首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The hormone leptin is secreted from white adipocytes, and serum levels of leptin correlate with adipose tissue mass. Leptin was first described as acting on the satiety centre in the hypothalamus through specific receptors (ob-R) to restrict food intake and enhance energy expenditure. Leptin plays a crucial role in the maintenance of body weight and glucose homeostasis hrough central and peripheral pathways, including regulation of insulin secretion by pancreatic b cells. Leptin may also directly affect the metabolism and function of peripheral tissues. Leptin has been implicated in causing peripheral insulin resistance by attenuating insulin action, and perhaps insulin signalling, in various insulin-responsive cell types. Research has demonstrated a significant relationship between leptin and insulin, but the mechanisms underlying the changes of leptin induced by insulin, and vice versa, remain to be studied in more detail. Recent data provides convincing evidence that leptin has beneficial effects on glucose homeostasis in mouse models of insulin-deficient type 1 diabetes mellitus. Our study suggests that leptin could be used as an adjunct of insulin therapy in insulin-deficient diabetes, thereby providing an insight into the therapeutic properties of leptin as an anti-diabetic agent. Safety evaluation should include a careful assessment of the effects of this combination therapy on the counterregulatory response to hypoglycaemia. The role of leptin in alpha-cell function has not been studied in detail. Extensive studies will be needed to determine the long-term safety and efficacy of this therapy.  相似文献   

2.
Leptin and its role in lipid metabolism   总被引:14,自引:0,他引:14  
  相似文献   

3.
目的:测定绝经后女性血清瘦素(leptin)与骨密度及及血清骨特异性碱性磷酸酶(BAP)和Ⅰ型胶原交联氨基末端肽(NTx)并探讨其关系。方法:用酶联免疫吸附试验测定287名40-80岁健康绝经后女性血清leptin以及血清骨特异性碱性磷酸酶(BAP)和Ⅰ型胶原交联氨基末端肽(NTx);用双能X线骨密度扫描仪测定总体、腰椎正位、总髋部骨密度以及体脂、瘦体重;分析它们之间的关系。结果:Leptin与髋部总体BMD呈正相关(r=0.162,P<0.05),校正年龄和体脂后,Leptin与髋部总体BMD相关性消失,Leptin与BAP相关无统计学意义;与NTX呈负相关(r=-0.119,P<0.05),校正年龄和体脂后,相关无统计学意义。BAP与总体骨密度、腰椎骨密度、髋部总体骨密度均呈负相关(r=-0.210,r=-0.236,r=-0.223,P<0.05),校正年龄和体质指数后,相关性都依然存在(r=-0.168,r=-0.187,r=-0.169,P<0.05)。NTx与总体骨密度、腰椎骨密度、髋部总体骨密度均呈负相关(r=-0.238,r=-0.232,r=-0.239,P<0.05),校正年龄和体质指数后...  相似文献   

4.
The regulation of adipose tissue mass and energy expenditure is currently subject to intensive research, which primarily relates to the discovery of leptin. Leptin is a peptide, which is the product of the obese (ob) gene expressed in adipose tissue of several species icluding humans. Leptin is supposed to serve both as an index of fat mass and as a sensor of energy balance. Administration of recombinant murine leptin in ob/ob-mice, which do not produce leptin, decreases food intake and increases thermogenesis both of which result in a reduction in body weight and adipose tissue mass. The calorigenic effect of leptin presumably acts through an increase in sympathetic outflow which in turn activates the beta3 adrenergic receptor in brown adipose tissue. The regulation and action of endogenous leptin in humans are less well understood, and clinical grade recombinant human leptin is so far not available. Serum leptin correlates logarithmically with total body fat in both normal weight and obese subjects, which suggest insensitivity to leptin in obese patients. Furthermore, more rapid excursions in serum leptin have been reported following short-term changes in caloric intake and administration of insulin. Growth hormone (GH) exerts pronounced effects on lipid metabolism and resting energy expenditure. The lipolytic actions of GH appear to involve both increased sensitivity to the beta-adrenergic pathway, and a suppression of adipose tissue lipoprotein lipase activity. The calorigenic effects of GH have been shown not only to be secondary to changes in lean body mass. Growth hormone administration furthermore increases the peripheral conversion of thyroxine to triiodothyronine, which may contribute to the overall actions of GH on fuel and energy metabolism. So far, little is known about the effects of GH and iodothyronines on serum leptin levels in humans. We therefore measured serum leptin levels and energy expenditure before and after the administration of GH and triiodothyronine, alone and in combinaion, in a randomized double-blind placebo-controlled study in healthy young male adults. The dose of triiodothyronine was selected to obtain serum levels comparable to those seen after GH administration.  相似文献   

5.
Recent information has extended leptin's action, beyond the control of appetite, to various sites of metabolic regulation. To better understand leptin's role we studied its production in subcutaneous and visceral fat compartments before and after menopause. During elective abdominal surgery, biopsies of subcutaneous and omental tissues were taken from 20 women at pre- (BMI 28.4 +/- 4.5 kg/m2) and 10 at postmenopause (BMI 30.6 +/- 7.7 kg/m2). In both groups serum leptin levels were similar, and highly correlated with BMI. In subcutaneous adipose tissue, leptin mRNA expression was significantly higher in pre- than in postmenopausal women (50.4 +/- 20.5 amol/microg total RNA versus 34.5 +/- 24.9 amol/microg total RNA, respectively). Leptin mRNA expression in subcutaneous tissue was independently correlated with fasting glucose (R = 0.89, P < 0.006) at premenopause, and with serum estradiol (R = 0.77, P < 0.04) at postmenopause. Leptin mRNA expression in visceral fat was correlated with DHEAS (R = 0.86, P < 0.001), at premenopause. These results indicate that in both compartments, leptin production is sensitive to different but overlapping stimuli, conveying information about energy availability to central and peripheral sites under different conditions of estrogen exposure.  相似文献   

6.
The role of leptin in neonatal growth and bone metabolism has been investigated, but not simultaneously. The objectives of this study were to determine if leptin relates to bone mass during rapid growth; if consumption of maternal milk is related to elevated circulating concentrations of leptin resulting in higher fat mass; and if glucocorticoids result in higher fat mass and reduced bone mass due to elevated leptin. Thirty-two piglets were randomized to either a suckling or milk substitute plus either dexamethasone (DEX) or placebo injection for 15 days beginning at 5 days of age. Milk and blood samples were obtained at baseline, and after 15 days, blood was sampled again for measurement of leptin and bone biochemistry. Weight at baseline plus weight and length after 15 days were recorded, followed by measurement of whole body bone mineral content, bone area, and fat mass using dual energy x-ray absorptiometry. At baseline, plasma leptin was elevated in suckled piglets. Piglets that suckled had elevated fat mass as did those who received DEX. However, DEX resulted in suppressed weight and length, bone mass, and bone metabolism. Leptin was similar among groups after the 15 days. After accounting for body size and treatment effects, piglet plasma leptin was predictive of bone and fat mass. Leptin circulating early postnatally is linked to body composition, specifically fat and bone mass. Elevations in fat mass and reductions in bone mass observed after 15 days of DEX treatment are not related to leptin metabolism. Both human and porcine neonates share similar characteristics with respect to relationships of leptin with fat and bone mass.  相似文献   

7.
Objective : The menopause transition increases cardiovascular and metabolic disease risk, partly because of the adverse effects of estrogen deficiency on the plasma lipid-lipoprotein profile and cardiovascular function. This increased cardiovascular and metabolic disease risk may also be partially mediated by increased body fat, increased intraabdominal adipose tissue accumulation, or both. The objective of this mini-review is to summarize studies that have investigated the relationships among the menopause transition, body fatness, and body fat distribution. Research Methods and Procedures : A review of cross-sectional and longitudinal studies on menopause that examined body fatness and body fat distribution. Results : Cross-sectional reports show that the menopause transition is related to modest increases in body mass index or total fatness, although not all studies found significant effects. Increased central adiposity appears to be related to menopause, independent of advancing age, but these results are methodology dependent. An independent effect of menopause on central body fatness was noted by the use of techniques such as DEXA or computed tomography, whereas studies using circumference measures showed discrepant results. Longitudinal studies showed that the menopause transition accelerated the increase in central adiposity, although no studies quantified changes in intra-abdominal fat by imaging techniques. Discussion : Thus, additional longitudinal studies using more accurate measures of adiposity are needed to critically examine the effects of the menopause transition on total and central body fatness. Collectively, previous studies suggest that menopause is related to modest increase in total fatness and accelerated accumulation of central body fat that exceeds changes normally attributed to the aging process. These changes may increase the risk for cardiovascular and metabolic disease in aging women.  相似文献   

8.
Leptin, the ob gene product, is involved in the regulation of body weight in rodents, primates and humans. It provides a molecular basis for the lipostatic theory of the regulation of energy balance. White adipose tissue and placenta are the main sites of leptin synthesis. There is also evidence of ob gene expression in brown fat. Leptin seems to play a key role in the control of body fat stores by coordinated regulation of feeding behaviour, metabolic rate, autonomic nervous system regulation and body energy balance. Apart from the function of leptin in the central nervous system on the regulation of energy balance, it may well be one of the hormonal factors that signal to the brain the body's readiness for sexual maturation and reproduction. During late pregnancy and at birth when maternal fat stores have been developed, leptin levels are high. During these developmental stages leptin could be a messenger molecule signalling the adequacy of the fat stores for reproduction and maintenance of pregnancy. At later stages of gestation leptin could signal the expansion of fat stores in order to prepare the expectant mother for the energy requirements of full-term gestation, labour and lactation. Leptin serum concentrations change during pubertal development in rodents, primates and humans. In girls, leptin serum concentrations increase dramatically as pubertal development proceeds. The pubertal rise in leptin levels parallels the increase in body fat mass. In contrast, leptin levels increase shortly before and during the early stages of puberty in boys and decline thereafter. Testosterone has been found to suppress leptin synthesis by adipocytes both in vivo and in vitro. The decline of leptin levels in late puberty in boys accompanies increased androgen production during that time and most likely reflects suppression of leptin by testosterone and a decrease in fat mass and relative increase in muscle mass during late puberty in males. This overview focuses on those topics of leptin research which are of particular interest in reproductive and adolescent medicine.  相似文献   

9.
The accumulation of fat cells (adipocytes) in bone marrow is now thought to be a factor contributing to age-related bone loss. Women with osteoporosis have higher numbers of marrow adipocytes than women with healthy bone, and bone formation rate is inversely correlated with adipocyte number in bone tissue biopsies from both men and women. Adipogenic differentiation of bone marrow stromal cells increases with age, but the factors regulating populations of mature adipocytes are not well understood. Leptin is thought to regulate adipose tissue mass via its receptors in the ventromedial hypothalamus (VMH). We have therefore tested the hypothesis that stimulation of leptin receptors in the VMH regulates adipocyte number in bone marrow. Results indicate that unilateral twice-daily injections of leptin into the rat VMH for only 4 or 5 days cause a significant reduction in the number of adipocytes in peripheral fat pads and bone marrow and indeed eliminate adipocytes almost entirely from bone marrow of the proximal tibia. Osteoblast surface is not affected with leptin treatment. Apoptosis assays performed on bone marrow samples from control and treated rats have revealed a significant increase in protein concentration of the apoptosis marker caspase-3 with leptin treatment. We conclude that stimulation of leptin receptors in the VMH significantly decreases the adipocyte population in bone marrow, primarily through apoptosis of marrow adipocytes. Elimination of marrow adipocytes via this central pathway may represent a useful strategy for the treatment and prevention of osteoporosis.  相似文献   

10.
Leptin and metabolic control of reproduction   总被引:8,自引:0,他引:8  
Leptin treatment prevents the effects of fasting on reproductive processes in a variety of species. The mechanisms that underlie these effects have not been elucidated. Progress in this area of research might be facilitated by viewing reproductive processes in relation to mechanisms that maintain fuel homeostasis. Reproduction, food intake, and fuel partitioning can be viewed as homeostatic responses controlled by a sensory system that monitors metabolic signals. These signals are generated by changes in intracellular metabolic fuel availability and oxidation rather than by changes in the amount of body fat or by changes in any aspect of body composition. Leptin might be viewed as either a mediator or as a modulator of the intracellular metabolic signal. Consistent with its purported action as a mediator of the metabolic signal, leptin synthesis and secretion are influenced acutely by changes in metabolic fuel availability, and these changes might lead to changes in reproductive function. The effects of leptin treatment on reproduction are blocked by treatments that inhibit intracellular fuel oxidation. Metabolic signals that inhibit reproduction in leptin-treated animals might act via neural pathways that are independent of leptin's action. Alternatively, both leptin and metabolic inhibitors might interact at the level of intracellular fuel oxidation. In keeping with the possibility that leptin modulates the metabolic signal, leptin treatment increases fuel availability, uptake, and oxidation in particular tissues. Leptin might affect reproduction indirectly by altering fuel oxidation or other peripheral processes such as gastric emptying. Reproductive processes are among the most energetically expensive in the female repertoire. Because leptin increases energy expenditure while simultaneously inhibiting energy intake, it may have limited use as a long-term treatment for infertility.  相似文献   

11.
Leptin   总被引:39,自引:0,他引:39  
Leptin is an adipocyte hormone that signals nutritional status to the central nervous system (CNS) and peripheral organs. Leptin is also synthetized in the placenta and in gastrointestinal tract, although its role in these tissues is not yet clear. Circulating concentrations of leptin exhibit pulsatility and circadian rhythmicity. The levels of plasma leptin vary directly with body mass index and percentage body fat, and leptin contributes to the regulation of body weight. Leptin plasma concentrations are also influenced by metabolic hormones, sex, and body energy requirements. Defects in the leptin signaling pathway result in obesity in animal models. Only a few obese humans have been identified with mutations in the leptin gene or in the leptin receptor; however, most cases of obesity in humans are associated with high leptin levels. Thus, in humans obesity may represent a state of leptin resistance. Minute-to-minute fluctuations in peripheral leptin concentrations influence the activity of the hypothalamic-pituitary-ovarian and hypothalamic-pituitary-adrenal axes, indicating that leptin may be a modulator of reproduction, stress-related endocrine function, and behavior. This suggests potential roles for leptin or its antagonists in the diagnosis, pathophysiology and treatment of several human diseases.  相似文献   

12.
Objective: It is known that bone mineral density (BMD) and the strength of bone is predicted by body mass. Fat mass is a significant predictor of bone mineral density which correlates with body weight. This suggests that body fat regulates bone metabolism first by means of hormonal factors and second that the effects of muscle and loading are signaling factors in mechanotransduction. Leptin, a peptide hormone produced predominantly by white fat cells, is one of these hormonal factors. The aim of this study was to investigate and measure by micro-CT the different effects of weight-bearing on trabecular bone formation in mice without the stimulation of leptin.  相似文献   

13.
Leptin has been shown to reduce body fat in vivo. Adipocytes express the leptin receptor; therefore, it is realistic to expect a direct effect of leptin on adipocyte growth and metabolism. In vitro studies examining the effect of leptin on adipocyte metabolism require supraphysiological doses of the protein to see a decrease in lipogenesis or stimulation of lipolysis, implying an indirect action of leptin. It also is possible that leptin reduces adipose mass by inhibiting preadipocyte proliferation (increase in cell number) and/or differentiation (lipid filling). Thus we determined direct and indirect effects of leptin on preadipocyte proliferation and differentiation in vitro. We tested the effect of leptin (0-500 ng/ml), serum from leptin-infused rats (0.25% by volume), and adipose tissue-conditioned medium from leptin-infused rats (0-30% by volume) on preadipocyte proliferation and differentiation in a primary culture of cells from male Sprague-Dawley rat adipose tissue. Leptin (50 ng/ml) stimulated proliferation of preadipocytes (P<0.05), but 250 and 500 ng leptin/ml inhibited proliferation of both preadipocyte and stromal vascular cell fractions (P<0.01), as measured by [3H]thymidine incorporation. Serum from leptin-infused rats inhibited proliferation of the adipose and stromal vascular fractions (P=0.01), but adipose tissue-conditioned medium had no effect on proliferation of either cell fraction. None of the treatments changed preadipocyte differentiation as measured by sn-glycerophosphate dehydrogenase activity. These results suggest that leptin could inhibit preadipocyte proliferation by modifying release of a factor from tissue other than adipose tissue.  相似文献   

14.
Mice adapted to a high-fat diet are reported to be leptin resistant; however, we previously reported that mice fed a high-fat (HF) diet and housed at 23 degrees C remained sensitive to peripheral leptin and specifically lost body fat. This study tested whether leptin action was impaired by a combination of elevated environmental temperature and a HF diet. Male C57BL/6 mice were adapted to low-fat (LF) or HF diet from 10 days of age and were housed at 27 degrees C from 28 days of age. From 35 days of age, baseline food intake and body weight were recorded for 1 wk and then mice on each diet were infused with 10 microg leptin/day or PBS from an intraperitoneal miniosmotic pump for 13 days. HF-fed mice had a higher energy intake than LF-fed mice and were heavier but not fatter. Serum leptin was lower in PBS-infused HF- than LF-fed mice. Leptin significantly inhibited energy intake of both LF-fed and HF-fed mice, and this was associated with a significant increase in hypothalamic long-form leptin receptors with no change in short-form leptin receptor or brown fat uncoupling protein-1 mRNA expression. Leptin significantly inhibited weight gain in both LF- and HF-fed mice but reduced the percentage of body fat mass only in LF-fed mice. The percentage of lean and fat tissue in HF-fed mice did not change, implying that overall growth had been inhibited. These results suggest that dietary fat modifies the mechanisms responsible for leptin-induced changes in body fat content and that those in HF-fed mice are sensitive to environmental temperature.  相似文献   

15.
16.
The hormonal control of osteoblast activity has been speculated for a long time. In search of such a central hormone, leptin was identified as an inhibitor of bone formation. Intracerebroventricular infusion of leptin resulted in a decrease of bone mass establishing that bone mass is regulated centrally. The peripheral mediator of leptin’s action was identified as being the sympathetic nervous system. Mice deficient for catecholamines have high bone mass. β-Receptor agonists decreased bone mass, and conversely, treatment by β-blockers increased bone mass.  相似文献   

17.
Leptin is hypothesized to function as a negative feedback signal in the regulation of energy balance. It is produced primarily by adipose tissue and circulating concentrations correlate with the size of body fat stores. Administration of exogenous leptin to normal weight, leptin responsive animals inhibits food intake and reduces the size of body fat stores whereas mice that are deficient in either leptin or functional leptin receptors are hyperphagic and obese, consistent with a role for leptin in the control of body weight. This review discusses the effect of leptin on adipocyte metabolism. Because adipocytes express leptin receptors there is the potential for leptin to influence adipocyte metabolism directly. Adipocytes also are insulin responsive and receive sympathetic innervation, therefore leptin can also modify adipocyte metabolism indirectly. Studies published to date suggest that direct activation of adipocyte leptin receptors has little effect on cell metabolism in vivo, but that leptin modifies adipocyte sensitivity to insulin to inhibit lipid accumulation. In vivo administration of leptin leads to a suppression of lipogenesis, an increase in triglyceride hydrolysis and an increase in fatty acid and glucose oxidation. Activation of central leptin receptors also contributes to the development of a catabolic state in adipocytes, but this may vary between different fat depots. Leptin reduces the size of white fat depots by inhibiting cell proliferation both through induction of inhibitory circulating factors and by contributing to sympathetic tone which suppresses adipocyte proliferation. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.  相似文献   

18.
The aim of the current investigation was to investigate any potential effect of fasting plasma adiponectin concentration on bone tissue, and to find possible relationships of fasting plasma adiponectin level with different body composition, insulin sensitivity and physical performance parameters in a group of healthy perimenopausal women. Twenty-one premenopausal and 17 early postmenopausal women participated in this study. The women were matched for body mass index (BMI) and level of mean daily energy expenditure. Women had similar adiponectin (8.4 +/- 3.9 vs. 9.9 +/- 5.4 microg/ml) and leptin values (12.0 +/- 7.7 vs. 14.0 +/- 8.2 ng/ml) before and after menopause. Significant relationships were observed between plasma adiponectin and bone mineral content, total bone mineral density (BMD) and lumbar spine BMD values (r > - 0.36; p < 0.05). Furthermore, adiponectin had a significant negative association with total BMD (beta = - 1.228; p = 0.004) and lumbar spine BMD (beta = - 0.312; p = 0.005) independent of the influence that other measured body compositional, hormonal or physical performance factors may exert on BMD. Adiponectin was also significantly related to waist-to-hip ratio (WHR) (beta = - 2.300; p = 0.002) and fasting insulin resistance index (FIRI) (beta = - 0.006; p = 0.007) in separate regression models. No relationship was observed between leptin and measured bone, physical performance and insulin resistance values. Leptin significantly correlated to BMI (beta = 0.018; p = 0.034), lean body mass (beta = 0.025; p = 0.024) and fat mass (beta = 0.019; p = 0.001) in separate regression models. In conclusion, the results of present study show that circulating adiponectin appears to exert an independent effect on BMD in perimenopausal women and may represent a link between adipose tissue and bone mineral density.  相似文献   

19.
This study evaluated the arm, trunk, and leg for fat mass, lean soft tissue mass, and bone mineral content (BMC) assessed via dual-energy X-ray absorptiometry in a group of age-matched (approximately 29 yr) men (n = 57) and women (n = 63) and determined their relationship to insulin-like growth factor I (IGF-I) and leptin. After analysis of covariance adjustment to control for differences in body mass between genders, the differences that persisted (P < or = 0.05) were for lean soft tissue mass of the arm (men: 7.1 kg vs. women: 6.4 kg) and fat mass of the leg (men: 5.3 kg vs. women: 6.8 kg). Men and women had similar (P > or = 0.05) values for fat mass of the arms and trunk and lean soft tissue mass of the legs and trunk. Serum IGF-I and insulin-like growth factor binding protein-3 correlated (P < or = 0.05) with all measures of BMC (r values ranged from 0.31 to 0.39) and some measures of lean soft tissue mass for women (r = 0.30) but not men. Leptin correlated (P < or = 0.05) similarly for measures of fat mass for both genders (r values ranging from 0.74 to 0.85) and for lean soft tissue mass of the trunk (r = 0.40) and total body (r = 0.32) for men and for the arms in women (r = 0.56). These data demonstrate that 1) the main phenotypic gender differences in body composition are that men have more of their muscle mass in their arms and women have more of their fat mass in their legs and 2) gender differences exist in the relationship between somatotrophic hormones and lean soft tissue mass.  相似文献   

20.
The interaction between age at menopause and postmenopausal body composition development was tested with in 178 Viennese women aged 47 to 68 years (x=55.4 yr). Postmenopausal body composition was described using dual energy x-ray absorptiometry by absolute fat and lean mass and bone mineral content of the whole body, the arms, legs, the trunk and the head. Upper and lower amount of body fat, the fat percentages of the individual body compartments and the fat distribution index were calculated. Postmenopausal body fat and lean soft tissue mass and postmenopausal bone mineral content were significantly associated with the age at menopause. Women whose menopause occurred late showed the highest amount of body fat (31.2+/−7.7kg) and lean body mass (41.2+/−4.4 kg) postmenopausally, while women with an early menopause exhibited the lowest amount of body fat (27.5+/−8.9kg) and lean body mass (38.4+/−5.4 kg) during the postreproductive phase of life (p<0.05). Women whose menopause occurred later than 51 had a significant higher postmenopausal bone mass (2.26+/−0.9kg versus 2.09+/−0.3 kg; p<0.05). A late menopause was associated with a significantly higher value in fat mass, lean body mass and in bone mineral content. Therefore age at menopause may be assumed as an indicator for body fat and bone mineral content during postmenopause and postmenopausal fat distribution patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号