad-bean stain virus, was isolated in 1960, 1965 and 1966. The two viruses were readily distinguished in serological tests, and in some test plants. Both were seed-borne, and spread in crops, but were not transmitted by several animal species tested as vectors. Both viruses have isometric particles about 25 mμ in diameter. Some of these particles contain about 35% ribonucleic acid, some about 26% and some of those of broad-bean stain virus contain none; these three types of particles had sedimentation coefficients of about 120–130 S, 100 S and 60 S respectively. The ribonucleic acid of each virus had molar base content of G 23%, A 26%, C 18% and U 32%. These two viruses are members of the cowpea mosaic group of plant viruses; broad-bean strain virus was serologically related to cowpea mosaic, F I, red-clover mottle, and squash mosaic viruses. The particles of all these viruses and of true broad-bean mosaic virus were similar in appearance, sedimentation behaviour, and nucleic acid content and composition. The nucleic acid of red-clover mottle virus had a molar base content of G 20%, A 29%, C 20%, U 30%.  相似文献   

18.
A virus, provisionally named red clover mottle virus (RCMV), isolated from red clover plants in England, seems distinct from any previously described. It was transmitted by mechanical inoculation of sap to many legumes and to Gomphrena globosa L., but it was not transmitted by six aphid species, or through soil or through seeds.
RCMV is inactivated in 10 min. between 60 and 63°C., and in 8 days at 18°C., but survives for long periods at -20; sap was not infective when diluted more than 1/1000. The virus is soluble in the pH range (4–7) in which it is stable. It was precipitated without inactivation by 50% saturated ammonium sulphate solution, but it was inactivated by ethanol or acetone. Partially purified preparations contained polygonal particles about 28 mμ in diameter. Serological tests showed no antigens in common with broad bean mottle, true broad bean mosaic or lucerne mosaic viruses.  相似文献   

19.
Cucumber fruit mottle mosaic tobamovirus (CFMMV) causes severe mosaic symptoms and yellow mottling on leaves and fruits and, occasionally, severe wilting of cucumber (Cucumis sativus L.) plants. No genetic source of resistance against this virus has been identified in cucumber. The gene coding for the putative 54-kDa replicase gene of CFMMV was cloned into an Agrobacterium tumefaciens binary vector, and transformation was performed on cotyledon explants of a parthenocarpic cucumber cultivar. R1 seedlings were screened for resistance to CFMMV by symptom expression, back inoculation on an alternative host and ELISA. From a total of 14 replicase-containing R1 lines, eight resistant lines were identified. Line I44 – homozygous for the putative 54-kDa replicase gene – was immune to CFMMV infection by mechanical and graft inoculation, and to root infection following planting in CFMMV-infested soil. A substantial delay of symptom appearance was observed following infection by three additional cucurbit-infecting tobamoviruses. When used as a rootstock, line I44 protected susceptible cucumber scions from soil infection by CFMMV. This paper is the first report on protection of a susceptible cultivar against a soil-borne viral pathogen, by grafting onto a transgenic rootstock.  相似文献   

20.
The concentration of potato leafroll luteovirus (PLRV) (c. 1300 ng/g leaf) in singly infected Nicotiana clevelandii plants was increased up to 10-fold in plants co-infected with each of several potyviruses, or with narcissus mosaic potexvirus, carrot mottle virus or each of three tobravirus isolates. With the tobraviruses, PLRV concentration was increased equally by co-infection with either NM-type isolates (coat protein-free cultures containing RNA-1) or M-type isolates (particle-producing cultures containing RNA-1 and RNA-2). In contrast, the accumulation of PLRV was not substantially affected by co-infection with either of two nepoviruses, cucumber mosaic cucumovirus, broad bean mottle bromovirus, alfalfa mosaic virus, pea enation mosaic virus or parsnip yellow fleck virus. The specificity of these interactions between PLRV and sap-transmissible viruses was retained in tests made in Nicotiana benthamiana and when beet western yellows luteovirus was used instead of PLRV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号