首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the simian immunodeficiency virus (SIV)-infected rhesus macaque model, we performed a longitudinal study to determine the effect of antiretroviral therapy on the phenotype and functional potential of CD4(+) T cells repopulating intestinal mucosa in human immunodeficiency virus infection. Severe depletion of CD4(+) and CD4(+) CD8(+) T cells occurred in the intestinal mucosa during primary SIV infection. The majority of these cells were of activated memory phenotype. Phosphonate 9-[2-(phosphomethoxypropyl]adenine (PMPA) treatment led to a moderate suppression of intestinal viral loads and repopulation of intestinal mucosa by predominantly activated memory CD4(+) T-helper cells. This repopulation was independent of the level of viral suppression. Compared to preinfection values, the frequency of naive CD4(+) T cells increased following PMPA therapy, suggesting that new CD4(+) T cells were repopulating the intestinal mucosa. Repopulation by CD4(+) CD8(+) T cells was not observed in either jejunum or colon lamina propria. The majority of CD4(+) T cells repopulating the intestinal mucosa following PMPA therapy were CD29(hi) and CD11ahi. A subset of repopulating intestinal CD4(+) T cells expressed Ki-67 antigen, indicating that local proliferation may play a role in the repopulation process. Although the majority of repopulating CD4(+) T cells in the intestinal mucosa were functionally capable of providing B- and T-cell help, as evidenced by their expression of CD28, these CD4(+) T cells were found to have a reduced capacity to produce interleukin-2 (IL-2) compared to the potential of CD4(+) T cells prior to SIV infection. Persistent viral infection may play a role in suppressing the potential of repopulating CD4(+) T cells to produce IL-2. Hence, successful antiretroviral therapy should aim at complete suppression of viral loads in mucosal lymphoid tissues, such as intestinal mucosa.  相似文献   

2.
It has recently been shown that rapid and profound CD4(+) T-cell depletion occurs almost exclusively within the intestinal tract of simian immunodeficiency virus (SIV)-infected macaques within days of infection. Here we demonstrate (by three- and four-color flow cytometry) that this depletion is specific to a definable subset of CD4(+) T cells, namely, those having both a highly and/or acutely activated (CD69(+) CD38(+) HLA-DR(+)) and memory (CD45RA(-) Leu8(-)) phenotype. Moreover, we demonstrate that this subset of helper T cells is found primarily within the intestinal lamina propria. Viral tropism for this particular cell type (which has been previously suggested by various studies in vitro) could explain why profound CD4(+) T-cell depletion occurs in the intestine and not in peripheral lymphoid tissues in early SIV infection. Furthermore, we demonstrate that an acute loss of this specific subset of activated memory CD4(+) T cells may also be detected in peripheral blood and lymph nodes in early SIV infection. However, since this particular cell type is present in such small numbers in circulation, its loss does not significantly affect total CD4(+) T cell counts. This finding suggests that SIV and, presumably, human immunodeficiency virus specifically infect, replicate in, and eliminate definable subsets of CD4(+) T cells in vivo.  相似文献   

3.
Elevated CD4 T-cell turnover may lead to the exhaustion of the immune system during human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) infections. However, this hypothesis remains controversial. Most studies of this subject have concerned the blood, and information about the lymph nodes is rare and controversial. We used Ki67 expression to measure cycling T cells in the blood and lymph nodes of uninfected macaques and of macaques infected with a pathogenic SIVmac251 strain or with a nonpathogenic SIVmac251Deltanef clone. During the asymptomatic phase of infection, the number of cycling CD8(+) T cells progressively increased (two- to eightfold) both in the blood and in the lymph nodes of macaques infected with SIVmac251. This increase was correlated with viral replication and the progression to AIDS. In contrast, no increases in the numbers of cycling CD4(+) T cells were found in the blood or lymph nodes of macaques infected with the pathogenic SIVmac251 strain in comparison with SIVmac251Deltanef-infected or healthy macaques during this chronic phase. However, the lymph nodes of pre-AIDS stage SIVmac251-infected macaques contained more cycling CD4(+) T cells (low baseline CD4(+)-T-cell counts in the blood). Taken together, these results show that the profiles of CD4(+)- and CD8(+)-T-cell dynamics are distinct both in the lymph nodes and blood and suggest that higher CD4(+)-T-cell proliferation at the onset of AIDS may lead to the exhaustion of the immune system.  相似文献   

4.
Massive infection of memory CD4 T cells is a hallmark of early simian immunodeficiency virus (SIV) infection, with viral infection peaking at day 10 postinfection (p.i.), when a majority of memory CD4 T cells in mucosal and peripheral tissues are infected. It is not clear if mononuclear cells from the monocyte and macrophage lineages are similarly infected during this early phase of explosive HIV and SIV infections. Here we show that, at day 10 p.i., Lin(-) HLA-DR(+) CD11c/123(-) CD13(+) CD14(-) macrophages in the jejunal mucosa were infected, albeit at lower levels than CD4 memory T cells. Interestingly, Lin(-) HLA-DR(+) CD11c/123(-) CD13(+) CD14(-) macrophages in peripheral blood, like their mucosal counterparts, were preferentially infected compared to Lin(-) HLA-DR(+) CD11c/123(-) CD13(+) CD14(+) monocytes, suggesting that differentiated macrophages were selectively infected by SIV. CD13(+) CD14(-) macrophages expressed low levels of CD4 compared to CD4 T cells but expressed similar levels of CCR5 as lymphocytes. Interestingly, CD13(+) CD14(-) macrophages expressed Apobec3G at lower levels than CD13(+) CD14(+) monocytes, suggesting that intracellular restriction may contribute to the differential infection of mononuclear subsets. Taken together, our results suggest that CD13(+) CD14(-) macrophages in mucosal and peripheral tissues are preferentially infected very early during the course of SIV infection.  相似文献   

5.
Sooty mangabeys naturally infected with simian immunodeficiency virus (SIV) remain healthy though they harbor viral loads comparable to those in rhesus macaques that progress to AIDS. To assess the immunologic basis of disease resistance in mangabeys, we compared the effect of SIV infection on T-cell regeneration in both monkey species. Measurement of the proliferation marker Ki-67 by flow cytometry showed that mangabeys harbored proliferating T cells at a level of 3 to 4% in peripheral blood irrespective of their infection status. In contrast, rhesus macaques demonstrated a naturally high fraction of proliferating T cells (7%) that increased two- to threefold following SIV infection. Ki-67(+) T cells were predominantly CD45RA(-), indicating increased proliferation of memory cells in macaques. Quantitation of an episomal DNA product of T-cell receptor alpha rearrangement (termed alpha1 circle) showed that the concentration of recent thymic emigrants in blood decreased with age over a 2-log unit range in both monkey species, consistent with age-related thymic involution. SIV infection caused a limited decrease of alpha1 circle numbers in mangabeys as well as in macaques. Dilution of alpha1 circles by T-cell proliferation likely contributed to this decrease, since alpha1 circle numbers and Ki-67(+) fractions correlated negatively. These findings are compatible with immune exhaustion mediated by abnormal T-cell proliferation, rather than with early thymic failure, in SIV-infected macaques. Normal T-cell turnover in SIV-infected mangabeys provides an explanation for the long-term maintenance of a functional immune system in these hosts.  相似文献   

6.
In this report, three Mamu-A*01(+) rhesus macaques were examined to compare the emergence of simian immunodeficiency virus (SIV)-specific CD8(+) T cells in the intestines and blood in early SIV infection using a major histocompatibility complex class I tetramer complexed with the Gag(181-189) peptide. Fourteen days after intravenous inoculation with SIVmac251, large numbers of SIV Gag(181-189)-specific CD8(+) T cells were detected in the intestinal mucosa (3.1 to 11.5% of CD3(+) CD8(+) lymphocytes) as well as in the blood (3.1 to 13.4%) of all three macaques. By 21 days postinoculation, levels of tetramer-binding cells had dropped in both the intestines and blood. At day 63, however, levels of SIV Gag(181-189)-specific CD8(+) T cells in the intestines had rebounded in all three macaques to levels that were higher (8.6 to 18.7%) than those at day 21. In contrast, percentages of tetramer-binding cells in the peripheral blood remained comparatively stable (2.5 to 4.5%) at this time point. In summary, SIV Gag(181-189)-specific CD8(+) T cells appeared in both the intestinal mucosa and peripheral blood at a comparable rate and magnitude in primary SIV infection. Given that the intestine is a major site of early viral replication as well as the site where most of the total body lymphocyte pool resides, these data indicate that it is also an early and important site of development of antiviral immune responses.  相似文献   

7.
The repertoire of functional CD4(+) T lymphocytes in human immunodeficiency virus type 1-infected individuals remains poorly understood. To explore this issue, we have examined the clonality of CD4(+) T cells in simian immunodeficiency virus (SIV)-infected macaques by assessing T-cell receptor complementarity-determining region 3 (CDR3) profiles and sequences. A dominance of CD4(+) T cells expressing particular CDR3 sequences was identified within certain Vbeta-expressing peripheral blood lymphocyte subpopulations in the infected monkeys. Studies were then done to explore whether these dominant CD4(+) T cells represented expanded antigen-specific cell subpopulations or residual cells remaining in the course of virus-induced CD4(+) T-cell depletion. Sequence analysis revealed that these selected CDR3-bearing CD4(+) T-cell clones emerged soon after infection and dominated the CD4(+) T-cell repertoire for up to 14 months. Moreover, inoculation of chronically infected macaques with autologous SIV-infected cell lines to transiently increase plasma viral loads in the monkeys resulted in the dominance of these selected CDR3-bearing CD4(+) T cells. Both the temporal association of the detection of these clonal cell populations with infection and the dominance of these cell populations following superinfection with SIV suggest that these cells may be SIV specific. Finally, the inoculation of staphylococcal enterotoxin B superantigen into SIV-infected macaques uncovered a polyclonal background underlying the few dominant CDR3-bearing CD4(+) T cells, demonstrating that expandable polyclonal CD4(+) T-cell subpopulations persist in these animals. These results support the notions that a chronic AIDS virus infection can induce clonal expansion, in addition to depletion of CD4(+) T cells, and that some of these clones may be SIV specific.  相似文献   

8.
In the acute stage of infection following sexual transmission of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV), virus-specific CD8+ T-lymphocyte responses partially control but do not eradicate infection from the lymphatic tissues (LTs) or prevent the particularly massive depletion of CD4+ T lymphocytes in gut-associated lymphatic tissue (GALT). We explored hypothetical explanations for this failure to clear infection and prevent CD4+ T-lymphocyte loss in the SIV/rhesus macaque model of intravaginal transmission. We examined the relationship between the timing and magnitude of the CD8+ T-lymphocyte response to immunodominant SIV epitopes and viral replication, and we show first that the failure to contain infection is not because the female reproductive tract is a poor inductive site. We documented robust responses in cervicovaginal tissues and uterus, but only several days after the peak of virus production. Second, while we also documented a modest response in the draining genital and peripheral lymph nodes, the response at these sites also lagged behind peak virus production in these LT compartments. Third, we found that the response in GALT was surprisingly low or undetectable, possibly contributing to the severe and sustained depletion of CD4+ T lymphocytes in the GALT. Thus, the virus-specific CD8+ T-lymphocyte response is "too late and too little" to clear infection and prevent CD4+ T-lymphocyte loss. However, the robust response in female reproductive tissues may be an encouraging sign that vaccines that rapidly induce high-frequency CD8+ T-lymphocyte responses might be able to prevent acquisition of HIV-1 infection by the most common route of transmission.  相似文献   

9.
African green monkeys (AGM) do not develop overt signs of disease following simian immunodeficiency virus (SIV) infection. While it is still unknown how natural hosts like AGM can cope with this lentivirus infection, a large number of investigations have shown that CD8(+) T-cell responses are critical for the containment of AIDS viruses in humans and Asian nonhuman primates. Here we have compared the phenotypes of T-cell subsets and magnitudes of SIV-specific CD8(+) T-cell responses in vervet AGM chronically infected with SIVagm and rhesus monkeys (RM) infected with SIVmac. In comparison to RM, vervet AGM exhibited weaker signs of immune activation and associated proliferation of CD8(+) T cells as detected by granzyme B, Ki-67, and programmed death 1 staining. By gamma interferon enzyme-linked immunospot assay and intracellular cytokine staining, SIV Gag- and Env-specific immune responses were detectable at variable but lower levels in vervet AGM than in RM. These observations demonstrate that natural hosts like SIV-infected vervet AGM develop SIV-specific T-cell responses, but the disease-free course of infection does not depend on the generation of robust CD8(+) T-cell responses.  相似文献   

10.
HIV/SIV infections induce chronic immune activation with remodeling of lymphoid architecture and hypergammaglobulinemia, although the mechanisms leading to such symptoms remain to be fully elucidated. Moreover, lymph nodes have been highlighted as a predilection site for SIV escape in vivo. Following 20 rhesus macaques infected with SIVmac239 as they progress from pre-infection to acute and chronic infection, we document for the first time, to our knowledge, the local dynamics of T follicular helper (T(FH)) cells and B cells in situ. Progression of SIV infection was accompanied by increased numbers of well-delineated follicles containing germinal centers (GCs) and T(FH) cells with a progressive increase in the density of programmed death-1 (PD-1) expression in lymph nodes. The rise in PD-1(+) T(FH) cells was followed by a substantial accumulation of Ki67(+) B cells within GCs. However, unlike in blood, major increases in the frequency of CD27(+) memory B cells were observed in lymph nodes, indicating increased turnover of these cells, correlated with increases in total and SIV specific Ab levels. Of importance, compared with T cell zones, GCs seemed to exclude CD8(+) T cells while harboring increasing numbers of CD4(+) T cells, many of which are positive for SIVgag, providing an environment particularly beneficial for virus replication and reservoirs. Our data highlight for the first time, to our knowledge, important spatial interactions of GC cell subsets during SIV infection, the capacity of lymphoid tissues to maintain stable relative levels of circulating B cell subsets, and a potential mechanism for viral reservoirs within GCs during SIV infection.  相似文献   

11.
Previously we have shown that CD8(+) T cells are critical for containment of simian immunodeficiency virus (SIV) viremia and that rapid and profound depletion of CD4(+) T cells occurs in the intestinal tract of acutely infected macaques. To determine the impact of SIV-specific CD8(+) T-cell responses on the magnitude of the CD4(+) T-cell depletion, we investigated the effect of CD8(+) lymphocyte depletion during primary SIV infection on CD4(+) T-cell subsets and function in peripheral blood, lymph nodes, and intestinal tissues. In peripheral blood, CD8(+) lymphocyte-depletion changed the dynamics of CD4(+) T-cell loss, resulting in a more pronounced loss 2 weeks after infection, followed by a temporal rebound approximately 2 months after infection, when absolute numbers of CD4(+) T cells were restored to baseline levels. These CD4(+) T cells showed a markedly skewed phenotype, however, as there were decreased levels of memory cells in CD8(+) lymphocyte-depleted macaques compared to controls. In intestinal tissues and lymph nodes, we observed a significantly higher loss of CCR5(+) CD45RA(-) CD4(+) T cells in CD8(+) lymphocyte-depleted macaques than in controls, suggesting that these SIV-targeted CD4(+) T cells were eliminated more efficiently in CD8(+) lymphocyte-depleted animals. Also, CD8(+) lymphocyte depletion significantly affected the ability to generate SIV Gag-specific CD4(+) T-cell responses and neutralizing antibodies. These results reemphasize that SIV-specific CD8(+) T-cell responses are absolutely critical to initiate at least partial control of SIV infection.  相似文献   

12.
Increased lymphocyte turnover is a hallmark of pathogenic lentiviral infection. To investigate perturbations in lymphocyte dynamics in natural hosts with nonpathogenic simian immunodeficiency virus (SIV) infection, the nucleoside analog bromodeoxyuridine (BrdU) was administered to six naturally SIV-infected and five SIV-negative sooty mangabeys. As a measure of lymphocyte turnover, we estimated the mean death rate by fitting a mathematical model to the fraction of BrdU-labeled cells during a 2-week labeling and a median 10-week delabeling period. Despite significantly lower total T- and B-lymphocyte counts in SIV-infected sooty mangabeys than in SIV-negative mangabeys, the turnover rate of B lymphocytes and CD4+ and CD8+ T lymphocytes was not increased in the SIV-infected animals. A small, rapidly proliferating CD45RA+ memory subset and a large, slower-proliferating CD45RA central memory subset of CD4+ T lymphocytes identified in the peripheral blood of sooty mangabeys also did not show evidence of increased turnover in the context of SIV infection. Independently of SIV infection, the turnover of CD4+ T lymphocytes in sooty mangabeys was significantly higher (P < 0.01) than that of CD8+ T lymphocytes, a finding hitherto not reported in rhesus macaques or humans. The absence of aberrant T-lymphocyte turnover along with an inherently high rate of CD4+ T-lymphocyte turnover may help to preserve the pool of central memory CD4+ T lymphocytes in viremic SIV-infected sooty mangabeys and protect against progression to AIDS.  相似文献   

13.
The ability to monitor vaccine-elicited CD8(+) cytotoxic T-lymphocyte (CTL) responses in simian immunodeficiency virus (SIV)- and simian-human immunodeficiency virus (SHIV)-infected rhesus monkeys has been limited by our knowledge of viral epitopes predictably presented to those lymphocytes by common rhesus monkey MHC class I alleles. We now define an SIV and SHIV Nef CTL epitope (YTSGPGIRY) that is presented to CD8(+) T lymphocytes by the common rhesus monkey MHC class I molecule Mamu-A*02. All seven infected Mamu-A*02(+) monkeys evaluated demonstrated this response, and peptide-stimulated interferon gamma Elispot assays indicated that the response represents a large proportion of the entire CD8(+) T-lymphocyte SIV- or SHIV-specific immune response of these animals. Knowledge of this epitope and MHC class I allele substantially increases the number of available rhesus monkeys that can be used for testing prototype HIV vaccines in this important animal model.  相似文献   

14.
Recognition of melanoma antigens by HLA class-II-restricted CD4(+) T lymphocytes has been investigated. Two cytotoxic CD4(+) T cell lines were established by stimulating PBLs from a melanoma patient with either parental or IFN-gamma-transduced autologous tumor cells. These T cells secreted IL-4, but not IL-2, IFN-gamma, or TNF-beta, in response to the autologous melanoma cells, suggesting that they belong to the Th2 subtype. Their cytotoxicity was directed against the IFN-gamma-transduced melanoma cells and was HLA-DR-restricted. The autologous and two allogeneic IFN-gamma-modified melanoma cell lines shared melanoma antigen(s) presented in the context of HLA-DR15. HLA-DR15(+) nonmelanoma cells were resistant targets indicating that the shared antigen(s) is melanoma associated. Parental autologous and HLA-DR-matched allogeneic melanoma cell lines, displaying low levels of HLA-DR antigens, induced Th2 proliferation and cytokine release, but were insensitive to lysis prior to upregulation of HLA-DR and Fas antigens by IFN-gamma. Cytolysis was inhibited by anti-HLA-DR and by anti-Fas antibodies, suggesting that the cytolysis is mediated via the Fas pathway. While small amounts of HLA-DR15 molecules on melanoma cells are sufficient for Th2 proliferation and cytokine release, higher amounts of HLA-DR15 and the expression of Fas are required for CD4(+)-mediated lysis.  相似文献   

15.
It has long been appreciated that CD4+ T lymphocytes are dysfunctional in human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV)-infected individuals, and it has recently been shown that HIV/SIV infections are associated with a dramatic early destruction of memory CD4+ T lymphocytes. However, the relative contributions of CD4+ T-lymphocyte dysfunction and loss to immune dysregulation during primary HIV/SIV infection have not been fully elucidated. In the current study, we evaluated CD4+ T lymphocytes and their functional repertoire during primary SIVmac251 infection in rhesus monkeys. We show that the extent of loss of memory CD4+ T lymphocytes and staphylococcal enterotoxin B-stimulated cytokine production by total CD4+ T lymphocytes during primary SIVmac251 infection is tightly linked in a cohort of six rhesus monkeys to set point plasma viral RNA levels, with greater loss and dysfunction being associated with higher steady-state viral replication. Moreover, in exploring the mechanism underlying this phenomenon, we demonstrate that the loss of functional CD4+ T lymphocytes during primary SIVmac251 infection is associated with both a selective depletion of memory CD4+ T cells and a loss of the functional capacity of the memory CD4+ T lymphocytes that escape viral destruction.  相似文献   

16.
Human immunodeficiency virus type 1 infection results in a dysfunction of CD4(+) T lymphocytes. The intracellular events contributing to that CD4(+) T-lymphocyte dysfunction remain incompletely elucidated, and it is unclear whether aspects of that dysfunction can be prevented. The present studies were pursued in a rhesus monkey model of AIDS to explore these issues. Loss of the capacity of peripheral blood CD4(+) T lymphocytes to express cytokines was first detected in simian immunodeficiency virus-infected monkeys during the peak of viral replication during primary infection and persisted thereafter. Moreover, infected monkeys with progressive disease had peripheral blood CD4(+) T lymphocytes that expressed significantly less cytokine than infected monkeys that had undetectable viral loads and intact CD4(+) T-lymphocyte counts. Importantly, CD4(+) T lymphocytes from vaccinated monkeys that effectively controlled the replication of a highly pathogenic immunodeficiency virus isolate following a challenge had a preserved functional capacity. These observations suggest that an intact cytokine expression capacity of CD4(+) T lymphocytes is associated with stable clinical status and that effective vaccines can mitigate against CD4(+) T-lymphocyte dysfunction following an AIDS virus infection.  相似文献   

17.
Dominant epitope-specific CD8(+) T-lymphocyte responses play a central role in controlling viral spread. We explored the basis for the development of this focused immune response in simian immunodeficiency virus (SIV)- and simian-human immunodeficiency virus (SHIV)-infected rhesus monkeys through the use of two dominant (p11C and p199RY) and two subdominant (p68A and p56A) epitopes. Using real-time PCR to quantitate T-cell receptor (TCR) variable region beta (Vbeta) family usage, we show that CD8(+) T-lymphocyte populations specific for dominant epitopes are characterized by a diverse Vbeta repertoire, whereas those specific for subdominant epitopes employ a dramatically more focused Vbeta repertoire. We also demonstrate that dominant epitope-specific CD8(+) T lymphocytes employ TCRs with multiple CDR3 lengths, whereas subdominant epitope-specific cells employ TCRs with a more restricted CDR3 length. Thus, the relative dominance of an epitope-specific CD8(+) T-lymphocyte response reflects the clonal diversity of that response. These findings suggest that the limited clonal repertoire of subdominant epitope-specific CD8(+) T-lymphocyte populations may limit the ability of these epitope-specific T-lymphocyte populations to expand and therefore limit the ability of these cell populations to contribute to the control of viral replication.  相似文献   

18.
Functional impairment of virus-specific memory CD8(+) T lymphocytes has been associated with clinical disease progression following HIV, SIV, and simian human immunodeficiency virus infection. These lymphocytes have a reduced capacity to produce antiviral cytokines and mediators involved in the lysis of virally infected cells. In the present study, we used polychromatic flow cytometry to assess the frequency and functional capacity of central memory (CD28(+)CD95(+)) and effector memory (CD28(-)CD95(+)) subpopulations of Gag-specific CD8(+) T cells in SIV/simian human immunodeficiency virus-infected rhesus monkeys. The aim of this study was to determine whether Ag-specific, memory CD8(+) T cell function could be preserved in infected monkeys that had been immunized before infection with a vaccine regimen consisting of a plasmid DNA prime followed by a recombinant viral vector boost. We observed that vaccination was associated with the preservation of Gag-specific central memory CD8(+) T cells that were functionally capable of producing IFN-gamma, and effector memory CD8(+) T cells that were capable of producing granzyme B following viral Ag exposure.  相似文献   

19.
Antigen stimulation of lymphocytes induces upregulation of phospholipase D (PLD) activity, but the biological significance of PLD-mediated signaling in T cells has not been well established. Here we demonstrate that PLD signaling is essential for proliferation of mouse CD8(+) T cells and CD4(+)CD25(-) T cells, but is not required for proliferation of CD4(+)CD25(+) regulatory T cells. We exploited this observation to develop an efficient method to enrich for regulatory T cells starting from preparations of total CD4(+) T lymphocytes. Inhibition of PLD signaling blocked effector T-cell proliferation after T cell-antigen receptor (TCR) engagement, but had no significant effect on the proliferation of CD4(+)CD25(+) T cells with regulatory functions. Consequently, cells expanded in vitro for one week by antigen receptor stimulation with PLD signal inhibition were markedly enriched for regulatory T cells.  相似文献   

20.
In the host defense mechanism against feline immunodeficiency virus (FIV) infection, CD8(+) T cells specifically attack virus-infected cells and suppress the replication of the virus in a non-cytolytic manner by secreting soluble factors. In this study, we measured CD8(+) T cell anti-FIV activity in 30 FIV-infected cats. We investigated its relationship with the number of peripheral blood lymphocytes, particularly the CD4(+) T cell and CD8(+) T cell counts, and the relationship between anti-FIV activity and the number of T cells of CD8alpha(+)beta(lo) and CD8alpha(+)beta(-) phenotypes. A clearly significant correlation was observed between anti-FIV activity and the number of CD4(+) T cells. A weaker anti-FIV activity was associated with a greater decrease in the number of CD4(+) T cells. However, there was no significant correlation between anti-FIV activity and the number of B or CD8(+) T cells. Compared with SPF cats, FIV-infected cats had significantly higher CD8alpha(+)beta(lo) T cell and CD8alpha(+)beta(-) T cell counts, but, no significant correlation was observed between these cell counts and anti-FIV activity. This anti-FIV activity significantly correlated with plasma viremia, which was detected in cats with a weak anti-FIV activity. These results suggest that the anti-FIV activity of CD8(+) T cells plays an important role in plasma viremia and the maintenance of CD4(+) T cells in the body. It is unlikely that CD8alpha(+)beta(lo) or CD8alpha(+)beta(-) T cells appearing after FIV infection represent a phenotype of CD8(+) cells with anti-FIV activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号