首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A genomic region from the thermophilic, filamentous, nondiazotrophic cyanobacterium Phormidium laminosum including nrtC and nrtD was cloned and sequenced. These genes encode NrtC and NrtD, the ATP-binding subunits of the ABC bispecific transporter of nitrate/nitrite NRT. We report a different nrtC sequence from the one previously reported (Merchán et al., Plant Mol. Biol. 28:759–766, 1995) and we identified the presence of nrtD gene downstream nrtC in the nirA operon. Each gene was expressed in E. coli cells as a hexahistidine-tagged fusion protein. The recombinant proteins (His6NrtC and His6NrtD) were purified, and their ability to catalyze the hydrolysis of ATP and other nucleosides triphosphate was characterized. Both subunits showed its maximum ATPase activity at 45–50 °C and pH 8.0, and similar Km (0.49 and 0.43 mM) and Vmax (0.085 and 0.114 U mg− 1 protein, respectively) values were calculated. The native NrtC subunit purified from nitrogen-starved cells of P. laminosum also hydrolyzed ATP in vitro in the absence of other components of NRT. These findings indicated that NrtC and NrtD are responsible for ATP-hydrolysis to energize the active transporter NRT. The effect of some activators (Mg2+) and inhibitors (ADP) on the ATPase activity of the subunits was assessed as well as the effect of some potential regulatory metabolites on His6NrtC. The existence in vitro of homodimers of either NrtC or NrtD but not heterodimers of both subunits was confirmed by matrix assisted laser desorption ionization-time of flight mass spectrometry and/or electrophoresis in non-denaturing conditions. Finally, the existence in vivo of NrtC-NrtD heterodimers is discussed.  相似文献   

2.
Most cyanobacteria take up nitrate or nitrite through a multisubunit ABC transporter (ATP-binding cassette) located in the cytoplasmic membrane. Nitrate and nitrite transport activity is instantaneously blocked by the presence of ammonium in the medium. Previous biochemical studies reported the existence of phosphorylation/dephosphorylation events of the nitrate transporter (NRT) related to the presence of ammonium-sensitive kinase/phosphatase activities in plasma membranes of the cyanobacterium Synechococcus elongatus PCC 6301. In this work, we have analyzed the biochemical properties of the periplasmic nitrate/nitrite-binding subunit (NrtA) of NRT from the thermophilic nondiazotrophic cyanobacterium Phormidium laminosum. Our results show that cyanobacterial NrtA is phosphorylated in vivo. However, substrate binding activity in vitro is not affected by the phosphorylation state of the protein, ruling out the possibility that phosphorylation/dephosphorylation of NrtA is involved in the regulation of the nitrate/nitrite uptake by NRT transporter. Moreover, NrtA is present as multiple isoforms showing the same molecular mass but different isoelectric points ranging from pI 5 to 6. Mass spectrometric characterization of NrtA isoforms shows that the protein is phosphorylated at residue Tyr203, and contains several methionine sulphoxide residues which account for the observed isoforms. Both phosphorylated and non-phosphorylated forms of NrtA are active in vitro, showing comparable binding affinity for nitrate and nitrite. Both substrates behave as pure competitive inhibitors with a binding stoichiometry of one molecule of anion per NrtA monomer.  相似文献   

3.
Purpose: Crosstalk between Aurora-A kinase and p53 has been proposed. While the genetic amplification of Aurora-A has been observed in many human cancers, how p53 is regulated by Aurora-A remains ambiguous. In this study, Aurora-A-mediated phosphorylation of p53 was analyzed by mass spectrometry in order to identify a new phosphorylation site. Subsequently, the functional consequences of such phosphorylation were examined. Experimental design: In vitro phosphorylation of p53 by Aurora-A was performed and the phosphorylated protein was then digested with trypsin and enriched for phosphopeptides by immobilized metal affinity chromatography. Subsequently, a combination of β-elimination and Michael addition was applied to the phosphopeptides in order to facilitate the identification of phosphorylation sites by MS. The functional consequences of the novel phosphorylation of p53 on the protein–protein interactions, protein stability and transactivation activity were then examined using co-immunoprecipitation, Western blotting and reporter assays. Results: Ser-106 of p53 was identified as a novel site phosphorylated by Aurora-A. A serine-to-alanine mutation at this site was found to attenuate Aurora-A-mediated phosphorylation in vitro. In addition, phosphate-sensitive Phos-tag SDS-PAGE was used to confirm that the Ser-106 of p53 is in vivo phosphorylated by Aurora-A. Finally, co-immunoprecipitation studies suggested that Ser-106 phosphorylation of p53 decreases its interaction with MDM2 and prolongs the half-life of p53. Conclusions: The inhibition of the interaction between p53 and MDM2 by a novel Aurora-A-mediated p53 phosphorylation was identified in this study and this provides important information for further investigations into the interaction between p53 and Aurora-A in terms of cancer biology.  相似文献   

4.
CheY, the excitatory response regulator in the chemotaxis system of Escherichia coli, can be modulated by two covalent modifications: phosphorylation and acetylation. Both modifications have been detected in vitro only. The role of CheY acetylation is still obscure, although it is known to be involved in chemotaxis and to occur in vitro by two mechanisms—acetyl-CoA synthetase-catalyzed transfer of acetyl groups from acetate to CheY and autocatalyzed transfer from AcCoA. Here, we succeeded in detecting CheY acetylation in vivo by three means—Western blotting with a specific anti-acetyl-lysine antibody, mass spectrometry, and radiolabeling with [14C]acetate in the presence of protein-synthesis inhibitor. Unexpectedly, the level and rate of CheY acetylation in vivo were much higher than that in vitro. Thus, before any treatment, 9-13% of the lysine residues were found acetylated, depending on the growth phase, meaning that, on average, essentially every CheY molecule was acetylated in vivo. This high level was mainly the outcome of autoacetylation. Addition of acetate caused an incremental increase in the acetylation level, in which acetyl-CoA synthetase was involved too. These findings may have far-reaching implications for the structure-function relationship of CheY.  相似文献   

5.
The envelope of Escherichia coli is a complex organelle composed of the outer membrane, periplasm-peptidoglycan layer and cytoplasmic membrane. Each compartment has a unique complement of proteins, the proteome. Determining the proteome of the envelope is essential for developing an in silico bacterial model, for determining cellular responses to environmental alterations, for determining the function of proteins encoded by genes of unknown function and for development and testing of new experimental technologies such as mass spectrometric methods for identifying and quantifying hydrophobic proteins. The availability of complete genomic information has led several groups to develop computer algorithms to predict the proteome of each part of the envelope by searching the genome for leader sequences, β-sheet motifs and stretches of α-helical hydrophobic amino acids. In addition, published experimental data has been mined directly and by machine learning approaches. In this review we examine the somewhat confusing available literature and relate published experimental data to the most recent gene annotation of E. coli to describe the predicted and experimental proteome of each compartment. The problem of characterizing integral versus membrane-associated proteins is discussed. The E. coli envelope proteome provides an excellent test bed for developing mass spectrometric techniques for identifying hydrophobic proteins that have generally been refractory to analysis. We describe the gel based and solution based proteome analysis approaches along with protein cleavage and proteolysis methods that investigators are taking to tackle this difficult problem.  相似文献   

6.
Echinococcus multilocularis is an important parasite that causes human alveolar echinococcosis. Identification and characterization of the proteins encoded by E. multilocularis metacestode might help to understand the complexity of the parasites and their interactions with the host, and to identify new candidates for immunodiagnosis and vaccine development. Here we present a proteomic analysis of E. multilocularis protoscolex (PSC) proteins. The proteins were resolved by 2-DE (pH range 3.5-10), followed by MALDI-TOF MS analysis. Fourteen known Echinococcus proteins were identified, including cytoskeletal proteins, heat shock proteins, metabolic enzymes, 14-3-3 protein, antigen P-29 and calreticulin. To construct a systematic reference map of the immunogenic proteins from E. multilocularis PSC, immunoblot analysis of PSC 2-DE maps was performed. Over 50 proteins spots were detected on immunoblots as antigens and 15 of them were defined. The results showed that cytoskeletal proteins and heat shock proteins were immunodominant antigens in alveolar echinococcosis.  相似文献   

7.
The chlorophyll (Chl)-containing membrane protein complexes from the green alga Scenedesmus obliquus have been isolated from the thylakoid membranes by solubilization with dodecyl-β-maltoside and fractionation using a sucrose density gradient. The Chl-containing protein fractions were characterized by absorption spectroscopy, tricine SDS PAGE, BN-PAGE, and dynamic light scattering (DLS). BN-PAGE showed the presence of seven protein complexes with molecular weights in the range of 68, 118, 157, 320, 494, 828 and 955 kDa, respectively. Furthermore, light scattering reveals the simultaneous presence of particles of different sizes in the 3-4 nm and 6.0-7.5 nm range, respectively. The smaller size is related to the hydrodynamic radius of the trimer Light Harvesting Complex (LHCII), whereas the larger size is associated with the presence of photosystem I and photosystem II reaction centers. Additionally, functional information regarding protein-protein interactions was deconvoluted using coupling 2-D BN-PAGE, MALDI-TOF MS and a detailed mapping of S. obliquus photosynthetic proteome of the solubilized thylakoid membranes is therefore presented.  相似文献   

8.
Hjerrild M  Gammeltoft S 《FEBS letters》2006,580(20):4764-4770
Protein phosphorylation is important for regulation of most biological functions and up to 50% of all proteins are thought to be modified by protein kinases. Increased knowledge about potential phosphorylation of a protein may increase our understanding of the molecular processes in which it takes part. Despite the importance of protein phosphorylation, identification of phosphoproteins and localization of phosphorylation sites is still a major challenge in proteomics. However, high-throughput methods for identification of phosphoproteins are being developed, in particular within the fields of bioinformatics and mass spectrometry. In this review, we present a toolbox of current technology applied in phosphoproteomics including computational prediction, chemical approaches and mass spectrometry-based analysis, and propose an integrated strategy for experimental phosphoproteomics.  相似文献   

9.
Berberine is a natural product isolated from herbal plants such as Rhizoma coptidis which has been shown to have anti-neoplastic properties. However, the effects of berberine on the behavior of breast cancers are largely unknown. To determine if berberine might be useful in the treatment of breast cancer and its cytotoxic mechanism, we analyzed the impact of berberine treatment on differential protein expression and redox regulation in human breast cancer cell line MCF-7 using lysine- and cysteine-labeling two-dimensional difference gel electrophoresis (2D-DIGE) combined with mass spectrometry (MS). This study demonstrated that 96 and 22 protein features were significantly changed in protein expression and thiol reactivity, respectively and revealed that berberine-induced cytotoxicity in breast cancer cells involves dysregulation of protein folding, proteolysis, redox regulation, protein trafficking, cell signaling, electron transport, metabolism and centrosomal structure. Our work shows that this combined proteomic strategy provides a rapid method to study the molecular mechanisms of berberine-induced cytotoxicity in breast cancer cells. The identified targets may be useful for further evaluation as potential targets in breast cancer therapy.  相似文献   

10.
Type 1 diabetes mellitus (T1DM) is an insulin-dependent metabolic disease in the world and often occurs in children and adolescents. Recent advances in quantitative proteomics offer potential for the discovery of plasma proteins as biomarkers for tracking disease progression and for understanding the molecular mechanisms of diabetes. Comparative proteomic analysis of the plasma proteomes from T1DM cases and healthy donors with lysine- and cysteine-labeling 2D-DIGE combining MALDI-TOF/TOF mass spectrometry revealed that 39 identified T1DM-associated plasma proteins showed significant changes in protein expression including hemopexin, and 41 in thiol reactivity. Further study showed that hemopexin can be induced in numerous cell lines by increasing the glucose concentration in the medium. Interestingly, glucose-induced hemopexin expression can be reduced by reactive oxygen species (ROS) scavengers such as glutathione, implying that hemopexin expression is linked to glucose-induced oxidative stress. In conclusion, the current work has identified potential T1DM biomarkers and one of these, hemopexin, can be modulated by glucose through a ROS-dependent mechanism.  相似文献   

11.
ATP-binding cassette transporter G1 (ABCG1) mediates cholesterol efflux onto lipidated apolipoprotein A-I and HDL and plays a role in various important physiological functions. However, the mechanism by which ABCG1 mediates cholesterol translocation is unclear. Protein palmitoylation regulates many functions of proteins such as ABCA1. Here we investigated if ABCG1 is palmitoylated and the subsequent effects on ABCG1-mediated cholesterol efflux. We demonstrated that ABCG1 is palmitoylated in both human embryonic kidney 293 cells and in mouse macrophage, J774. Five cysteine residues located at positions 26, 150, 311, 390 and 402 in the NH2-terminal cytoplasmic region of ABCG1 were palmitoylated. Removal of palmitoylation at Cys311 by mutating the residue to Ala (C311A) or Ser significantly decreased ABCG1-mediated cholesterol efflux. On the other hand, removal of palmitoylation at sites 26, 150, 390 and 402 had no significant effect. We further demonstrated that mutations of Cys311 affected ABCG1 trafficking from the endoplasmic reticulum. Therefore, our data suggest that palmitoylation plays a critical role in ABCG1-mediated cholesterol efflux through the regulation of trafficking.  相似文献   

12.
13.
Huang J  Ruan J  Tang X  Zhang W  Ma H  Zou S 《Steroids》2011,76(14):1566-1574
Dehydroepiandrosterone (DHEA) is a precursor of the adrenocorticosteroid hormones that are common to all animals, including poultry. The study described herein was undertaken to investigate the effect of DHEA on lipid metabolism in broiler chickens during embryonic development and to determine the regulatory mechanisms involved in its physiological action. Treatment group eggs were injected with 50 mg DHEA diluted in 50 μL dimethyl sulfoxide (DMSO) per kg, while control group eggs (arbor acres [AA] fertilized) were injected with 50 μL DMSO per kg prior to incubation. Liver samples were collected on days 9, 14 and 19 of embryonic development as well as at hatching. Extracted proteins were analyzed by two dimensional gel electrophoresis (2-DE) in combination with western blotting for specific anti-phosphotyrosine. The differential spots were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) or MALDI-TOF-TOF-MS. Peptide mass fingerprinting (PMF) of the differentially-expressed proteins were performed using the MASCOT, Prospector or proFound server. Thirty-seven proteins and twenty-two tyrosine phosphorylation proteins were successfully identified. All 37 proteins and 22 tyrosine phosphorylation proteins exhibited a significant volume difference from the control group. These results demonstrated that DHEA increased the expression and level of tyrosine phosphorylation and sulfotransferase proteins in broilers (at pI 5.9), therefore promoting the biotransformation of DHEA. The expression of apolipoproteinA-I was increased in the DHEA treatment group, which facilitated the conversion of cholesterol to cholesterol esters. Also, DHEA increased the expression of peroxiredoxin-6 and its tyrosine phosphorylation protein levels, thus enhancing its anti-oxidative activity. Furthermore, pyruvate dehydrogenase expression was decreased and the level of its tyrosine phosphorylation proteins increased in the DHEA treatment group. Take together, those data indicate that DHEA reduces the supply of acetyl-CoA by inhibiting the activity of its target enzyme (i.e. pyruvate dehydrogenase), thus affecting both protein synthesis and phosphorylation level and decreasing fat deposition in broiler chickens during embryonic development, which could reflect a physiologically-relevant DHEA fat-reduction mechanism in the broiler chicken.  相似文献   

14.
The X-ray crystal structure of the Rhodopseudomonas (Rps.) palustris reaction center-light harvesting 1 (RC-LH1) core complex revealed the presence of a sixth protein component, variably referred to in the literature as helix W, subunit W or protein W. The position of this protein prevents closure of the LH1 ring, possibly to allow diffusion of ubiquinone/ubiquinol between the RC and the cytochrome bc1 complex in analogous fashion to the well-studied PufX protein from Rhodobacter sphaeroides. The identity and function of helix W have remained unknown for over 13 years; here we use a combination of biochemistry, mass spectrometry, molecular genetics and electron microscopy to identify this protein as RPA4402 in Rps. palustris CGA009. Protein W shares key conserved sequence features with PufX homologs, and although a deletion mutant was able to grow under photosynthetic conditions with no discernible phenotype, we show that a tagged version of protein W pulls down the RC-LH1 complex. Protein W is not encoded in the photosynthesis gene cluster and our data indicate that only approximately 10% of wild-type Rps. palustris core complexes contain this non-essential subunit; functional and evolutionary consequences of this observation are discussed. The ability to purify uniform RC-LH1 and RC-LH1-protein W preparations will also be beneficial for future structural studies of these bacterial core complexes.  相似文献   

15.
Cyclohexanone monooxygenase (CMO) is a member of the flavin monooxygenase superfamily of enzymes that catalyze both nucleophilic and electrophilic reactions involving a common C4a hydroperoxide intermediate. To begin to probe structure-function relationships for these enzymes, we investigated the roles of histidine residues in CMO derived from Acinetobacter NCIB 9871, with particular emphasis on the wholly conserved residue, His163 (H163). CMO activity was readily inactivated by diethyl pyrocarbonate (DEPC), a selective chemical modifier of histidine residues. Each of the seven histidines in CMO was then individually mutated to glutamine and the mutants expressed and purified from Escherichia coli. Only the H59Q mutant failed to express at significant levels. The H96Q enzyme was found to have a greatly reduced flavin adenine dinucleotide (FAD) content, indicative of compromised cofactor retention. The only significant effect on kcat occurred with the H163Q mutant, which exhibited an approximately 10-fold lower turnover of the prototypical substrate, cyclohexanone. This was accompanied by a doubling in the Km [NADPH] compared to the wild-type enzyme, suggesting that the functional decrement in H163Q is probably not solely a reflection of impaired NADPH binding. These data establish a critical role for H163 in CMO catalysis and prompt the hypothesis that this conserved residue plays a similarly important functional role across the flavin monooxygenase family of enzymes.  相似文献   

16.
A gene encoding an esterase from Haloarcula marismortui, a halophilic archaea from the Dead Sea, was cloned, expressed in Escherichia coli, and the recombinant protein (Hm EST) was biochemically characterized. The enzymatic activity of Hm EST was shown to exhibit salt dependence through salt-dependent folding. Hm EST exhibits a preference for short chain fatty acids and monoesters. It is inhibited by phenylmethylsulfonyl fluoride, diethyl-p-nitrophenyl phosphate, and 5-methoxy-3-(4-phenoxyphenyl)-3H-[1,3,4]oxadiazol-2-one, confirming the conclusion from sequence alignments that Hm EST is a serine carboxylesterase belonging to the hormone-sensitive lipase family. The activity of Hm EST is optimum in the presence of 3 M KCl and no activity was detected in the absence of salts. Far–UV circular dichroism showed that Hm EST is totally unfolded in salt-free medium and secondary structure appears in the presence of 0.25–0.5 M KCl. After salt depletion, the protein was able to recover 60% of its initial activity when 2 M KCl was added. A 3D model of Hm EST was built and its surface properties were analyzed, pointing to an enrichment in acidic residues paralleled by a depletion in basic residues. This peculiar charge repartition at the protein surface supports a better stability of the protein in a high salt environment.  相似文献   

17.

Background

Lectins are a diverse group of carbohydrate-binding proteins exhibiting numerous biological activities and functions.

Methods

Two-step serial carbohydrate affinity chromatography was used to isolate a lectin from the edible mushroom clouded agaric (Clitocybe nebularis). It was characterized biochemically, its gene and cDNA cloned and the deduced amino acid sequence analyzed. Its activity was tested by hemagglutination assay and carbohydrate-binding specificity determined by glycan microarray analysis. Its effect on proliferation of several human cell lines was determined by MTS assay.

Results

A homodimeric lectin with 15.9-kDa subunits agglutinates human group A, followed by B, O, and bovine erythrocytes. Hemagglutination was inhibited by glycoprotein asialofetuin and lactose. Glycan microarray analysis revealed that the lectin recognizes human blood group A determinant GalNAcα1–3(Fucα1–2)Galβ-containing carbohydrates, and GalNAcβ1–4GlcNAc (N,N'-diacetyllactosediamine). The lectin exerts antiproliferative activity specific to human leukemic T cells.

Conclusions

The protein belongs to the ricin B-like lectin superfamily, and has been designated as C. nebularis lectin (CNL). Its antiproliferative effect appears to be elicited by binding to carbohydrate receptors on human leukemic T cells.

General significance

CNL is one of the few mushroom ricin B-like lectins that have been identified and the only one so far shown to possess immunomodulatory properties.  相似文献   

18.
Echosides, isolated from Streptomyces sp. LZ35, represent a class of para-terphenyl natural products that display DNA topoisomerase I and IIα inhibitory activities. By analyzing the genome draft of strain LZ35, the ech gene cluster was identified to be responsible for the biosynthesis of echosides, which was further confirmed by gene disruption and HPLC analysis. Meanwhile, the biosynthetic pathway for echosides was proposed. Furthermore, the echA-gene, encoding a tri-domain nonribosomal peptide synthetase (NRPS)-like enzyme, was identified as a polyporic acid synthetase and biochemically characterized in vitro. This is the first study to our knowledge on the biochemical characterization of an Actinobacteria quinone synthetase, which accepts phenylpyruvic acid as a native substrate. Therefore, our results may help investigate the function of other NRPS-like enzymes in Actinobacteria.  相似文献   

19.
A rhamnose-binding glycoprotein (lectin), named SML, was isolated from the eggs of Spanish mackerel (Scomberomorous niphonius) by affinity and ion-exchange chromatographies. SML was composed of a non-covalently linked homodimer. The SML subunit was composed of 201 amino acid residues with two tandemly repeated domains, and contained 8 half-Cys residues in each domain, which is highly homologous to the N-terminal lectin domain of calcium-independent α-latrotoxin receptor in mammalian brains. Each domain has the same disulfide bonding pattern; Cys10–Cys40, Cys20–Cys99, Cys54–Cys86 and Cys67–Cys73 were located in the N-terminal domain, and Cys108–Cys138, Cys117–Cys195, Cys152–Cys182 and Cys163–Cys169 were in the C-terminal domain. SML was N-glycosylated at Asn168 in the C-terminal domain. The structure of the sugar chain was determined to be NeuAc-Galβ1-4GlcNAcβ1-2Manα1-6-(NeuAc-Galβ1-4GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAc-Asn.  相似文献   

20.
The crystal structures of copper-containing nitrite reductase (CuNiR) from the thermophilic Gram-positive bacterium Geobacillus kaustophilus HTA426 and the amino (N)-terminal 68 residue-deleted mutant were determined at resolutions of 1.3 Å and 1.8 Å, respectively. Both structures show a striking resemblance with the overall structure of the well-known CuNiRs composed of two Greek key β-barrel domains; however, a remarkable structural difference was found in the N-terminal region. The unique region has one β-strand and one α-helix extended to the northern surface of the type-1 copper site. The superposition of the Geobacillus CuNiR model on the electron-transfer complex structure of CuNiR with the redox partner cytochrome c551 in other denitrifier system led us to infer that this region contributes to the transient binding with the partner protein during the interprotein electron transfer reaction in the Geobacillus system. Furthermore, electron-transfer kinetics experiments using N-terminal residue-deleted mutant and the redox partner, Geobacillus cytochrome c551, were carried out. These structural and kinetics studies demonstrate that the region is directly involved in the specific partner recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号