首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tilsner J  Kassner N  Struck C  Lohaus G 《Planta》2005,221(3):328-338
Oilseed rape (Brassica napus L.) needs very high nitrogen fertilizer inputs. Significant amounts of this nitrogen are lost during early leaf shedding and are a source of environmental and economic concern. The objective of this study was to investigate whether the remobilization of leaf amino acids could be limiting for nitrogen use efficiency. Therefore, amino acid concentrations were analyzed in subcellular compartments of leaf mesophyll cells of plants grown under low (0.5 mM NO3) and high (4 mM NO3) nitrogen supply. With high nitrogen supply, young leaves showed an elevated amino acid content, mainly in vacuoles. In old leaves, however, subcellular concentrations were similar under high and low nitrogen conditions, showing that the excess nitrogen had been exported during leaf development. The phloem sap contained up to 650 mM amino acids, more than four times as much than the cytosol of mesophyll cells, indicating a very efficient phloem-loading process. Three amino acid permeases, BnAAP1, BnAAP2, and BnAAP6, were identified and characterized. BnAAP1 and BnAAP6 mediated uptake of neutral and acidic amino acids into Xenopus laevis oocytes at the actual apoplastic substrate concentrations. All three transporters were expressed in leaves and the expression was still detectable during leaf senescence, with BnAAP1 and BnAAP2 mRNA levels increasing from mature to old leaves. We conclude that phloem loading of amino acids is not limiting for nitrogen remobilization from senescing leaves in oilseed rape.  相似文献   

2.
Senescence and reserve mobilization are integral components of plant development, are basic strategles in stress mitigation, and regulated at least in part by cytokinin. In the present study the effect of altered cytokinin metabolism caused by senescence-specific autoregulated expression of the Agrobacterium tumefaciens IPT gene under control of the PSAG12 promoter (PSAG12-IPT) on seed germination and the response to a water-deficit stress was studied in tobacco (Nicotiana tabacum L.). Cytokinin levels, sugar content and composition of the leaf strata within the canopy of wild-type and PSAG12-IPT plants confirmed the reported altered source–sink relations. No measurable difference in sugar and pigment content of discs harvested from apical and basal leaves was evident 72 h after incubation with (+)-ABA or in darkness, indicating that expression of the transgene was not restricted to senescing leaves. No difference in quantum efficiency, photosynthetic activity, accumulation of ABA, and stomatal conductance was apparent in apical, middle and basal leaves of either wild-type or PSAG12-IPT plants after imposition of a mild water stress. However, compared to wild-type plants, PSAG12-IPT plants were slower to adjust biomass allocation. A stress-induced increase in root:shoot ratio and specific leaf area (SLA) occurred more rapidly in wild-type than in PSAG12-IPT plants reflecting delayed remobilization of leaf reserves to sink organs in the transformant. PSAG12-IPT seeds germinated more slowly even though abscisic acid (ABA) content was 50% that of the wild-type seeds confirming cytokinin-induced alterations in reserve remobilization. Thus, senescence is integral to plant growth and development and an increased endogenous cytokinin content impacts source–sink relations to delay ontogenic transitions wherein senescence in a necessary process.  相似文献   

3.
The effect of two N-forms (NH4 + and NO3 ) and NaCl on pattern of accumulation of some essential inorganic nutrients was examined in sunflower (Helianthus annuus L.) cv. Hisun 33. Eight-day-old plants of were subjected for 21 d to Hoagland's nutrient solution containing 8 mM N as NH4 + or NO3 ·, and salinized with and addition of NaCl to the growth medium had no significant effect on total leaf N. However, root N of NH4-supplied plants decreased significantly with increase in NaCl concentration, whereas that of NO3-supplied plants remained unaffected. There was no significant effect of NaCl on leaf or root P, but the NO3-supplied plants had significa concentration of leaf P than that of NH4-supplied plants at varying salt treatments. Salinity of the rooting med did not show any significant effect on Na+ concentrations of leaves or roots of plants subjected to two differen N. NH4-treated plants generally had greater concentrations of Cl in leaves and roots and lower K+ content in leaves than NO3-supplied plants. Ca2+ concentrations of leaves and roots and Mg2+ concentrations of leaves decreased in NH4-supplied plants due to NaCl, but they remained unaffected in NO3-treated plants.  相似文献   

4.
During vegetative regrowth of Medicago sativa L., soil N, symbiotically fixed N2 and N reserves meet the nitrogen requirements for shoot regrowth. Experiments with nodulated or non-nodulated plants were carried out to investigate the changes in N flows originating from the different N sources and in xylem transport of amino acids during regrowth. Exogenous N uptake, N2 fixation and endogenous N remobilization were estimated by 15N labelling and amino acids in xylem sap were analysed. Removal of shoots resulted in great declines of exogenous N flows derived either from N2 or from NH4NO3 during the first week of regrowth, thereafter recovery increased linearly. Mineral N uptake as well as N2 fixation occurred mainly between the 10th and 18th day after removal of shoots while exogenous N assimilation in intact plants remained at a steady level. Nitrogen remobilization rates in defoliated plants increased by at least three to five-fold, especially during the first 10 days following shoot removal. Compared to control plants, contents of amino acids in xylem sap, during the first 10 days of regrowth, were reduced by about 72% and 82% in NH4NO3 grown and in N2 fixing plants, respectively. Asparagine was the main amino acid transported in xylem sap of both treated plants. Its relative contents during this period significantly decreased from 75% to 59% and from 67% to 36% respectively in non-nodulated plants and in nodulated ones. This decline was accompanied by compensatory increase in the relative contents of aspartate and glutamine.  相似文献   

5.
Ammonia-oxidizing bacteria (AOB) populations were studied on the root surface of different rice cultivars by PCR coupled with denaturing gradient gel electrophoresis (DGGE) and fluorescence in situ hybridization (FISH). PCR-DGGE of the ammonium monooxygenase gene (amoA) showed a generally greater diversity on root samples compared to rhizosphere and unplanted soil. Sequences affiliated with Nitrosomonas spp. tended to be associated with modern rice hybrid lines. Root-associated AOB observed by FISH were found within a discrete biofilm coating the root surface. Although the total abundance of AOB on root biofilms of different rice cultivars did not differ significantly, there were marked contrasts in their population structure, indicating selection of Nitrosomonas spp. on roots of a hybrid cultivar. Observations by FISH on the total bacterial community also suggested that different rice cultivars support different bacterial populations even under identical environmental conditions. The presence of active AOB in the root environment predicts that a significant proportion of the N taken up by certain rice cultivars is in the form of NO3 -N produced by the AOB. Measurement of plant growth of hydroponically grown plants showed a stronger response of hybrid cultivars to the co-provision of NH4 + and NO3 . In soil-grown plants, N use efficiency in the hybrid was improved during ammonium fertilization compared to nitrate fertilization. Since ammonium-fertilized plants actually receive a mixture of NH4 + and NO3 with ratios depending on root-associated nitrification activity, these results support the advantage of co-provision of ammonium and nitrate for the hybrid cultivar.  相似文献   

6.
Mutation of the nuclear gene sid disables chlorophyll degradation during leaf senescence in the pasture grass Festuca pratensis. This study investigated the effect of the mutation on photosynthesis and on leaf and whole plant growth under a range of nitrogen regimes. When plants were cultivated in a static hydroponic system, the chlorophyll content of fourth leaves of the stay-green mutant Bf993 remained virtually unchanged from full expansion to complete senescence, while tissue of the wild-type (cv. Rossa) became completely yellow. The retention of chlorophyll in Bf993 was not associated with maintenance of photosynthetic activity as shown by rates of light-saturated CO2 fixation and apparent quantum efficiency. Higher levels of total N in senescing leaves of Bf993 than in Rossa indicated reduced nitrogen remobilization in the mutant. When using a range of [NH4NO3], dry matter production and tillering Mere lower for Bf993 at all but the highest [NH4NO3, which was supra-optimal for the wild type. In contrast to the static system, where fluctuations in N supply occurred, growth and [NO3?] uptake were similar in mutant and wild type when [NO3?] was continuously maintained by a flowing solution culture system. The results are discussed in relation to the role of N supply and the effect of the stay-green mutation on N recycling.  相似文献   

7.
Developmental regulation of photosynthate distribution in leaves of rice   总被引:1,自引:0,他引:1  
mRNA expression patterns of genes for metabolic key enzymes sucrose phosphate synthase (SPS), phosphoenolpyruvate carboxylase (PEPC), pyruvate kinase, ribulose 1,5-bisphosphate carboxylase/oxygenase, glutamine synthetase 1, and glutamine synthetase 2 were investigated in leaves of rice plants grown at two nitrogen (N) supplies (N0.5, N3.0). The relative gene expression patterns were similar in all leaves except for 9th leaf, in which mRNA levels were generally depressed. Though increased N supply prolonged the expression period of each mRNA, it did not affect the relative expression intensity of any mRNA in a given leaf. SPS Vmax, SPS limiting and PEPC activities, and carbon flow were examined. The ratio between PEPC activity and SPS Vmax was higher in leaves developed at the vegetative growth stage (vegetative leaves: 5th and 7th leaves) than in leaves developed after the ear primordia formation stage (reproductive leaves: 9th and flag leaves). PEPC activity and SPS Vmax decreased with declining leaf N content. After using 14CO2 the 14C photosynthate distribution in the amino acid fraction was higher in vegetative than in reproductive leaves when compared for the same leaf N status. Thus, at high PEPC/SPS activities ratio, more 14C photosynthate was distributed to the amino acid pool, whereas at higher SPS activity more 14C was channelled into the saccharide fraction. Thus, leaf ontogeny was an important factor controlling photosynthate distribution to the N- or C-pool, respectively, regardless of the leaf N status.  相似文献   

8.
Maize and pigweed response to nitrogen supply and form   总被引:1,自引:0,他引:1  
As nitrogen management practices change to achieve economic and environmental goals, effects on weed-crop competition must be examined. Two greenhouse experiments investigated the influence of N amount and form on growth of maize and redroot pigweed (Amaranthus retroflexus L.). In Experiment 1, maize and pigweed were grown together in a replacement series (maize: pigweed ratios of 0:4, 1:3, 2:2, 3:1, 4:0) under three NH4NO3-N supplies (0, 110, and 220 mg N kg-1 soil). Maize was planted into established pigweed and plants were harvested 24 days after maize germination. Pigweed responded more to supplemental N than maize and accumulated 2.5 times as much N in shoots at the high N supply. Competition effects were not significant. Maize and pigweed were grown separately in Experiment 2 and supplied 220 mg N kg-1 as either Ca(NO3)2 or (NH4)2SO4 plus a nitrification inhibitor (enhanced ammonium supply, EAS). In maize, EAS treatment did not affect shoot growth and reduced root growth 25% relative to the NO3-N treatment. In pigweed, shoot and root growth were restricted 23 and 86% by EAS treatment, respectively. Total plant N accumulation under EAS treatment was higher in maize, less in pigweed. Under EAS treatment, pigweed leaves were crinkled and chlorotic; leaf disks extracted in 70% ethanol, pH 3, contained less malate and oxalate but more NH4 + compared to the NO3-N treatment. Maize leaf disk malate levels were generally higher compared to pigweed but were less due to EAS treatment. Ammonium level in maize leaf disks was unaffected by N form and EAS treatment increased oxalate levels. Final bulk soil pH was generally lower in pots where pigweed were grown and tended to be lower due to EAS. Leaf disk malate levels and soil pH were positively associated. Results indicate that pigweed is more likely to compete with maize when high levels of NO3-N are provided. Enhancing the proportion of N supplied as NH4 + should restrict the growth of NH4 +-sensitive pigweed.  相似文献   

9.
Greenhouse experiments were conducted in two years (1993–1994) with eggplants supplied with 1, 2 or 4 mM NH4NO3 as the N source in order to determine its influence on molybdenum (Mo) and nitrate (NO3 ) content in leaf blades, petioles, and fruits as well as leaf nitrate reductase (NR) activity. The results reveal that 2 and 4 mM NH4NO3 altered shoot Mo distribution and thus affecting the NR activity.  相似文献   

10.
An hydroponic experiment with a simulated water stress induced by PEG (6000) was conducted in a greenhouse to study the effects of nitrate (NO3 ), ammonium (NH4 +) and the mixture of NO3 and NH4 +, on water stress tolerance of rice seedlings. Rice (Shanyou 63) was grown under non- or simulated water stress condition (10% (w/v) PEG, MW6000) with the 3 different N forms during 4 weeks. Under non-stressed condition no difference was observed among the N treatments. Under simulated water stress, seedlings grown on N-NO3 were stunted. Addition of PEG did not affect rice seedling growth in the treatment of only NH4 + supply but slightly inhibited the rice seedling growth in the treatment of mixed supply of NO3 and NH4 +. Simulated water stress, when only N-NH4 + was present, did not affect leaf area and photosynthesis rate, however, both parameters decreased significantly in the NO3 containing solutions. Under water stress, Rubisco content in newly expanded leaves significantly increased in the sole NH4 + supplied plants as compared to that in plants of the other two N treatments. Under water stress, the ratio of carboxylation efficiency to Rubisco content was, respectively, decreased by 13 and 23% in NH4 + and NO3 treatments, respectively. It is concluded that, water stress influenced the Rubisco activity than stomatal limitation, and this effects could be regulated by N forms. Responsible Editor: Herbert Johannes Kronzucker. Shiwei Guo and Gui Chen contributed equally to this paper.  相似文献   

11.
Two hybrids of maize (Zea mays L.) differing in resistance to drought, were grown in chernozem soil in a greenhouse and were fertilized with two different forms of nitrogen: Ca(NO3)2 and (NH4)2SO4 in concentrations corresponding to 100 kg of N ha-1. After emergence of the 4th leaf, plants were exposed to drought. During the drought period, the parameters of plant water status (water potential, osmotic potential, turgor pressure and relative water content) and chlorophyll a+b concentration were monitored every two days. N and K concentration and accumulation over the drought period were also monitored.Next to differences in adaptability of the two hybrids to drought, the results demonstrate different adaptability of NH4 and NO3-treated plants within each hybrid. NH4-plants of each hybrid maintain higher turgor pressure during the drought by better osmotic adaptation. Especially significant differences appear between chlorophyll (a+b) values of NH4 and NO3-treated plants and as affected by drought. Chlorophyll concentrations of NH4-plants are higher than those of NO3-plants both in control and droughted plants. NH4 plants show a characteristic initial chlorophyll increase at the beginning of the drought period while in NO3 plants chlorophyll constantly decreases throughout the whole drought period. The influence of the nitrogen form on chlorophyll concentration changes during drought does not appear to be affected by regulation of the K concentration.  相似文献   

12.
Water stress and nitrogen (N) availability are the main constraints limiting yield in durum wheat (Triticum turgidum L. var. durum). This work investigates the combined effects of N source (ammonium–NH4+, nitrate–NO3 or a mixture of both–NH4+:NO3) and water availability (well‐watered vs. moderate water stress) on photosynthesis and water‐use efficiency in durum wheat (cv. Korifla) flag leaves grown under controlled conditions, using gas exchange, chlorophyll fluorescence and stable carbon isotope composition (δ13C). Under well‐watered conditions, NH4+‐grown plants had lower net assimilation rates (A) than those grown with the other two N forms. This effect was mainly due to lower stomatal conductance (gs). Under moderate water stress, differences among N forms were not significant, because water regime (WR) had a stronger effect on gs and A than did N source. Consistent with lower gs, δ13C and transpiration efficiency (TE) were the highest in NH4+ leaves in both water treatments. These results indicate higher water‐use efficiency in plants fertilized with NH4+ due to stomatal limitation on photosynthesis. Moreover, leaf δ13C is an adequate trait to assess differences in photosynthetic activity and water‐use efficiency caused by different N sources. Further, the effect of these growing conditions on the nitrogen isotope composition (δ15N) of flag leaves and roots was examined. Water stress increased leaf δ15N in all N forms. In addition, leaf δ15N increased as root N decreased and as leaf δ13C became less negative. Regardless of WR, the leaf δ15N of NO3‐grown plants was lowest. Based on stepwise and canonical discriminant analyses, we conclude that plant δ15N together with δ13C and other variables may reflect the conditions of N nutrition and water availability where the plants were grown. Thus well‐watered plants grown with NH4+:NO3 resembled those grown with NO3, whereas under water stress they were closer to plants grown with NH4+.  相似文献   

13.
Volder  Astrid  Bliss  Lawrence C.  Lambers  Hans 《Plant and Soil》2000,227(1-2):139-148
Polar-desert plants experience low average air temperatures during their short growing season (4–8 °C mean July temperature). In addition, low availability of inorganic nitrogen in the soil may also limit plant growth. Our goals were to elucidate which N sources can be acquired by polar-desert plants, and how growth and N-uptake are affected by low growth temperatures. We compared rates of N-uptake and increases in mass and leaf area of two polar-desert species (Cerastium alpinum L. and Saxifraga caespitosa L.) over a period of 3 weeks when grown at two temperatures (6 °C vs. 15 °C) and supplied with either glycine, NH4 + or NO3 . At 15 °C, plants at least doubled their leaf area, whereas there was no change in leaf area at 6 °C. Measured mean N-uptake rates varied between 0.5 nmol g−1 root DM s−1 on glycine at 15 °C and 7.5 nmol g−1 root DM s−1 on NH4 + at 15 °C. Uptake rates based upon increases in mass and tissue N concentrations showed that plants had a lower N-uptake rate at 6 °C, regardless of N source or species. We conclude that these polar-desert plants can use all three N sources to increase their leaf area and support flowering when grown at 15 °C. Based upon short-term (8 h) uptake experiments, we also conclude that the short-term capacity to take up inorganic or organic N is not reduced by low temperature (6 °C). However, net N-uptake integrated over a three-week period is severely reduced at 6 °C. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
The kinetics of ammonium and nitrate uptake by young rice plants   总被引:13,自引:0,他引:13  
Summary An important process which affects the fate of fertilizer nitrogen (N) applied to a rice crop is crop N uptake. This uptake rate is controlled by many factors including the N-ion species and its concentration. In this study the relation between N concentration at the root surface and N uptake was characterized using Michaelis-Menten kinetics. The equation considers two parameters, Vmax and Km, which are measures of the maximum rate of uptake and the affinity of the uptake sites for the nutrient, respectively. Uptake rates of intact rice plants growing in a continuously flowing nutrient solution system were fitted to the Michaelis-Menten model using a weighted regression analysis. For NH4−N the Km values for 4- and 9-week-old rice plants indicated a high affinity for the ammonium ions relative to concentrations reported for rice soils after fertilization. The Vmax values expressed on a unit-root-mass basis decreased with plant age, indicating a reduction in the average density of uptake sites on the root surface. The kinetics of NO3−N uptake was similar to that of NH4−N when NO3−N was the only N source. However, if NH4−N and NO3−N were present simultaneously in the solution the Vmax for the uptake of NO3−N was severely reduced, while the Km was affected very little. This inhibition appears to be noncompetitive. Fertilization of young rice plants leading to concentration of N at the root surface above approximately 900 μM will not increase crop uptake and may contribute to inefficient N recovery by the crop. The existence of NH4−N and NO3−N simultaneously at the root surface may also lead to inefficient N recovery because of reduced uptake of NO3−N.  相似文献   

15.
Growth, chemical composition, and nitrate reductase activity (NRA) of hydroponically cultured Rumex crispus, R. palustris, R. acetosa, and R. maritimus were studied in relation to form (NH4 +, NO3 -, or both) and level of N supply (4 mM N, and zero-N following a period of 4mM N). A distinct preference for either NH4 + or NO3 - could not be established. All species were characterized by a very efficient uptake and utilization of N, irrespective of N source, as evident from high concentrations of organic N in the tissues and concurrent excessive accumulations of free NO3 - and free NH4 +. Especially the accumulation of free NH4 + was unusually large. Generally, relative growth rate (RGR) was highest with a combination of NH4 + and NO3 -. Compared to mixed N supply, RGR of NO3 -- and NH4 +-grown plants declined on average 3% and 9%, respectively. Lowest RGR with NH4 + supply probably resulted from direct or indirect toxicity effects associated with high NH4 + and/or low Ca2+ contents of tissues. NRA in NO3 - and NH4NO3 plants was very similar with maxima in the leaves of ca 40 μmol NO2 - g-1 DW h-1. ‘Basal’ NRA levels in shoot tissues of NH4 + plants appeared relatively high with maxima in the leaves of ca 20 μmol NO2 - g-1 DW h-1. Carboxylate to organic N ratios, (C-A)/Norg, on a whole plant basis varied from 0.2 in NH4 + plants to 0.9 in NO3 - plants. After withdrawal of N, all accumulated NO3 - and NH4 + was assimilated into organic N and the organic N redistributed on a large scale. NRA rapidly declined to similar low levels, irrespective of previous N source. Shoot/root ratios of -N plants were 50–80% lower than those from +N plants. In comparison with +N, RGR of -N plants did not decline to a large extent, decreasing by only 15% in -NH4 + plants due to very high initial organic-N contents. N-deprived plants all exhibited an excess cation over anion uptake (net proton efflux), and whole-plant (C-A)/Norg ratios increased to values around unity. Possible difficulties in interpreting the (C-A)/Norg ratio and NRA of plants in their natural habitats are briefly discussed.  相似文献   

16.
Yang J  Zhang J  Wang Z  Zhu Q  Liu L 《Planta》2002,215(4):645-652
The possible regulation of senescence-initiated remobilization of carbon reserves in rice (Oryza sativa L.) by abscisic acid (ABA) and cytokinins was studied using two rice cultivars with high lodging resistance and slow remobilization. The plants were grown in pots and either well-watered (WW, soil water potential = 0 MPa) or water-stressed (WS, soil water potential = -0.05 MPa) from 9 days after anthesis until they reached maturity. Leaf water potentials of both cultivars markedly decreased at midday as a result of water stress but completely recovered by early morning. Chlorophyll (Chl) and photosynthetic rate (Pr) of the flag leaves declined faster in WS plants than in WW plants, indicating that the water deficit enhanced senescence. Water stress accelerated starch remobilization in the stems, promoted the re-allocation of pre-fixed (14)C from the stems to grains, shortened the grain-filling period and increased the grain-filling rate. Sucrose phosphate synthase (SPS, EC 2.4.1.14) activity was enhanced by water stress and positively correlated with sucrose accumulation in both the stem and leaves. Water stress substantially increased ABA but reduced zeatin (Z) + zeatin riboside (ZR) concentrations in the root exudates and leaves. ABA significantly and negatively, while Z+ZR positively, correlated with Pr and Chl of the flag leaves. ABA, not Z+ZR, was positively and significantly correlated with SPS activity and remobilization of pre-stored carbon. Spraying ABA reduced Chl in the flag leaves, and enhanced SPS activity and remobilization of carbon reserves. Spraying kinetin had the opposite effect. The results suggest that both ABA and cytokinins are involved in controlling plant senescence, and an enhanced carbon remobilization is attributed to an elevated ABA level in rice plants subjected to water stress.  相似文献   

17.
Heike Nowak  Ewald Komor 《Oecologia》2010,163(4):973-984
Leaf-chewing herbivores select food with a protein/carbohydrate ratio of 0.8–1.5, whereas phloem sap, which aphids feed on, has a ratio of ~0.1. Enhanced N fertilization increases the amino acid concentration in phloem sap and elevates the N/C ratio. The study examines: (1) whether aphids select between plants of different N nutrition, (2) whether feeding time correlates with the amino acid composition of phloem sap, and (3) at which stage of probing aphids identify the quality of the plant. Uroleucon tanaceti (Mordvilko) and Macrosiphoniella tanacetaria (Kaltenbach), specialist aphids feeding on tansy (Tanacetum vulgare L.), were reared on this host plant grown essentially hydroponically (in Vermiculite) in the greenhouse on 1, 3, 6, or 12 mM NH4NO3. One and 3 mM NH4NO3 corresponds to the situation found in natural tansy stands. Aphid stylet penetration was monitored by electrical penetration graphs whilst phloem sap was sampled by stylectomy. Both aphid species settled 2–3 times more frequently on plants fertilized with 6 or 12 mM NH4NO3. The phloem sap of these plants contained up to threefold higher amino acid concentrations, without a change in the proportion of essential amino acids. No time differences were observed before stylet penetration of plant tissue. After the first symplast contact, most aphids penetrated further, except M. tanacetaria on low-N plants, where 50% withdrew the stylet after the first probing. The duration of phloem feeding was 2–3 times longer in N-rich plants and the time spent in individual sieve tubes was up to tenfold longer. Aphids identified the nutritional quality of the host plant mainly by the amino acid concentration of phloem sap, not by leaf surface cues nor the proportion of essential amino acids. However, U. tanaceti infestation increased the percentage of methionine plus tryptophan in phloem tenfold, thus manipulating the plants nutritional quality, and causing premature leaf senescence.  相似文献   

18.
The effect of N form and Si nutrition on rice (Oryza sativa L.) susceptibility to blast disease (caused by Pyricularia oryzae Cav.) was assessed in the greenhouse with nutrient solution culture. The N form supplied to the susceptible cultivar IR50 affected the relative infection efficiency (RIE) of P. oryzae measured as lesions/cm2 leaf. Plants given NO3 - were more susceptible than plants receiving NH4 +-N. This result may partially explain why plants grown in nonflooded soil, where NO3 - is the main source of inorganic N, are more susceptible to blast than plants grown in flooded soils, where NH4 + is the main inorganic N source. Nitrate-N and Mn concentration were higher in leaf blades of plants grown with NO3 -. Total-N, Si, and Fe concentration were not affected by N form. The addition of Si significantly increased IR50 resistance to blast. With 2.2 mol m-3 Si in solution, RIE values were lower by more than 90% than the control with no Si added in solution. The effect of Si accumulation in leaves at various positions was further studied in cultivars having differing levels of resistance (IR50, IR36, and IAC165). Silicon addition significantly reduced RIE in the three cultivars. Silicon concentration in the topmost leaves (the only leaves showing typical blast lesions) was not significantly different among the three cultivars when 2.2 mol m-3 Si was used. Silicon was an important component in the mechanism of resistance to blast and it was effective regardless of the original level of resistance of the cultivar used. Contribution from the Agronomy Unit, Agronomy-Physiology-Agroecology Division, International Rice Research Institute (IRRI), P.O. Box 933, 1099 Manila, Philippines, and Colegio de Postgraduados, Mexico. Part of a thesis submitted by the senior author in partial fulfillment of the requirements for the M.S. degree.  相似文献   

19.
The impact of photoperiod on the rate and magnitude of N remobilization relative to uptake of inorganic N during the recovery of shoot growth after a severe defoliation was compared over 18 days in two temperate grass species, timothy (Phleum pratense L. cv. Bodin) and meadow fescue (Festuca pratensis Huds. cv. Salten). Plants were grown in flowing solution culture with N supplied as 20 mM NH4NO3 and pre-treated by extending the 11 h photosynthetically significant light period either by 1 h (short-day or SD plants) or 7 h (long-day or LD plants) of very low light intensity, during the 10 days prior to defoliation. Following a single severe defoliation, 15N-labelled NH4+ or NH4++ NO3? was supplied over a 20-day recovery period under the same SD and LD conditions. Changes in the relative contributions of remobilized N and newly acquired mineral N to shoot regrowth were assessed by sequential harvests. Both absolute and relative rates of N remobilization from root and stubble fractions were higher in LD than SD plants of both species, with the enhancement more acute but of shorter duration in timothy than fescue. Remobilized N was the predominant source of N for shoot regrowth in all treatments between days 0 and 8 after cutting; on average more so for fescue than timothy, because the presence of NO3? reduced the proportional contribution of remobilized N to the regrowth of timothy but not of fescue. Net uptake of mineral N began to recover between days 4 and 6 after cutting, with NO3? uptake restarting 1 or 2 days earlier than NH4+ uptake, even when NH4+ was the only form of N supply. LD timothy plants supplied solely with NH4+ were slowest to resume uptake of mineral N. Supplying NO3? in addition to NH4+ after defoliation promoted shoot regrowth rate but not remobilization of N. Rates of regrowth (shoot dry weight production per plant) were not correlated with rates of N remobilization from stubble either over the short-term (days 0–8) or longer term (days 0–18), interpreted as evidence against a causal dependence of regrowth rate on N remobilization under these conditions. The results are discussed in relation to hypotheses for source/sink-driven rates of N remobilization and their interactions with mineral N uptake following defoliation.  相似文献   

20.
Summary The purpose of this study was to investigate the phytotoxicity of nitrapyrin 2-chloro-6-(trichloromethyl)pyridine to sunflower (Helianthus annuus L.) under different N regimes and to see if N forms affect the phytotoxicity of nitrapyrin. Sunflower was grown in pot culture for 21 days and was fertilized with (NH4)2SO4, NH4NO3 and NaNO3 to provide 0, 100 and 200 ppm N and with nitrapyrin application of 0 and 20 ppm. All N-treated sunflower plants in all N regimes and regardless of titrapyrin treatment produced more root and shoot dry weights and contained a significantly higher N than untreated check. Nitrapyrin toxicity appeared as a curling of leaf margin and a tendril type of stem growth, the visible toxicity symptoms decreased in the order: (NH4)2SO4>NH4NO3>NaNO3. Furthermore nitrapyrin addition suppressed sunflower growth in each N regime, the suppressing effect being greater with (NH4)2SO4 and NH4NO3 than as with NaNO3. Although, shoot growth from plants receiving nitrapyrin was not significantly affected by any N regime, root growth of nitrapyrin-treated plants was somewhat restricted by NH4 +−N nutrition relative to NO3 −N nutrition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号