首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Protein arginine methyltransferase 7 (PRMT7) is a member of a family of enzymes that catalyze the transfer of methyl groups from S-adenosyl-l-methionine to nitrogen atoms on arginine residues. Here, we describe the crystal structure of Caenorhabditis elegans PRMT7 in complex with its reaction product S-adenosyl-l-homocysteine. The structural data indicated that PRMT7 harbors two tandem repeated PRMT core domains that form a novel homodimer-like structure. S-adenosyl-l-homocysteine bound to the N-terminal catalytic site only; the C-terminal catalytic site is occupied by a loop that inhibits cofactor binding. Mutagenesis demonstrated that only the N-terminal catalytic site of PRMT7 is responsible for cofactor binding.  相似文献   

2.
Spontaneous protein deamidation of labile asparagines (Asn), generating abnormal l-isoaspartyl residues (IsoAsp), is associated with cell aging and enhanced by an oxidative microenvironment. The presence of isopeptide bonds impairs protein structure/function. To minimize the damage, IsoAsp can be “repaired” by the protein l-isoaspartyl/d-aspartyl O-methyltransferase (PIMT) and S-adenosylmethionine (AdoMet) is the methyl donor of this reaction. PIMT is a repair enzyme that initiates the conversion of l-isoAsp (or d-Asp) residues to l-Asp residues. Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease principally affecting motor neurons. The condition of oxidative stress reported in familial and sporadic forms of ALS prompted us to investigate Asn deamidation in ALS tissue. Erythrocytes (RBCs) were selected as a model system since they are unable to replace damaged proteins and protein methylesterification is virtually the only AdoMet-consuming reaction operating in these cells. Our data show that, in vitro assay, abnormal IsoAsp residues were significantly higher in ALS patients erythrocyte membrane proteins with an increased methyl accepting capability relative to controls (p < 0.05). Moreover, we observed a reduction in AdoMet levels, while AdoHcy concentration was comparable to that detected in the control, resulting in a lower [AdoMet]/[AdoHcy] ratio. Then, the accumulation of altered aspartyl residues in ALS patients is probably related to a reduced efficiency of the S-adenosylmethionine (AdoMet)-dependent repair system causing increased protein instability at Asn sites. The increase of abnormal residues represents a new protein alteration that may be present not only in red blood cells but also in other cell types of patients suffering from ALS.  相似文献   

3.
Enzymes that use distinct active site structures to perform identical reactions are known as analogous enzymes. The isolation of analogous enzymes suggests the existence of multiple enzyme structural pathways that can catalyze the same chemical reaction. A fundamental question concerning analogous enzymes is whether their distinct active-site structures would confer the same or different kinetic constraints to the chemical reaction, particularly with respect to the control of enzyme turnover. Here, we address this question with the analogous enzymes of bacterial TrmD and its eukaryotic and archaeal counterpart Trm5. TrmD and Trm5 catalyze methyl transfer to synthesize the m1G37 base at the 3′ position adjacent to the tRNA anticodon, using S-adenosyl methionine (AdoMet) as the methyl donor. TrmD features a trefoil-knot active-site structure whereas Trm5 features the Rossmann fold. Pre-steady-state analysis revealed that product synthesis by TrmD proceeds linearly with time, whereas that by Trm5 exhibits a rapid burst followed by a slower and linear increase with time. The burst kinetics of Trm5 suggests that product release is the rate-limiting step of the catalytic cycle, consistent with the observation of higher enzyme affinity to the products of tRNA and AdoMet. In contrast, the lack of burst kinetics of TrmD suggests that its turnover is controlled by a step required for product synthesis. Although TrmD exists as a homodimer, it showed half-of-the-sites reactivity for tRNA binding and product synthesis. The kinetic differences between TrmD and Trm5 are parallel with those between the two classes of aminoacyl-tRNA synthetases, which use distinct active site structures to catalyze tRNA aminoacylation. This parallel suggests that the findings have a fundamental importance for enzymes that catalyze both methyl and aminoacyl transfer to tRNA in the decoding process.  相似文献   

4.
NovP is an S-adenosyl-l-methionine-dependent O-methyltransferase that catalyzes the penultimate step in the biosynthesis of the aminocoumarin antibiotic novobiocin. Specifically, it methylates at 4-OH of the noviose moiety, and the resultant methoxy group is important for the potency of the mature antibiotic: previous crystallographic studies have shown that this group interacts directly with the target enzyme DNA gyrase, which is a validated drug target. We have determined the high-resolution crystal structure of NovP from Streptomyces spheroides as a binary complex with its desmethylated cosubstrate S-adenosyl-l-homocysteine. The structure displays a typical class I methyltransferase fold, in addition to motifs that are consistent with a divalent-metal-dependent mechanism. This is the first representative structure of a methyltransferase from the TylF superfamily, which includes a number of enzymes implicated in the biosynthesis of antibiotics and other therapeutics. The NovP structure reveals a number of distinctive structural features that, based on sequence conservation, are likely to be characteristic of the superfamily. These include a helical ‘lid’ region that gates access to the cosubstrate binding pocket and an active center that contains a 3-Asp putative metal binding site. A further conserved Asp likely acts as the general base that initiates the reaction by deprotonating the 4-OH group of the noviose unit. Using in silico docking, we have generated models of the enzyme-substrate complex that are consistent with the proposed mechanism. Furthermore, these models suggest that NovP is unlikely to tolerate significant modifications at the noviose moiety, but could show increasing substrate promiscuity as a function of the distance of the modification from the methylation site. These observations could inform future attempts to utilize NovP for methylating a range of glycosylated compounds.  相似文献   

5.
Estuarine tapertail anchovy (Coilia nasus, junior synonym C. ectenes) is a widely distributed and commercially important aquaculture species, although its growth in aquaculture settings is so slow as to pose a serious practical problem. In order to understand the molecular mechanisms of growth, we cloned the myostatin gene in C. nasus (CnMSTN) by homologous cloning methods. Its full-length cDNA is 2252 bp, with a 1125-bp open reading frame (ORF) that encodes a 374-amino acid protein. The CnMSTN protein is predicted to contain domains typical of MSTN, including a TGFb-propeptide domain and a TGFB domain. Gene expression patterns were detected by RT-qPCR. CnMSTN is expressed strongly in the muscle and brain, and comparatively lower in the gills, liver, spleen, intestine, trunk kidney and head kidney. The effects of stress on the muscle and brain MSTN levels were evaluated by RT-qPCR. CnMSTN in the muscle was positively regulated by loading and transport stress, but brain CnMSTN expression was not affected. We found NaCl could reduce the death rate caused by loading and transporting stress, and in this group, CnMSTN mRNA expression in the muscle revealed increased, but decreased in the brain. Further, in the fasting experiment, the CnMSTN mRNA revealed decrease in the muscle, on the contrary, it showed increase in the brain. Selection upon variants of the MSTN gene has shown great potential in breeding work for mammals, and our results provide the basic knowledge for breeding of C. nasus.  相似文献   

6.
The procyclic stage of Trypanosoma brucei is covered by glycosylphosphatidylinositol (GPI)-anchored surface proteins called procyclins. The procyclin GPI anchor contains a side chain of N-acetyllactosamine repeats terminated by sialic acids. Sialic acid modification is mediated by trans-sialidases expressed on the parasite’s cell surface. Previous studies suggested the presence of more than one active trans-sialidases, but only one has so far been reported. Here we cloned and examined enzyme activities of four additional trans-sialidase homologs, and show that one of them, Tb927.8.7350, encodes another active trans-sialidase, designated as TbSA C2. In an in vitro assay, TbSA C2 utilized α2-3 sialyllactose as a donor, and produced an α2-3-sialylated product, suggesting that it is an α2-3 trans-sialidase. We suggest that TbSA C2 plays a role in the sialic acid modification of the trypanosome cell surface.  相似文献   

7.
Ma QH  Xu Y 《Biochimie》2008,90(3):515-524
Caffeic acid 3-O-methyltransferase (COMT) catalyzes the multi-step methylation reactions of hydroxylated monomeric lignin precursors, and is believed to occupy a pivotal position in the lignin biosynthetic pathway. A cDNA (TaCM) was identified from wheat and it was found to be expressed constitutively in stem, leaf and root tissues. The deduced amino acid sequence of TaCM showed a high degree of identity with COMT from other plants, particularly in SAM binding motif and the residues responsible for catalytic and substrate specificity. The predicted TaCM three-dimensional structure is very similar with a COMT from alfalfa (MsCOMT), and TaCM protein had high immunoreactive activity with MsCOMT antibody. Kinetic analysis indicated that the recombinant TaCM protein exhibited the highest catalyzing efficiency towards caffeoyl aldehyde and 5-hydroxyconiferaldehyde as substrates, suggesting a pathway leads to S lignin via aldehyde precursors. Authority of TaCM encoding a COMT was confirmed by the expression of antisense TaCM gene in transgenic tobacco which specifically down-regulated the COMT enzyme activity. Lignin analysis showed that the reduction in COMT activity resulted in a marginal decrease in lignin content but sharp reduction in the syringl lignin. Furthermore, the TaCM protein exhibited a strong activity towards ester precursors including caffeoyl-CoA and 5-hydroxyferuloyl-CoA. Our results demonstrate that TaCM is a typical COMT involved in lignin biosynthesis. It also supports the notion, in agreement with a structural analysis, that COMT has a broad substrate preference.  相似文献   

8.
S-adenosyl-l-methionine: 2-hydroxyisoflavanone 4'-O-methyltransferase (HI4'OMT) methylates 2,7, 4'-trihydroxyisoflavanone to produce formononetin, an essential intermediate in the synthesis of isoflavonoids with methoxy or methylenedioxy groups at carbon 4' (isoflavone numbering). HI4'OMT is highly similar (83% amino acid identity) to (+)-6a-hydroxymaackiain 3-O-methyltransferase (HMM), which catalyzes the last step of (+)-pisatin biosynthesis in pea. Pea contains two linked copies of HMM with 96% amino acid identity. In this report, the catalytic activities of the licorice HI4'OMT protein and of extracts of Escherichia coli containing the pea HMM1 or HMM2 protein are compared on 2,7,4'-trihydroxyisoflavanone and enantiomers of 6a-hydroxymaackiain. All these enzymes produced radiolabelled 2,7-dihydroxy-4'-methoxyisoflavanone or (+)-pisatin from 2,7,4'-trihydroxyisoflavanone or (+)-6a-hydroxymaakiain when incubated with [methyl-(14)C]-S-adenosyl-l-methionine. No product was detected when (-)-6a-hydroxymaackiain was used as the substrate. HI4'OMT and HMM1 showed efficiencies (relative V(max)/K(m)) for the methylation of 2,7,4'-trihydroxyisoflavanone 20 and 4 times higher than for the methylation of (+)-6a-hydroxymaackiain, respectively. In contrast, HMM2 had a higher V(max) and lower K(m) on (+)-6a-hydroxymaackiain, and had a 67-fold higher efficiency for the methylation of (+)-6a-hydroxymaackiain than that for 2,7,4'-trihydroxyisoflavanone. Among the 15 sites at which HMM1 and HMM2 have different amino acid residues, 11 of the residues in HMM1 are the same as found in HI4'OMTs from three plant species. Modeling of the HMM proteins identified three or four putative active site residues responsible for their different substrate preferences. It is proposed that HMM1 is the pea HI4'OMT and that HMM2 evolved by the duplication of a gene encoding a general biosynthetic enzyme (HI4'OMT).  相似文献   

9.
Many double-stranded RNA (dsRNA) viruses are capable of transcribing and capping RNA within a stable icosahedral viral capsid. The turret of turreted dsRNA viruses belonging to the family Reoviridae is formed by five copies of the turret protein, which contains domains with both 7-N-methyltransferase and 2′-O-methyltransferase activities, and serves to catalyze the methylation reactions during RNA capping. Cypovirus of the family Reoviridae provides a good model system for studying the methylation reactions in dsRNA viruses. Here, we present the structure of a transcribing cypovirus to a resolution of ~ 3.8 Å by cryo-electron microscopy. The binding sites for both S-adenosyl-l-methionine and RNA in the two methyltransferases of the turret were identified. Structural analysis of the turret in complex with RNA revealed a pathway through which the RNA molecule reaches the active sites of the two methyltransferases before it is released into the cytoplasm. The pathway shows that RNA capping reactions occur in the active sites of different turret protein monomers, suggesting that RNA capping requires concerted efforts by at least three turret protein monomers. Thus, the turret structure provides novel insights into the precise mechanisms of RNA methylation.  相似文献   

10.
The gene pgaM is involved in the biosynthesis of an angucycline-type polyketide antibiotic in Streptomyces sp. PGA64. It encodes a two-domain polypeptide consisting of an N-terminal flavoprotein oxygenase and a C-terminal short-chain alcohol dehydrogenase/reductase, which are fused together at the translational level as a result of end codon deletion. Here we show that translation also initiates at an internal start codon that enables independent expression of a separate reductase subunit, PgaMred. This confirms that the gene exhibits a rare viral-like arrangement of two overlapping reading frames that allows simultaneous expression of two alternative forms of the protein. Together, these two proteins associate to form a stable non-covalent complex, the native form of PgaM. The reductase subunit PgaMred is shown to provide enzyme stability and to affect the redox state of the oxygenase domain FAD. Finally, a model for the quaternary structure of the complex that explains the necessity for a nested gene system and the unusual behaviour of the protein subunits in vitro is presented.  相似文献   

11.
12.
13.
O-acetylserine sulfhydrylase (OASS) catalyzes the synthesis of l-cysteine in the last step of the reductive sulfate assimilation pathway in microorganisms. Its activity is inhibited by the interaction with serine acetyltransferase (SAT), the preceding enzyme in the metabolic pathway. Inhibition is exerted by the insertion of SAT C-terminal peptide into the OASS active site. This action is effective only on the A isozyme, the prevalent form in enteric bacteria under aerobic conditions, but not on the B-isozyme, the form expressed under anaerobic conditions. We have investigated the active site determinants that modulate the interaction specificity by comparing the binding affinity of thirteen pentapeptides, derived from the C-terminal sequences of SAT of the closely related species Haemophilus influenzae and Salmonella typhimurium, towards the corresponding OASS-A, and towards S. typhimurium OASS-B. We have found that subtle changes in protein active sites have profound effects on protein–peptide recognition. Furthermore, affinity is strongly dependent on the pentapeptide sequence, signaling the relevance of P3–P4–P5 for the strength of binding, and P1–P2 mainly for specificity. The presence of an aromatic residue at P3 results in high affinity peptides with Kdiss in the micromolar and submicromolar range, regardless of the species. An acidic residue, like aspartate at P4, further strengthens the interaction and results in the higher affinity ligand of S. typhimurium OASS-A described to date. Since OASS knocked-out bacteria exhibit a significantly decreased fitness, this investigation provides key information for the development of selective OASS inhibitors, potentially useful as novel antibiotic agents.  相似文献   

14.
Trigonelline (N-methylnicotinate), a member of the pyridine alkaloids, accumulates in coffee beans along with caffeine. The biosynthetic pathway of trigonelline is not fully elucidated. While it is quite likely that the production of trigonelline from nicotinate is catalyzed by N-methyltransferase, as is caffeine synthase (CS), the enzyme(s) and gene(s) involved in N-methylation have not yet been characterized. It should be noted that, similar to caffeine, trigonelline accumulation is initiated during the development of coffee fruits. Interestingly, the expression profiles for two genes homologous to caffeine synthases were similar to the accumulation profile of trigonelline. We presumed that these two CS-homologous genes encoded trigonelline synthases. These genes were then expressed in Escherichiacoli, and the resulting recombinant enzymes that were obtained were characterized. Consequently, using the N-methyltransferase assay with S-adenosyl[methyl-14C]methionine, it was confirmed that these recombinant enzymes catalyzed the conversion of nicotinate to trigonelline, coffee trigonelline synthases (termed CTgS1 and CTgS2) were highly identical (over 95% identity) to each other. The sequence homology between the CTgSs and coffee CCS1 was 82%. The pH-dependent activity curve of CTgS1 and CTgS2 revealed optimum activity at pH 7.5. Nicotinate was the specific methyl acceptor for CTgSs, and no activity was detected with any other nicotinate derivatives, or with any of the typical substrates of B′-MTs. It was concluded that CTgSs have strict substrate specificity. The Km values of CTgS1 and CTgS2 were 121 and 184 μM with nicotinic acid as a substrate, and 68 and 120 μM with S-adenosyl-l-methionine as a substrate, respectively.  相似文献   

15.
16.
The Saccharomyces cerevisiae monothiol glutaredoxin Grx5 participates in the mitochondrial biogenesis of iron-sulfur clusters. Grx5 homologues exist in organisms from bacteria to humans. Chicken (cGRX5) and human (hGRX5) homologues contain a mitochondrial targeting sequence, suggesting a mitochondrial localization for these two proteins. We have compartmentalized the Escherichia coli and Synechocystis sp. homologues, and also cGRX5 and hGRX5, in the mitochondrial matrix of a yeast grx5 mutant. All four heterologous proteins rescue the defects of the mutant. The chicken cGRX5 gene was significantly expressed throughout the embryo stages in different tissues. These results underline the functional conservation of Grx5 homologues throughout evolution.  相似文献   

17.
18.
The pur6 gene of the puromycin biosynthetic gene (pur) cluster from Streptomyces alboniger is shown to be essential for puromycin biosynthesis. Cell lysates from this mycelial bacterium were active in linking L-tyrosine to both 3'-amino-3'-deoxyadenosine and N6,N6-dimethyl-3'-amino-3'-deoxyadenosine with a peptide-like bond. Identical reactions were performed by cell lysates from Streptomyces lividans or Escherichia coli transformants that expressed pur6 from a variety of plasmid constructs. Physicochemical and biochemical analyses suggested that their products were tridemethyl puromycin and O-demethylpuromycin, respectively. Therefore, it appears that Pur6 is the tyrosinyl-aminonucleoside synthetase of the puromycin biosynthetic pathway.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号