共查询到20条相似文献,搜索用时 0 毫秒
1.
Gómez MI O'Seaghdha M Magargee M Foster TJ Prince AS 《The Journal of biological chemistry》2006,281(29):20190-20196
Staphylococcus aureus continues to be a major cause of infection in normal as well as immunocompromised hosts, and the increasing prevalence of highly virulent community-acquired methicillin-resistant strains is a public health concern. A highly expressed surface component of S. aureus, protein A (SpA), contributes to its success as a pathogen by both activating inflammation and by interfering with immune clearance. SpA is known to bind to IgG Fc, which impedes phagocytosis. SpA is also a potent activator of tumor necrosis factor alpha (TNF-alpha) receptor 1 (TNFR1) signaling, inducing both chemokine expression and TNF-converting enzyme-dependent soluble TNFR1 (sTNFR1) shedding, which has anti-inflammatory consequences, particularly in the lung. Using a collection of glutathione S-transferase fusions to the intact IgG binding region of SpA and to each of the individual binding domains, we found that the SpA IgG binding domains also mediate binding to human airway cells. TNFR1-dependent CXCL8 production could be elicited by any one of the individual SpA IgG binding domains as efficiently as by either the entire SpA or the intact IgG binding region. SpA induction of sTNFR1 shedding required the entire IgG binding region and tolerated fewer substitutions in residues known to interact with IgG. Each of the repeated domains of the IgG binding domain can affect multiple immune responses independently, activating inflammation through TNFR1 and thwarting opsonization by trapping IgG Fc domains, while the intact IgG binding region can limit further signaling through sTNFR1 shedding. 相似文献
2.
Staphylococcus aureus encodes a secreted von Willebrand factor-binding protein (vWbp) of 482 amino acids. The N-terminal part of this protein is homologous to staphylocoagulase and therefore we investigated whether vWbp has coagulating activity. Recombinant vWbp was shown to coagulate human and porcine plasma efficiently, but was less active against plasma from other species. The coagulation efficiency was concentration dependent, and could be inhibited by specific antibodies against vWbp. Furthermore, the species-specific coagulation by vWbp depended on the interaction with prothrombin. This interaction also resulted in specific cleavage of vWbp, releasing the C-terminal part from the coagulating domain. 相似文献
3.
The PIII class of the snake venom metalloproteinases (SVMPS) are acknowledged to be one of the major hemorrhage producing toxins in crotalid venoms. This class of SVMPS are structurally distinguished by the presence of disintegrin-like and cysteine-rich domains carboxy to the metalloproteinase domain and thus share structural homology with many of the ADAMs proteins. It has been suggested that the presence of the carboxy domain are the key structural determinants for potent hemorrhagic activity in that they may serve to target the proteinases to specific key extracellular matrix and cell surface substrates for proteolysis leading to hemorrhage production at the capillaries. Following from previous studies in our laboratory in this investigation we scanned the cysteine-rich domain of the PIII hemorrhagic SVMP jararhagin using synthetic peptides in an attempt to identify regions which could bind to von Willebrand factor (vWF), a known binding partner for jararhagin. From these studies we identified two such peptide, Jar6 and Jar7 that could support binding to vWF as well as block the recombinant cysteine-rich domain of jararhagin binding to vWF. Using the coordinates for the recently solved crystal structure of the PIII SVMP VAP1, we modeled the structure of jararhagin and attempted to dock the modeled cysteine-rich structure of that protein to the A1 domain of vWF. These studies indicated that effective protein-protein interaction between the two ligands was possible and supported the data indicating that the Jar6 peptide was involved, whereas the Jar7 peptide was observed to be sterically blocked from interaction. In summary, our studies have identified a region on the cysteine-rich domain of a PIII SVMP that interacts with vWF and based on molecular modeling could be involving in the interaction of the cysteine-rich domain of the SVMP with the A1 domain of vWF thus serving to target the toxin to the protein for subsequent proteolytic degradation. 相似文献
4.
Nilsson M Bjerketorp J Wiebensjö A Ljungh A Frykberg L Guss B 《FEMS microbiology letters》2004,234(1):155-161
In the present study, a phage display library covering the genome of Staphylococcus lugdunensis, was affinity-selected against von Willebrand factor (vWf). This led to the identification of a gene, vwbl, encoding a putative cell surface protein of 2060 amino acids, denoted vWbl. The deduced protein has an overall organisation typical of staphylococcal cell surface proteins, with an N-terminal signal peptide, and a C-terminal cell wall sorting signal. The vWf-binding part is located in repetitive domains and antibodies against vWbl or vWf can inhibit the binding. Southern blot analysis showed that vwbl was present in the 12 S. lugdunensis strains tested. 相似文献
5.
Identification of amino acid residues essential for heparin binding by the A1 domain of human von Willebrand factor 总被引:1,自引:0,他引:1
Adachi T Matsushita T Dong Z Katsumi A Nakayama T Kojima T Saito H Sadler JE Naoe T 《Biochemical and biophysical research communications》2006,339(4):1178-1183
Platelet adhesion is mediated by von Willebrand factor (VWF) that binds platelet glycoprotein Ib (GPIb). Previous observations suggested that heparin competitively inhibits the binding of VWF to GPIb and may down-regulate platelet adhesion. We performed charged-to-alanine scanning mutagenesis of domain A1 and studied dose-dependent binding to heparin-Sepharose beads. Mutations at Lys1362 and Arg1395, at which the GPIb binding was markedly decreased, showed 41% and 42% binding, respectively. Clustered mutations in the segments 1332KDRKR1336 and 1405KKKK1408, which have been proposed as heparin binding sequences, showed 72% and 52% binding, respectively. However, single alanine substitutions within these clusters showed normal binding. Our findings suggest that heparin may inhibit the binding of VWF to GPIb by interacting with GPIb binding and interpret why some hemorrhagic complications of heparin therapy are not predictable based on techniques for monitoring the conventional anticoagulant effects of heparin. 相似文献
6.
Purified human von Willebrand factor (vWF) was digested with Staphylococcus aureus V-8 protease, and specific domains interacting with platelets were isolated and characterized. Amino acid sequence analysis and sodium dodecyl sulfate gel electrophoresis demonstrated that the digestion proceeded primarily by a single cleavage of the native 270K subunit between an internal Glu-Glu peptide bond. This produced an integral stepwise degradation of the multimers of vWF with a concomitant accumulation of bands with mobility similar to that of the smaller molecular weight vWF multimers. The immediate precursor of the final products contained equimolar amounts of 270K subunit and of two polypeptides (170K and 110K). The cleavage of the remaining 270K subunit converted vWF into two main fragments (fragments II and III). These fragments were isolated by ion exchange chromatography, characterized, and assayed for platelet binding in the presence of ristocetin. Fragment III is a dimer of 315K composed primarily of two chains of 170K. Amino acid sequence analysis indicated that it originated from the amino-terminal portion of the 270K subunit and contained 11% of the original ristocetin cofactor activity. Also, it binds to platelets at the same specific sites as native vWF and shows a platelet binding pattern similar to that of partially reduced vWF (500K). Fragment II is a dimer of 235K composed of two identical chains of 110K. Amino acid sequence analysis indicated that it originated from the carboxyl-terminal portion of the 270K subunit and lacked ristocetin cofactor activity. Also, it does not bind to platelets or inhibit the binding of 125I-vWF in the presence of ristocetin.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
7.
Takuo Fujisawa Walter Sebald 《Biochemical and biophysical research communications》2009,385(2):215-219
The VWC domain of Chordin family proteins consists of subdomains SD1 and SD2. In previous experiments with VWC1 from CV-2 SD-1 was shown to be crucial for BMP interaction. Now the SD1 from VWC1 and VWC3 of Chordin and CHL2 were established to confer BMP affinity and specificity to these proteins also. In addition, these SD1 subdomains are mediating binding to Tsg. Mutational analysis revealed similar binding epitopes of the various SD1 proteins for BMP-2 and Tsg. Inhibitory activity of CHL2 in C2C12 cells is reduced by mutations in SD1 of VWC1 and even more of VWC3. These results together provide strong evidence that the SD1 subdomain module of about 40 residues represents the crucial binding partner for BMPs and Tsg in these Chordin family proteins and likely in other BMP-binding VWC domains also. 相似文献
8.
9.
Serrano SM Wang D Shannon JD Pinto AF Polanowska-Grabowska RK Fox JW 《The FEBS journal》2007,274(14):3611-3621
Snake venom metalloproteinases (SVMPs) have recently been shown to interact with proteins containing von Willebrand factor A (VWA) domains, including the extracellular matrix proteins collagen XII, collagen XIV, matrilins 1, 3 and 4, and von Willebrand factor (VWF) via their cysteine-rich domain. We extended those studies using surface plasmon resonance to investigate the interaction of SVMPs with VWF, and demonstrated that jararhagin, a PIII SVMP containing a metalloproteinase domain followed by disintegrin-like and cysteine-rich domains, catrocollastatin C, a disintegrin-like/cysteine-rich protein, and the recombinant cysteine-rich domain of atrolysin A (A/C) all interacted with immobilized VWF in a dose-dependent fashion. Binding of VWF in solution to immobilized A/C was inhibited by ristocetin and preincubation of platelets with A/C abolished ristocetin/VWF-induced platelet aggregation, indicating that the interaction of A/C with VWF is mediated by the VWA1 domain. Jararhagin cleaved VWF at sites adjacent to the VWA1 domain, whereas atrolysin C, a SVMP lacking the cysteine-rich domain, cleaved VWF at dispersed sites. A/C and catrocollastatin C completely inhibited the digestion of VWF by jararhagin, demonstrating that the specific interaction of jararhagin with VWF via the VWA1 domain is necessary for VWF proteolysis. In summary, we localized the binding site of PIII SVMPs in VWF to the A1 domain. This suggests additional mechanisms by which SVMPs may interfere with the adhesion of platelets at the site of envenoming. Thus, specific interaction of cysteine-rich domain-containing SVMPs with VWF may function to promote the hemorrhage caused by SVMP proteolysis of capillary basements and surrounding stromal extracellular matrix. 相似文献
10.
Isolation and characterization of a collagen binding domain in human von Willebrand factor 总被引:9,自引:0,他引:9
F I Pareti Y Fujimura J A Dent L Z Holland T S Zimmerman Z M Ruggeri 《The Journal of biological chemistry》1986,261(32):15310-15315
von Willebrand factor binds to fibrillar type I collagen in a rapid, temperature-independent, reversible, specific, and saturable manner. Evaluation of binding isotherms by Scatchard-type analysis demonstrated that 6-18 micrograms of von Willebrand factor bind per mg of collagen, with Ka between 2 and 8 X 10(8) M-1. Five distinct tryptic fragments, purified under denaturing and reducing conditions and representing over 75% of the molecular mass of the von Willebrand factor subunit, were tested for their capacity to inhibit the von Willebrand factor-collagen interaction. Complete inhibition was obtained with a 52/48-kDa fragment at a concentration of approximately 1 microM. The location of this fragment in the subunit was established to be between Val-449 and Lys-728. Fifteen monoclonal antibodies against the 52/48-kDa fragment inhibited von Willebrand factor binding to collagen. Six antibodies against other portions of the von Willebrand factor subunit had no inhibitory effect. The tryptic fragment was a competitive inhibitor of von Willebrand factor binding to collagen and, therefore, recognizes the same interaction site as the intact molecule. These studies precisely define a domain in the von Willebrand factor subunit that interacts with type I collagen. 相似文献
11.
12.
A major factor VIII binding domain resides within the amino-terminal 272 amino acid residues of von Willebrand factor 总被引:8,自引:0,他引:8
P A Foster C A Fulcher T Marti K Titani T S Zimmerman 《The Journal of biological chemistry》1987,262(18):8443-8446
We have identified a Factor VIII (FVIII) binding domain residing within the amino-terminal 272 amino acid residues of the mature von Willebrand Factor (vWF) subunit. Two-dimensional crossed immunoelectrophoresis showed direct binding of purified human FVIII to purified human vWF. After proteolytic digestion of vWF with Staphylococcus aureus V8 protease (SP), FVIII binding was seen only with the amino-terminal SP fragment III and not with the carboxyl-terminal SP fragment II. A monoclonal anti-vWF antibody (C3) partially blocked FVIII binding to vWF and SP fragment III. FVIII also bound to vWF which had been adsorbed to polystyrene beads. This binding was inhibited in a dose-dependent manner by whole vWF, SP fragment III, and by monoclonal antibody C3. Binding could not be inhibited by SP fragment I, which contains the middle portion of the vWF molecule, or by reduced and alkylated whole vWF. SP fragment II caused only minimal inhibition. Trypsin cleavage of SP fragment III produced a monomeric 35-kDa fragment containing the amino-terminal 272 amino acid residues of vWF. This fragment reacted with monoclonal antibody C3 and inhibited the binding of FVIII to vWF in a dose-dependent manner. These studies demonstrate that a major FVIII binding site resides within the amino-terminal 272 amino acid residues of vWF. 相似文献
13.
David Viana José Blanco María Ángeles Tormo‐Más Laura Selva Caitriona M. Guinane Rafael Baselga Juan M. Corpa Íñigo Lasa Richard P. Novick J. Ross Fitzgerald José R. Penadés 《Molecular microbiology》2010,77(6):1583-1594
Staphylococci adapt specifically to various animal hosts by genetically determined mechanisms that are not well understood. One such adaptation involves the ability to coagulate host plasma, by which strains isolated from ruminants or horses can be differentiated from closely related human strains. Here, we report first that this differential coagulation activity is due to animal‐specific alleles of the von Willebrand factor‐binding protein (vWbp) gene, vwb, and second that these vwb alleles are carried by highly mobile pathogenicity islands, SaPIs. Although all Staphylococcus aureus possess chromosomal vwb as well as coagulase (coa) genes, neither confers species‐specific coagulation activity; however, the SaPI‐coded vWbps possess a unique N‐terminal region specific for the activation of ruminant and equine prothrombin. vWbp‐encoding SaPIs are widely distributed among S. aureus strains infecting ruminant or equine hosts, and we have identified and characterized four of these, SaPIbov4, SaPIbov5, SaPIeq1 and SaPIov2, which encode vWbpSbo4, vWbpSbo5, vWbpSeq1 and vWbpSov2 respectively. Moreover, the SaPI‐carried vwb genes are regulated differently from the chromosomal vwb genes of the same strains. We suggest that the SaPI‐encoded vWbps may represent an important host adaptation mechanism for S. aureus pathogenicity, and therefore that acquisition of vWbp‐encoding SaPIs may be determinative for animal specificity. 相似文献
14.
The N-terminal A domain of Staphylococcus aureus fibronectin-binding protein A binds to tropoelastin 总被引:1,自引:0,他引:1
Staphylococcus aureus is an important human pathogen. Its virulence factors include a variety of MSCRAMMs (microbial surface component recognizing adhesive matrix molecules), each capable of binding specifically to the host extracellular matrix. The fibronectin-binding protein, FnBPA, has been shown previously to bind immobilized fibronectin, fibrinogen, and alpha-elastin peptides. Here we show that region A of FnBPA (rAFnBPA) binds to recombinant human tropoelastin. Binding occurs to three separate truncates of tropoelastin, encompassing domains 2-18, 17-27, and 27-36, signifying that the interaction occurs at multiple sites. The greatest affinity was for the N-terminal truncate. We observed a pH dependency for the rAFnBPA-tropoelastin interaction with strong, nonsaturable binding at low pH. The interaction ceased at higher pH. These data support a model of surface-surface interactions between the negative charges present on rAFnBPA and the positive lysines of tropoelastin. A protein lacking the negatively charged C-terminal fibronectin-binding motif of the A domain of FnBPA and another construct lacking subdomain N1 were both capable of binding immobilized tropoelastin with a lower affinity. The binding properties of five site-directed mutants of rAFnBPA were compared with wild-type rAFnBPA. There was no decreased affinity for immobilized tropoelastin, in contrast to the defective binding of these mutants to alpha-elastin and fibrinogen. The data indicate novel interactions between tropoelastin and FnBPA that include the use of surface charges. These results demonstrate that FnBPA is capable of directly binding tropoelastin prior to its incorporation into elastin. 相似文献
15.
Staphylococcus aureus domain V functions in Escherichia coli ribosomes provided a conserved interaction with domain IV is restored 下载免费PDF全文
Domain V of Escherichia coli 23 S rRNA (residues 2023-2630) was replaced by that from Staphylococcus aureus, thereby introducing 132 changes in the rRNA sequence. The resulting ribosomal mutant was unable to support cell growth. The mutant was rescued, however, by restoring an interaction between domains IV and V (residues 1782 and 2586). Although the importance of this interaction, U/U in E. coli, C/C in S. aureus, is therefore demonstrated, it cannot be the only tertiary interaction important for ribosomal function as the rescued hybrid grew more slowly than the wild type. Additionally, although the single-site mutations U1782C and U2586C in E. coli are viable, the double mutant is lethal. 相似文献
16.
Zanardelli S Crawley JT Chion CK Lam JK Preston RJ Lane DA 《The Journal of biological chemistry》2006,281(3):1555-1563
ADAMTS13 controls the multimeric size of circulating von Willebrand factor (VWF) by cleaving the Tyr1605-Met1606 bond in theA2 domain. To examine substrate recognition, we expressed in bacteria and purified three A2 (VWF76-(1593-1668), VWF115-(1554-1668), VWFA2-(1473-1668)) and one A2-A3 (VWF115-A3-(1554-1874)) domain fragments. Using high pressure liquid chromatography analysis, the initial rates of VWF115 cleavage by ADAMTS13 at different substrate concentrations were determined, and from this the kinetic constants were derived (Km 1.61 microM; kcat 0.14 s(-1)), from which the specificity constant kcat/Km was calculated, 8.70 x 10(4) m(-1) s(-1). Similar values of the specificity constant were obtained for VWF76 and VWF115-A3. To identify residues important for recognition and proteolysis of VWF115, we introduced certain type 2A von Willebrand disease mutations by site-directed mutagenesis. Although most were cleaved normally, one (D1614G) was cleaved approximately 8-fold slower. Mutagenesis of additional charged residues predicted to be in close proximity to Asp1614 on the surface of the A2 domain (R1583A, D1587A, D1614A, E1615A, K1617A, E1638A, E1640A) revealed up to 13-fold reduction in kcat/Km for D1587A, D1614A, E1615A, and K1617A mutants. When introduced into the intact VWFA2 domain, proteolysis of the D1587A, D1614A, and E1615A mutants was also slowed, particularly in the presence of urea. Surface plasmon resonance demonstrated appreciable reduction in binding affinity between ADAMTS13 and VWF115 mutants (KD up to approximately 1.3 microM), compared with VWF115 (KD 20 nM). These results demonstrate an important role for Asp1614 and surrounding charged residues in the binding and cleavage of the VWFA2 domain by ADAMTS13. 相似文献
17.
The fibronectin-binding proteins FnBPA and FnBPB are multifunctional adhesins than can also bind to fibrinogen and elastin. In this study, the N2N3 subdomains of region A of FnBPB were shown to bind fibrinogen with a similar affinity to those of FnBPA (2 μM). The binding site for FnBPB in fibrinogen was localized to the C-terminus of the γ-chain. Like clumping factor A, region A of FnBPB bound to the γ-chain of fibrinogen in a Ca(2+)-inhibitable manner. The deletion of 17 residues from the C-terminus of domain N3 and the substitution of two residues in equivalent positions for crucial residues for fibrinogen binding in clumping factor A and FnBPA eliminated fibrinogen binding by FnBPB. This indicates that FnBPB binds fibrinogen by the dock-lock-latch mechanism. In contrast, the A domain of FnBPB bound fibronectin with K(D) = 2.5 μM despite lacking any of the known fibronectin-binding tandem repeats. A truncate lacking the C-terminal 17 residues (latching peptide) bound fibronectin with the same affinity, suggesting that the FnBPB A domain binds fibronectin by a novel mechanism. The substitution of the two residues required for fibrinogen binding also resulted in a loss of fibronectin binding. This, combined with the observation that purified subdomain N3 bound fibronectin with a measurable, but reduced, K(D) of 20 μM, indicates that the type I modules of fibronectin bind to both the N2 and N3 subdomains. The fibronectin-binding ability of the FnBPB A domain was also functional when the protein was expressed on and anchored to the surface of staphylococcal cells, showing that it is not an artifact of recombinant protein expression. 相似文献
18.
M Sobel D F Soler J C Kermode R B Harris 《The Journal of biological chemistry》1992,267(13):8857-8862
Human von Willebrand factor, a plasma glycoprotein which plays a critical role in regulating hemostasis, binds heparin, but the physiological importance and mode of this interaction is poorly understood. Using the motif of an amino acid sequence of a consensus heparin binding synthetic peptide, a 23-residue sequence (Tyr565-Ala587) of human von Willebrand factor was identified that retains the consensus motif and binds heparin with affinity comparable with native von Willebrand factor and the consensus peptide. In a fluid phase binding assay, the Tyr565-Ala587 peptide competed effectively with von Willebrand factor for binding heparin. Synthesis and testing of peptides overlapping Tyr565-Ala587, as well as adjacent cationic regions, showed this core sequence to be the optimal linear binding domain. Far ultraviolet circular dichroism spectrometry of the Tyr565-Ala587 peptide suggested that the peptide undergoes conformational change upon binding heparin. The Tyr565-Ala587 peptide thus encompasses part (or all) of a functionally important heparin binding domain of von Willebrand factor. Further study of this and related peptides may be useful for exploring how heparin may influence von Willebrand factor-mediated platelet hemostasis. 相似文献
19.
20.
M E Baker 《The Biochemical journal》1988,256(3):1059-1061