首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A Miles 《Life sciences》1989,44(6):375-385
The pineal gland hormone melatonin is now considered an important neuroendocrine component of animal physiology. Although the functional status of melatonin has been well described for subhuman species, there is a paucity of data concerning the physiological role of this hormone in man. This paucity of data has much to do with the limitations of experimental design imposed by the practical and ethical difficulties associated with the study of a nocturnally secreted hormone. The recent advent of salivary melatonin assay has provided a very practical means of monitoring melatonin secretion in long-term longitudinal type community based studies of pineal gland function in human health and disease. The efforts to describe key chronobiological changes in melatonin secretion of possible functional significance have been accompanied by a seemingly less enthusiastic search to describe the nature of the melatonin receptor, another highly important component of the 'melatonin message'. The functional relevance of specific chronobiological changes in melatonin secretion cannot be completely understood without an increased knowledge of melatonin action at the receptor level. The present work describes the recent methodological advance in the investigation of human pineal gland physiology represented by salivary melatonin assay, and discusses the present status of our knowledge of the melatonin receptor.  相似文献   

2.
For each assessment cycle of the Intergovernmental Panel on Climate Change (IPCC), researchers in the life sciences are called upon to provide evidence to policymakers planning for a changing future. This research increasingly relies on highly technical and complex outputs from climate models. The strengths and weaknesses of these data may not be fully appreciated beyond the climate modelling community; therefore, uninformed use of raw or preprocessed climate data could lead to overconfident or spurious conclusions. We provide an accessible introduction to climate model outputs that is intended to empower the life science community to robustly address questions about human and natural systems in a changing world.  相似文献   

3.
4.
5.
从科研论文量看世界生命科学的发展   总被引:2,自引:0,他引:2  
高柳滨  陈桦  江晓波 《生命科学》2003,15(4):251-254
应用美国ESI基本科学指标数据库,对1993年至2003年世界科研产出成果进行统计分析,反映国内外生命科学重点研究领域和学科分布特点,揭示我国与国外相比存在的差距。从文献计量学角度,对我国生命科学的发展提出了建设性意见。  相似文献   

6.
The article presents the proposed concept of bioelements and the basic postulates of bioelementology for assessing and discussing them in the scientific community. It is known that chemical elements exist in the organism not by themselves, but in certain species having close interaction with other components. Such units are proposed to be called bioelements: the elementary functioning units of living matter, which are biologically active complexes of chemical elements as atoms, ions or nanoparticles with organic compounds of exogenous or biogenous origin. The scientific discipline that studies bioelements, is proposed to be called bioelementology. This discipline could lay the foundation for the integration of bioorganic chemistry, bioinorganic chemistry, biophysics, molecular biology and other parts of life sciences.  相似文献   

7.
8.
9.
The potential loss or large-scale degradation of the tropical rainforests has become one of the iconic images of the impacts of twenty-first century environmental change and may be one of our century's most profound legacies. In the Amazon region, the direct threat of deforestation and degradation is now strongly intertwined with an indirect challenge we are just beginning to understand: the possibility of substantial regional drought driven by global climate change. The Amazon region hosts more than half of the world's remaining tropical forests, and some parts have among the greatest concentrations of biodiversity found anywhere on Earth. Overall, the region is estimated to host about a quarter of all global biodiversity. It acts as one of the major 'flywheels' of global climate, transpiring water and generating clouds, affecting atmospheric circulation across continents and hemispheres, and storing substantial reserves of biomass and soil carbon. Hence, the ongoing degradation of Amazonia is a threat to local climate stability and a contributor to the global atmospheric climate change crisis. Conversely, the stabilization of Amazonian deforestation and degradation would be an opportunity for local adaptation to climate change, as well as a potential global contributor towards mitigation of climate change. However, addressing deforestation in the Amazon raises substantial challenges in policy, governance, sustainability and economic science. This paper introduces a theme issue dedicated to a multidisciplinary analysis of these challenges.  相似文献   

10.
绿色荧光蛋白——照亮生命科学的一盏明灯   总被引:2,自引:0,他引:2  
单永立  李艳  朱学良 《生命科学》2008,20(6):850-855
绿色荧光蛋白的发现及应用具有划时代的重要意义,它不仅为当代生物学研究提供了极为实用的基本研究手段,并且在此基础上改造发展和发现了一系列荧光蛋白,拓展了应用范围。这使得对微观生物学的研究也可以进入一个时空结合,研究鲜活动态过程的新时代。本文主要回顾总结了绿色荧光蛋白的发现、优化改造及其应用。  相似文献   

11.
12.
13.
从百年诺贝尔生理学或医学奖看世界生命科学发展   总被引:1,自引:0,他引:1  
文淑美  高柳滨 《生命科学》2005,17(4):364-369
本文运用文献计量学的方法,对1901~2004年的诺贝尔生理学或医学奖的获奖者从空间、时间和学科分布等角度进行统计分析,以便了解生命科学领域国际诺贝尔奖人才培养情况、机构获奖情况、学科领域发展情况,思考我国生命科学领域科技人才发展之道,打造一流科研机构,合理进行学科发展布局。  相似文献   

14.
15.
16.
17.
18.
The ISS changes the scope of science activities for the future and links the US to its partners in technology, science, and the exploration of space in an unprecedented manner.  相似文献   

19.
Twenty-first century life sciences have transformed into data-enabled (also called data-intensive, data-driven, or big data) sciences. They principally depend on data-, computation-, and instrumentation-intensive approaches to seek comprehensive understanding of complex biological processes and systems (e.g., ecosystems, complex diseases, environmental, and health challenges). Federal agencies including the National Science Foundation (NSF) have played and continue to play an exceptional leadership role by innovatively addressing the challenges of data-enabled life sciences. Yet even more is required not only to keep up with the current developments, but also to pro-actively enable future research needs. Straightforward access to data, computing, and analysis resources will enable true democratization of research competitions; thus investigators will compete based on the merits and broader impact of their ideas and approaches rather than on the scale of their institutional resources. This is the Final Report for Data-Intensive Science Workshops DISW1 and DISW2. The first NSF-funded Data Intensive Science Workshop (DISW1, Seattle, WA, September 19-20, 2010) overviewed the status of the data-enabled life sciences and identified their challenges and opportunities. This served as a baseline for the second NSF-funded DIS workshop (DISW2, Washington, DC, May 16-17, 2011). Based on the findings of DISW2 the following overarching recommendation to the NSF was proposed: establish a community alliance to be the voice and framework of the data-enabled life sciences. After this Final Report was finished, Data-Enabled Life Sciences Alliance (DELSA, www.delsall.org ) was formed to become a Digital Commons for the life sciences community.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号