首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
地中海沿岸沙丘种子大小对植物及其种子多度的影响   总被引:22,自引:1,他引:22  
分析了地中海沿岸沙丘3种微生境(灌丛下、灌丛之间的开阔地、路径)以及整个沙丘生态系统的种子大小与土壤种子库中休眠种子的数量、土壤种子库中总种子的数量、地上植被中各个植物种的个体数量和幼苗数量、每种植物在小样方中的出现频率等方面之间的关系,也分析了种子尺寸(长、宽、高之和的平均值)与土壤种子的长久性、土壤种子库中休眠种子数量之间的关系;还分析了具有不同种子大小的植物在沙丘生态系统和各微生境的分布比率,验证了生活周期短的植物的种子在土壤中更长久和被干扰的微生境具有更多的休眠种子这种假说。结果发现,在地中海沿岸沙丘生态系统中,具有特别大的种子和特别小种子的植物种类都很少,不同植物种子的大小呈现近正态分布,但绝大多数植物的种子重量都不超过10 mg;微生境影响种子尺寸与种子长久性的关系,在灌丛下、开阔地区域等两个微生境以及整个的沙丘生态系统都呈现显著的正向关系(p<0 .0 5 ) ,而在路径这种关系不很明显;种子多度与植被物种出现频率呈现强烈的正相关(p<0 .0 5 ) ,没有发现种子大小与土壤种子库中休眠种子数量、种子库中总的种子数量、植被物种出现频率、植被的物种多度、幼苗植物多度等方面有显著的关系;具有中度大小种子(0 .1~10 mg)的植物在总的土壤种子库、休  相似文献   

2.
沙区植物多样性保护研究进展   总被引:5,自引:0,他引:5  
沙区景观表现为沙丘和低地交错分布.沙区常具独特的植物区系,含有特有和稀有植物.沙区植物丰富度降低和特有(稀有)植物消失问题近些年已受到很大关注,被列入国际生物多样性保护计划,很多国家和地区都对此开展了专门的研究.本文以近期发表的文献为基础,从植物多样性保护问题的提出、植物多样性形成机制、植物多样性保护途径、植物多样性研究与生态学理论的发展等方面论述了沙区植物多样性保护及其研究进展.沙区植物多样性保护应注意植物多样性保护目标的地域间差异(维持沙丘上的高植物丰富度还是保护特有或稀有植物)、流沙固定-植物多样性保护间的均衡、"植物多样性保护的量(高的植物丰富度)-质(特有或稀有植物出现)"间的均衡.还应将沙丘体和丘间低地视为一个统一体,研究干扰和生境破碎化对植物多样性造成的影响.  相似文献   

3.
4.
Sea‐level rise will alter the hydrology of terrestrial coastal ecosystems. As such, it becomes increasingly important to decipher the present role of ocean water in coastal ecosystems in order to assess the coming effects of sea‐level rise scenarios. Sand dunes occur at the interface of land and sea. Traditionally, they are conceived as freshwater environments with rain and ground water as the only water sources available to vegetation. This study investigates the possibility of ocean water influx to dune soils and its effect on the physiology of sand dune vegetation. Stable isotopes are used to trace the path of ocean water from the soil to the vegetation. Soil salinity, water content and δ18O values are measured concurrently with stem water and leaf tissue of eight species during the wet and dry season and from areas proximal and distal to the ocean. Our results indicate the dune ecosystem is a mixed freshwater and marine water system characterized by oceanic influence on dune hydrology that is spatially heterogeneous and fluctuates temporally. Ocean water influx to soil occurs via salt spray in areas 5–12 m from the ocean during dry season. Accordingly, vegetation nearest to the sea demonstrate a plastic response to ocean water deposition including elevated integrated water use efficiency (δ13Cleaf) and uptake of ocean water that comprised up to 52% of xylem water. We suggest physiological plasticity in response to periodic ocean water influx may be a functional characteristic common to species on the leading edge of diverse coastal habitats and an important feature that should be included in modeling coastal ecosystems. Rising sea level would likely cause a repercussive landward shift of dune species in response to encroaching maritime influences. However, human development would restrict this process, potentially causing the demise of dune systems and the protection from land erosion they provide.  相似文献   

5.
  • Plant trait-based functional spectra are crucial to assess ecosystem functions and services. Whilst most research has focused on aboveground vegetative traits (leaf economic spectrum, LES), contrasting evidence on any coordination between the LES and root economic spectrum (RES) has been reported. Studying spectra variation along environmental gradients and accounting for species' phylogenetic relatedness may help to elucidate the strength of coordination between above- and belowground trait variation.
  • We focused on leaf and root traits of 39 species sampled in three distinct habitats (front, back and slack) along a shoreline–inland gradient on coastal dunes. We tested, within a phylogenetic comparative framework, for the presence of the LES and RES, for any coordination between these spectra, and explored their relation to variation in ecological strategies along this gradient.
  • In each habitat, three-quarters of trait variation is captured in two-dimensional spectra, with species' phylogenetic relatedness moderately influencing coordination and trade-off between traits. Along the shoreline–inland gradient, aboveground traits support the LES in all habitats. Belowground traits are consistent with the RES in the back-habitat only, where the environmental constraints are weaker, and a coordination between leaf and root traits was also found, supporting the whole-plant spectrum (PES).
  • This study confirms the complexity when seeking any correlation between the LES and RES in ecosystems characterized by multiple environmental pressures, such as those investigated here. Changes in traits adopted to resist environmental constraints are similar among species, independent of their evolutionary relatedness, thus explaining the low phylogenetic contribution in support of our results.
  相似文献   

6.
Background: Coastal ecosystems in Mexico remain understudied in spite of their ecological, economic and conservation value and are being impacted by human activities along the coast. Knowledge on spatial patterns of plant species distribution that helps preserve these fragile ecosystems is crucial.

Aims: We evaluated differences in species richness, species diversity and species dominance patterns in 16 plant communities as well as the degree to which differences were driven by climatic conditions in sandy dunes in Yucatán. We evaluated the importance of invasive species in mediating patterns of species diversity and species dominance patterns.

Results: We found wide variation in plant species richness, species diversity and species dominance patterns among communities that stems from broad climatic differences along dune systems. Invasive plants represent almost one-third of total species richness and seem to be drastically changing the species dominance patterns in these communities.

Conclusions: Regional climatic differences along the Yucatán north coast seems to be a major driver of plant diversity and species composition. Our findings suggest that invasive plants have successfully colonised and spread along the coast over the past 30 years. Even though invasive species do not alter spatial patterns of species diversity, they are becoming more dominant with potential detrimental consequences for native plants.  相似文献   


7.
Climate change (CC) and sea level rise (SLR) are phenomena that could have severe impacts on the distribution of coastal dune vegetation. To explore this we modeled the climatic niches of six coastal dunes plant species that grow along the shoreline of the Gulf of Mexico and the Yucatan Peninsula, and projected climatic niches to future potential distributions based on two CC scenarios and SLR projections. Our analyses suggest that distribution of coastal plants will be severely limited, and more so in the case of local endemics (Chamaecrista chamaecristoides, Palafoxia lindenii, Cakile edentula). The possibilities of inland migration to the potential ‘new shoreline’ will be limited by human infrastructure and ecosystem alteration that will lead to a ‘coastal squeeze’ of the coastal habitats. Finally, we identified areas as future potential refuges for the six species in central Gulf of Mexico, and northern Yucatán Peninsula especially under CC and SLR scenarios.  相似文献   

8.
A survey of soils and trees was conducted on Syunkunitai coastal sand dune in eastern Hokkaido to clarify the relationships between the soil properties and the plant cover type. A belt transect of 360m in length was established across the dune. Three community types, that is, a Picea glehnii forest, an Abies sachalinensis forest, and a salt marsh were recognized. Soil types at the study area were determined to be sandy immature soil and peat soil. Their horizon sequences were described as A0–V–C or T–V–C layers (A0, T, V, and C indicate layers of leaf litter, peat, volcanic deposit, and parent material, respectively). The Abies sachalinensis forest was characterized by a relatively high calcium concentration in the surface soil layer and a tendency for podzolization in the volcanic deposit layer. The Picea glehnii forest was characterized by peat accumulation because of the high ground water table, volcanic deposits in the soil profile, and the strong influence of sea salt on the soil chemistry. The roots in the Picea glehnii forest were distributed more shallowly than those in the Abies sachalinensis forest, thus avoiding the high water table level as well as the influence of seawater in the soil. The salt marsh showed an extremely high sodium concentration and base saturation, indicating that this area was directly affected by seawater. Recently, the periphery of the Picea glehnii forest on Syunkunitai sand dune has been declining because of seawater inundation caused by ground subsidence.  相似文献   

9.
The population structure and water relations ofArtemisia ordosica were studied at different stages of the sand dune fixation process. Vegetation coverage and biomass increased as the sand dune fixation process progressed. In contrast, individual growth rate decreased in the late fixation stage. On fixed sand dunes the modal age ofA. ordosica plants was higher and seedlings or saplings were rearely observed. On active sand dunes, settlement of seedlings was regulated by sand mobility; that is, seedlings were observed only when sand mobility was below 10 cm per year. Leaf transpiration was highest in active sand dunes. Stand transpiration in fixed sand dunes was lower than in semi-fixed sand dunes. These differences in transpiration were related to a decrease in soil water availability, which was affected by the increase in the aeolian fine soil component during the course of sand dune fixation. The reduction in soil water status and the cessation of sand movement were considered to be important factors in the decline of theArtemisia ordosica community.  相似文献   

10.
Disturbances usually initiate processes of fragmentation in clonal plants, with the consequent division into portions of different size. The ability of these portions to survive and regrow after fragmentation plays an important role in the maintenance of populations and the colonization of new environments. In this field experiment we aim to determine the importance of stolons as reserve organs in the colonization of a coastal sand dune by a clonal invader. We simulated an event of fragmentation of clones of an aggressive invader into portions with short and long stolon sizes. Our results showed a reduction of biomass allocation to roots in the long stolon treatment that was balanced by an increase in the above‐ground growth; consequently, the area colonized by the invader was greater. We report evidence that stolons can contribute to buffering stressful conditions and allow expansion of the invader into a natural coastal sand dune.  相似文献   

11.
杭州湾滨海滩涂盐基阳离子对植物分布及多样性的影响   总被引:2,自引:0,他引:2  
吴统贵  吴明  虞木奎  萧江华  成向荣 《生态学报》2011,31(20):6022-6028
滨海滩涂由于其高含盐量显著影响了植物群落分布及生物多样性。目前有关滩涂含盐量与生物多样性的关系研究较多,但不同区域盐基离子组成不同,且对植物的影响也存在较大差异,以杭州湾南岸不同年代形成的滩涂为研究对象,系统监测了50个样方土壤交换性盐基阳离子的组成、分布和植物组成及多样性特征等,采用去趋势典范对应分析(DCCA)、线性回归和多元逐步回归分析了4种盐基阳离子对物种数量、分布和多样性的影响。结果表明,杭州湾南岸滩涂4种主要盐基阳离子含量(g/kg)大小顺序为Ca2+>Na+>Mg2+>K+,其中Ca2+占到总含量的61.97%;经DCCA分析发现4种盐基阳离子对植物群落的分布均有显著影响,但以Ca2+的影响程度最大;随着盐基离子含量的逐渐降低,物种数量逐渐增加,多样性指数逐渐增加,同时也发现Ca2+对两种多样性指数影响最大。  相似文献   

12.
Shoot biomass, species richness and selected environmental factors were studied at Meijendel, a coastal dune area in The Netherlands. The relationship between species richness and shoot biomass of the stand could be best described by a unimodal curve, with the peak at 300 g m–2. Measures of species richness were positively correlated with soil water, nitrogen and phosphorus.Shoot biomass showed a positive correlation with soil water, nitrogen and humus at low levels of shoot biomass.Nomenclature of phanerogams and plant community types follows Heukels & van Ooststroom (1973), and Westhoff & den Held (1969) respectively.Publication of the Meijendel comité new series: 76.  相似文献   

13.
Question: Understanding the mechanisms underlying how habitat degradation, topography and rainfall variability interactively affect seed distribution and seedling recruitment is crucial for explaining plant community patterns and dynamics. Interactions between these major factors were studied together in a semiarid sand dune grassland. Location: Eastern Inner Mongolia, China. Methods: The study system used four sites of fixed, semifixed, semishifting and shifting sand dune grasslands, representing a gradient of habitat degradation. We investigated the density of germinable seeds deposited in the top 5 cm of soil and in situ seedling emergence (number of seedlings emerging early in the growing season) and establishment (number of plants recruited at the end of the growing season) at three topographic positions (dune top, windward and leeward sides) within each site over 2 years that differed in rainfall. Habitat characteristics (i.e. vegetation cover, plant species composition and diversity, soil moisture and nutrient availability and soil erodibility) of the four sites were also measured. Results: Habitat degradation (i.e. decreased vegetation cover and enhanced wind erosion rate) significantly reduced the size of the germinable soil seed bank. On average, germinable seed number from the high‐vegetation cover fixed dune was 36‐fold larger than the low‐vegetation cover shifting dune, and eight‐ and two‐fold larger, respectively, than the semishifting and semifixed dunes with intermediate vegetation cover. We observed within‐habitat variability in seed distribution, but among‐topographic position variation differed among habitats. Seedling recruitment showed large between‐year, and among‐ and within‐habitat variability, but these variations varied significantly depending on the response variables evaluated (i.e. initial seedling density, final plant density, emergence rate and recruitment rate). Path analysis revealed complex density‐dependent positive and negative, direct and indirect effects of germinable seed density and initial seedling density on recruitment, but the relative importance of these density‐dependent effects varied depending on habitat type and rainfall availability. Conclusion: Our results suggest that habitat degradation, microtopography and rainfall availability interact in shaping sand dune seed bank and plant community recruitment patterns and dynamics. Their effects were mainly mediated through changes in both the biotic and abiotic environment during the process of habitat deterioration.  相似文献   

14.
The continued increase in the number of tourists visiting the Northern Gulf Coast (NGC), USA, in the last century, and the resulting sprawl of large cities along the coast, has degraded and fragmented the available habitat of Arctosa sanctaerosae, a wolf spider endemic to the secondary dunes of the white sandy beaches of the NGC. In addition to anthropogenic disturbance to this coastal region, hurricanes are an additional and natural perturbation to the ecosystem. The data presented here explore the status of populations of this species spanning the entire known range and the factors influencing population demography including anthropogenic disturbance and severe tropical storms. Using microsatellite markers, we were able to document the genetic structure of A. sanctaerosae, including current and historic patterns of migration. These results combined with ecological and census data reveal the characteristics that have influenced population persistence: ecological variables affecting the recovery of the population clusters after severe tropical storms, genetic fragmentation due to anthropogenic disturbance, and their interaction. These findings demonstrate the significance that the high traffic beach communities of the NGC and their impact on the once intact contiguous dune ecosystem have on recovery after severe tropical storms. Contemporary modeling methods that compare current and historic levels of gene flow suggest A. sanctaerosae has experienced a single, contiguous population subdivision, and the isolates reduced in size since the onset of commercial development of the NGC. These results point to the need for monitoring of the species and increased protection for this endangered habitat.  相似文献   

15.
Fate ofDigitaria adscendens andEleusine indica seedlings under field conditions and their responses to salt spray, drought and nutrients were experimentally investigated in order to evaluate the possible mechanisms controlling the different distributions of the two species in coastal sand dune areas. Salt spray produced no apparent positive effect on the growth or survival of both species. Seeds of each species germinated well in the field, although 80% ofE. indica seedlings died during a summer drought and surviving seedlings neither grew nor bore fruit. The mortality ofD. adscendens seedlings due to the drought was less than 10% and the survivors mostly bore fruit by the end of the growth season. No major difference in the sublethal water saturation deficit was noticed between the two species. However,D. adscendens individuals extended their roots into the deep sandy soil to a much greater extent in water-stressed conditions than in well watered conditions, whereasE. indica showed no such behavior. Additional watering in a dune environment did not help the growth ofE. indica seedlings, but additional nutrients had a markedly stimulatory effect.D. adscendens maintained its growth and fruition with much smaller amounts of nutrients thanE. indica. Soil nitrogen content at a site whereE. indica andD. adscendens were distributed sympatrically was higher than that at a site where onlyD. adscendens was present. Based on these findings, it is proposed thatE. indica seedlings are unable to become established because of their lower resistance to summer drought and the poor nutrient conditions present in a coastal rear sand dune habitat. Dedicated to Prof. emeritus Toshiro Saeki for his fruitful career in plant ecology.  相似文献   

16.
17.
The spatial and temporal distributions of scoliid wasps in the coastal sand dunes at Hakoishi, Kyoto Prefecture, Japan, were investigated using three different sampling methods in 2002 and 2003. Of eight scoliid species collected in the present study, five species, Scolia historionica, Campsomeriella annulata, Scolia decorata, Scolia oculata, and Megacampsomeris schulthessi, were dominant. The flying insects caught by Malaise traps and flower‐visiting insects caught by insect nets were mostly males, and this biased pattern was due to the active mate‐searching behavior of male wasps and their frequent visits to flowers to supplement energy consumed by such behavior. Given that the ground traps caught females exclusively, female wasps seemed to actively engage in host‐searching behavior on and below the ground. Of the wasps caught by Malaise traps and flower‐visit sampling, five dominant species showed spatially different habitat use: S. historionica and C. annulata mainly occupied the grassland zone on the plain (Gp), S. decorata occupied the grassland zone on the terrace (Gt) and the forest zone (Fp), S. oculata occupied the small scrub zone on the plain (Sp), and M. schulthessi occupied the small scrub zone on the terrace (St). Ground trap samples also indicated that S. historionica and C. annulata shared habitats. On the basis of the observed seasonal changes in wasp abundance and the degree of wing wear as an index of wasp age, S. historionica and C. annulata are thought to be bivoltine species, whereas S. decorata, S. oculata, and M. schulthessi are thought to be univoltine species. These scoliid wasp species may play an important role in pollinating coastal plants in the grassland zone.  相似文献   

18.
The alteration of fresh and marine water cycling is likely to occur in coastal ecosystems as climate change causes the global redistribution of precipitation while simultaneously driving sea‐level rise at a rate of 2–3 mm yr?1. Here, we examined how precipitation alters the ecological effects of ocean water intrusion to coastal dunes on two oceanic carbonate islands in the Bahamas. The approach was to compare sites that receive high and low annual rainfall and are also characterized by seasonal distribution (wet and dry season) of precipitation. The spatial and temporal variations in precipitation serve as a proxy for conditions of altered precipitation which may occur via climate change. We used the natural abundances of stable isotopes to identify water sources (e.g., precipitation, groundwater and ocean water) in the soil–plant continuum and modeled the depth of plant water uptake. Results indicated that decreased rainfall caused the shallow freshwater table on the dune ecosystem to sink and contract towards the inland, the lower freshwater head allowed ocean water to penetrate into the deeper soils, while shallow soils became exceedingly dry. Plants at the drier site that lived nearest to the ocean responded by taking up water from the deeper and consistently moist soil layers where ocean water intruded. Towards the inland, decreased rainfall caused the water table to sink to a depth that precluded both recharge to the upper soil layers and access by plants. Consequently, plants captured water in more shallow soils recharged by infrequent rainfall events. The results demonstrate dune ecosystems on oceanic islands are more susceptible to ocean water intrusion when annual precipitation decreases. Periods of diminished precipitation caused drought conditions, increased exposure to saline marine water and altered water‐harvesting strategies. Quantifying species tolerances to ocean water intrusion and drought are necessary to determine a threshold of community sustainability.  相似文献   

19.
20.
The benthic macroinvertebrate community (BMI) in a freshwater coastal dune lake without a surface outlet was investigated in May and October, 1986. Fifty-three invertebrate taxa were identified from Carter Lake, including three euryhaline crustacean species (Corophium spinicorne, Gnorimosphaeroma oregonensis lutea, and Acanthomysis awatchensis). Corophium spinicorne dominated the BMI communities of the littoral zones and sphaeriid clams dominated the deepwater community.The lake level dropped about 2.5 m between April and October. Based upon this decline, the lake bottom was divided into four major habitats: a sandy temporarily submerged littoral zone (A); a sandy submerged littoral zone (B); and mid-depth zone of mixed mud and sand and the macrophyte, Nitella (C); and a deep zone (D) with soft mud. The average density of BMI was highest in the littoral zones (A and B) in May and in zone B in October (zone A was dry). The lowest density occurred in zone D. In May, BMI biomass was highest in the littoral zones, but the biomass was highest in the mid-depth zone in October. The mid-depth zone in October. The mid-depth zone had the most diverse community.The two most abundant species in the temporarily submerged area, Corophium spinicorne and Juga plicifera, were found in greater numbers deeper in the lake after the water level dropped, suggesting migration by these species in response to changing water levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号