首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fundamental problem in microbial reactor analysis is identification of the relationship between environment and individual cell metabolic activity. Population balance equations provide a link between experimental measurements of composition frequency functions in microbial populations on the one hand and macromolecular synthesis kinetics and cell division control parameters for single cells on the other. Flow microfluorometry measurements of frequency functions for single-cell protein content in Schizosaccharomyces pombe in balanced exponential growth have been analyzed by two different methods. One approach utilizes the integrated form of the population balance equation known as the Collins-Richmond equation, and the other method involves optimization of parameters in assumed kinetic and cell division functional forms in order to best fit measured frequency functions with corresponding model solutions. Both data interpretation techniques indicate that rates of protein synthesis increase most in small protein content cells as the population specific growth rate increases, leading to parabolic single-cell protein synthesis kinetics at large specific growth rates. Utilization of frequency function data for an asynchronous population is shown in this case to be a far more sensitive method for determination of single-cell kinetics than is monitoring the metabolic dynamics of a single cell or, equivalently, synchronous culture analyses.  相似文献   

2.
A structured kinetic model was proposed to describe cell growth and synthesis of a secondary metabolite, berberine, in batch suspension culture ofThalictrum rugosum. The model was developed by representing the physiological state of the cell in terms of the activity and the viability, which can be estimated using the culture fluorescence measurement. In the proposed model, the cells were divided into three types; active-viable, nonactive-viable, and dead cells. The model was formulated in terms of cell growth (dry/fresh weight, activity, and viability), carbon source utilization (sucrose, glucose and fructose), and product formation (intracellular and extracellular berberine). The concept of cell expansion and the death phase were also included in this model to describe the sugar accumulation and the release of intracellular berberine into medium by cell lysis, respectively. The parameters used in this model were estimated based on the experimental results in conjunction with numerical optimization techniques. Satisfactory agreement between the model and experimental data was obtained. The proposed model could accurately predict cell growth and product synthesis as well as the distribution of the secondary metabolite between the cell and the medium. It is suggested that the proposed model could be extended as a useful framework for quantitative analysis of physiological characteristics in the other plant cell culture systems.  相似文献   

3.
Vitamin B12 deficiency arrests cell division in Euglena gracilis. B12 starvation for short periods made it possible to induce synchronous growth by addition of the vitamin. Culture conditions were established to optimize replenishment synchrony. The DNA content of E. gracilis in steady state culture and vitamin B12 deficiency culture was measured by flow cytofluorometry and was consistent with colorimetric determinations. The cell volume and DNA distributions of E. gracilis in synchronous culture were analyzed and the sequential changes during the division cycle were computed. Synchronous culture permits more definitive studies of shifts in cell volume and DNA distributions, in which the biochemical events required for cell division are presumably synchronized.  相似文献   

4.
The relations between intracellular potassium, sodium water content and resting potential on the one hand and the ion transport parameters and intracellular electrical charge on the other hand were computed for a model of animal cell with a several ion transporters and variable intracellular charge. The case of the balanced ion distribution is considered. The results are presented in a graphical form.  相似文献   

5.
Summary The evaluation of the intracellular signal train and its regulatory function in controlling transepithelial transport with electrophysiological methods often requires intracellular measurements with microelectrodes. However, multiple impalements in epithelial cells are hampered by the small size of the cells. In an attempt to avoid these problems we fused cells of an established cell line, Madin Darby canine kidney cells, originally derived from dog kidney, to giant cells by applying a modified polyethylene glycol method. During trypsin-induced detachment from the ground of the petri dish, individual cells grown in a monolayer incorporate volume and mainly lose basolateral plasma membrane by extrusion. By isovolumetric cell-to-cell fusion, spherical giant cells are formed within 2 hr. During this process a major part of the individual cell plasma membranes is internalized. Over three weeks following cell plasma membrane fusion degradation of single cell nuclei and cell nuclear fusion occurs. We conclude that this experimental approach opens the possibility to investigate ion transport of epithelia in culture by somatic cell genetic techniques.  相似文献   

6.
Optimization of cell culture processes can benefit from the systematic analysis of experimental data and their organization in mathematical models, which can be used to decipher the effect of individual process variables on multiple outputs of interest. Towards this goal, a kinetic model of cytosolic glucose metabolism coupled with a population-level model of Chinese hamster ovary cells was used to analyse metabolic behavior under batch and fed-batch cell culture conditions. The model was parameterized using experimental data for cell growth dynamics, extracellular and intracellular metabolite profiles. The results highlight significant differences between the two culture conditions in terms of metabolic efficiency and motivate the exploration of lactate as a secondary carbon source. Finally, the application of global sensitivity analysis to the model parameters highlights the need for additional experimental information on cell cycle distribution to complement metabolomic analyses with a view to parameterize kinetic models.  相似文献   

7.
T cell activation and secretion of cytokines from activated peripheral blood mononuclear cells (PBMC) in culture have traditionally been measured by 3H-thymidine incorporation for assessment of cell proliferation. However, this method has many disadvantages that limit its usage in analyzing antigen-specific T responses, because of the low specific frequencies of the cells. Collagen II (250-270) may be an important autoantigen involved in the pathology of rheumatoid arthritis (RA). To further study the specific T cells response to CII 250-270, we developed an improved method for measuring lymphocyte proliferation and activation, and intracellular cytokine production, by flow cytometry at the single cell level. BrdU, an analog of thymidine, was incorporated into cellular DNA as a marker of individual cell proliferation. The cells were fixed and permeabilized, and a monoclonal antibody against BrdU conjugated with a fluorescent dye was used to measure BrdU incorporation. A Tris staining technique for the simultaneous determination of cell surface activation markers (CD69 or CD25) and intracellular cytokine production was also used and the parameters were assessed by 3-color flow cytometry. Optimal conditions were selected to improve the sensitivity and specificity of the assays. This method allowed simultaneous detection of lymphocytic DNA synthesis, phenotype analysis and cytokine production at the single cell level, and thus it may be a useful tool for analyzing immune responses.  相似文献   

8.
The systemic vasculature is known to undergo marked change in both human and experimental hypertension. The in vitro study of individual cellular components from the blood vessel wall and the regulation of their intracellular biochemical processes will aid in developing an understanding of the pathogenesis of hypertension. Vascular smooth muscle cells derived from the aorta and mesenteric arteries of normotensive and hypertensive rats can be successfully maintained in culture, providing a system free of confounding variables such as blood pressure. To assist in fully understanding the pathophysiology of hypertension, this cell culture model can be used to examine interactions between receptor and ligand, the transduction of an associated signal, characterization of subsequent intracellular responses and ultimately, quantification of a physiological and functional consequence of these events, for example, proliferation. The application of in vitro techniques to hypertension research will continue to contribute new knowledge to increase our understanding of the mechanisms behind the hypertensive disease process.  相似文献   

9.
A novel fixative and permeabilization method is described which allows simultaneous flow cytometric detection of red blood cell membrane antigen and intracellular malaria parasites. To illustrate the method, red blood cells from patients with paroxysmal nocturnal hemoglobinuria were infected with Plasmodium falciparum and maintained in synchronous red blood cell culture. The infected red blood cells were immunolabeled with antibodies directed to the complement regulatory protein decay-accelerating factor (DAF) followed by subsequent fixations in paraformaldehyde and then glutaraldehyde in phosphate-buffered saline. Finally, DNA of the intraerythrocytic parasites was stained with propidium iodide. Using this technique, cellular morphology was well preserved, no cell aggregation was observed, and high-quality indirect immunofluorescence and parasite DNA staining were obtained with negligible nonspecific labelling. Simultaneous measurement of parasite DNA and red blood cell membrane determinants makes possible the investigation of alterations of red cell membrane proteins in association with development of intracellular malaria parasites.  相似文献   

10.
C-terminal lysine (C-K) variants are commonly observed in therapeutic monoclonal antibodies and recombinant proteins. Heterogeneity of C-K residues is believed to result from varying degree of proteolysis by endogenous carboxypeptidase(s) during cell culture production. The achievement of batch-to-batch culture performance and product quality reproducibility is a key cell culture development criterion. Understanding the operational parameters affecting C-K levels provides valuable insight into the cell culture process. A CHO cell line X expressing a recombinant antibody was selected as the model cell line due to the exhibited sensitivity of its C-K level to the process conditions. A weak cation exchange chromatography (WCX) method with or without carboxypeptidase B (CpB) treatment was developed to monitor the C-K level for in-process samples. The effects of operating conditions (i.e., temperature and culture duration) and media trace elements (copper and zinc) on C-K variants were studied. The dominant effect on C-K level was identified as the trace elements concentration. Specifically, increased C-K levels were observed with increase of copper concentration and decrease of zinc concentration in chemically defined medium. Further, a hypothesis for C-K processing with intracellular and extracellular carboxypeptidase activity was proposed, based on preliminary intracellular carboxypeptidase Western blot results and the extracellular HCCF holding study.  相似文献   

11.
Anthocyanin accumulation in strawberry (Fragaria ananassa) cells cultured on a solid medium was monitored using an image-processing system that did not require direct sampling or destruction of the cells. Because of the intercellular heterogeneity of secondary metabolite production in plant cell cultures, the maximum metabolite concentration in individual cells is often more than 10 times higher than that of the average concentration. An image-processing based method enabled the growth and the pigmentation behavior of individual cells to be traced. Changes in the time courses of the anthocyanin content of individual cells differed from each other, although the average anthocyanin contents increased gradually with time in a batch culture. However, these various changing patterns in the anthocyanin content of each cell were independent of the cell cycle. In addition, image analysis revealed that the two cells just after cell division were almost identical to each other both in size and anthocyanin content. The proposed method which uses an image-processing system provides a useful tool for analyzing the secondary metabolism in individual cultured plant cells.  相似文献   

12.
In synchronized continuous cultures of Saccharomyces cerevisiae CBS 8066, the production of the extracellular invertase (EC 3.2.1.26) showed a cyclic behavior that coincided with the budding cycle. The invertase activity increased during bud development and ceased at bud maturation and cell scission. The cyclic changes in invertase production resulted in cyclic changes in amounts of invertase localized in the cell wall. However, the amount of enzyme invertase present in the culture liquid remained constant throughout the budding cycle. Also, in asynchronous continuous cultures of S. cerevisiae, the production and localization of invertase showed significant fluctuation. The overall invertase production in an asynchronous culture was two to three times higher than in synchronous cultures. This could be due to more-severe invertase-repressive conditions in a synchronous chemostat culture. Both the intracellular glucose-6-phosphate concentration and residual glucose concentration were significantly higher in synchronous chemostat cultures than in asynchronous chemostat cultures. In the asynchronous and synchronous continuous cultures of S. cerevisiae, about 40% of the invertase was released into the culture liquid; it has generally been believed that S. cerevisiae releases only about 5% of its invertase. In contrast to invertase production and localization in the chemostat cultures of S. cerevisiae, no significant changes in inulinase (EC 3.2.1.7) production and localization were observed in chemostat cultures of Kluyveromyces maxianus CBS 6556. In cultures of K. marxianus about 50% of the inulinase was present in the culture liquid.  相似文献   

13.
Oscillations of measured process parameters occur in continuous cultures of Saccharomyces cerevisiae owing to a partial synchronization of budding. Intentional changes of the oxygen concentration, pH value, and carbon source cause effects on the period length similar to those known from variations of the dilution rate. The generation times of parent and daughter cells frequently differ in synchronous culture. To analyze the oscillation the term mode IJ of oscillation is used, which is defined as the ratio IJ of the generation times of parent and daughter cells. When the dissolved oxygen concentration was reduced to zero, the mode of oscillation changed within two periods from mode 12 to mode 11, caused by a decrease of the generation time of daughter cells and an increase of that of the parent cells. When the pH value was slowly reduced from 5.0 to 3.9, a change from mode 112 to mode 13 was observed. Mode 13, representing one parent and three daughter cell populations (the start of budding of each of the three being delayed by one period), denotes an elongated generation time of the daughter cells compared to mode 112, marked by one parent and two different daughter cell classes. When the carbon source galactose was replaced by glucose a mode change from mode 12 to mode 11 was observed. This alteration of the mode was found to be dependent on the status of the cell cycle at the time when the carbon source is changed. The population distribution in batch cultures with glucose or galactose as a substrate was analysed by dyeing the DNA and counting the bud scars. Galactose provoked higher growth rates for the older cells. According to the model for stationary synchronous growth parameters like DO, pH value or the type of carbon source can be varied within a certain range without effecting the period length. If the variation imposes a certain stress, the culture switches to a new mode. These kinds of parameters therefore provide selective measures to influence the period lengths and the modes of oscillation.  相似文献   

14.
It has been suggested that neuroendocrine (NE) cells provide paracrine stimuli for the propagation of local carcinoma cells and that NE differentiation is associated with the progression of prostate cancer toward an androgen-independent state. Apoptosis comprises a critical intracellular defense mechanism against tumorigenic growth and is associated with a number of changes in the elemental content of the cell. The neuropeptides bombesin and calcitonin, which inhibit etoposide-induced apoptosis, also inhibit the etoposide-induced elemental changes in prostate carcinoma cells. This important fact strengthens the link between apoptosis and changes in the intracellular elemental content. This protective effect on etoposide-induced apoptosis appears to be quite similar in androgen-dependent and androgen-independent cell lines. This confirms that neuropeptides confer antiapoptotic capabilities on non-neuroendocrine cells in close proximity to neuroendocrine cells. It can therefore be speculated that certain neuroendocrine peptides can increase the survival and further growth of neighboring cells and may thereby contribute to the aggressive clinical course of prostate tumors containing neuroendocrine elements. In addition, this correlation provides an objective basis for the study of neuropeptide target points and may be helpful for alternative therapeutic protocols using neuropeptide inhibitors in the treatment of patients with advanced prostatic carcinoma. The culture techniques described were, thus, designed in order to achieve two important goals. First, the development of an in vitro model that allows an approach to neuroendocrine differentiation in prostate cancer and its role in apoptosis blockage. Second, the method has been designed in order to permit rapid cryofixation of intact cell monolayers for subsequent x-ray microanalysis.  相似文献   

15.
We have developed a method for preparation of synchronous culture in Cryptococcus neoformans. The method is based on age fractionation of exponentially growing asynchronous culture through differential sedimentation in 10-20% (w/v) lactose gradient. C. neoformans capsule thickness should be reduced to a minimum to ensure most accurate age fractionation, which is necessary to obtain a higher degree of synchrony. The C. neoformans synchronous culture system has revealed important characteristics with respect to cellular morphology, DNA content and cell volume distribution. The method can be used for further cell cycle studies.  相似文献   

16.
The bag cells in the abdominal ganglion of Aplysia californica control egg-laying behavior by releasing a polypeptide (ELH) during an afterdischarge of synchronous action potentials. We have used intracellular injection of Lucifer Yellow to study the morphology and interconnections of the bag cells. These neurosecretory cells are typically multipolar and their processes extend in all directions out from the bag cell clusters into the surrounding connective tissue, where they branch in a complex manner. In some of the dye injection experiments, dye transfer from the injected cell to neighboring cells was observed. Freeze fracture of the bag cell clusters and their surrounding connective tissue revealed numerous gap junctions on bag cell processes within the clusters as well as on more distal processes. We have also examined the morphology and coupling between bag cells in primary culture. As in the intact ganglion, bag cells in culture were found to be multipolar. All pairs of bag cells whose somata or processes had formed contacts in culture were electrically coupled. The strongest coupling was observed between pairs of cells whose somata appeared closely apposed. In these cases transfer of Lucifer Yellow between cells could also be observed. It is therefore likely that the synchrony of bag cell action potentials during a bag cell afterdischarge is a result of coupling between individual cells in the bag cell cluster.  相似文献   

17.
The budding yeast Saccharomyces cerevisiae exhibits autonomous oscillations when grown aerobically in continuous culture with ethanol as the primary carbon source. A single cell model that includes the sulfate assimilation and ethanol degradation pathways recently has been developed to study these respiratory oscillations. We utilize an extended version of this single cell model to construct large cell ensembles for investigation of a proposed synchronization mechanism involving hydrogen sulfide. Ensembles with as many as 10,000 cells are used to simulate population synchronization and to compute transient number distributions from asynchronous initial cell states. Random perturbations in intracellular kinetic parameters are introduced to study the synchronization of single cells with small variations in their unsynchronized oscillation periods. The cell population model is shown to be consistent with available experimental data and to provide insights into the regulatory mechanisms responsible for the synchronization of yeast metabolic oscillations.  相似文献   

18.
A selection of mouse hybridoma cell lines showed a variation of approximately two orders of magnitude in intracellular monoclonal antibody contents. The different levels directly influenced apparent specific monoclonal antibody productivity during the death phase but not during the growth phase of a batch culture. The pattern of changes in specific productivity during culture remained basically similar even though at different levels for all cell lines tested. Arresting the cells in the G1 phase using thymidine increased the specific productivity, cell volume and intracellular antibody content but at the same time led to decreased viability. In continuous culture DNA synthesis decreased with decreasing dilution rate though without an accompanying change in cell cycle and cell size distributions. The data shows both the decrease in viability and intracellular antibody content to be important factors which influence the negative association between specific antibody productivity and growth rate. In high cell density perfusion culture, when the cell cycle was prolonged by slow growth, viability was low and dead, but not lysed, cells were retained in the system, the specific antibody productivity was nearly two fold higher than that obtained in either batch or continuous cultures. The results imply that the prolongation of G1 phase and the increase in death rate of cells storing a large amount of antibody together cause an apparent increase in specific antibody productivity.  相似文献   

19.
T Imai  T Ohno 《Applied microbiology》1995,61(10):3604-3608
The relationship between viability (cell proliferation activity) and intracellular pH in the yeast Saccharomyces cerevisiae was investigated by using cells that had been deactivated by low-temperature storage, ethanol treatment, or heat treatment. The intracellular pH was measured with a microscopic image processor or a spectrofluorophotometer. At first, the intracellular pH measurements of individual cells were compared with slide culture results by microscopic image processing. A clear correlation existed between the proliferation activity and intracellular pH. Moreover, by spectrofluorophotometry analysis, it was found that there was a relationship between the viability and intracellular pH of brewing yeast under conditions of low external pH (n = 15, r = 0.960, P = 0.001). This relationship was also observed in baker's yeast (n = 13, r = 0.950, P = 0.001). On the other hand, when the fluorescein staining method was used in these experiments, the relationship between viability and staining percentage was not observed. From these results, intracellular pH was found to be a sensitive factor for estimating yeast physiology. The possible role of cell deterioration is also discussed.  相似文献   

20.
We analyzed by Fotonic Sensor, a fiber-optic displacement measurement instrument, the effects of heptanol on synchronized contraction of primary neonatal rat cardiac myocytes cultured at confluent density. We also examined the effect of heptanol on the changes in gap junctional intercellular communication by using the microinjection dye transfer method, and on intercellular Ca2+ fluctuation by confocal laser scanning microscopy of myocytes loaded with the fluorescent Ca2+ indicator fluo 3. In addition, we studied expression, phosphorylation, and localization of the major cardiac gap junction protein connexin 43 (Cx43) using immunofluorescence and Western blotting. At Day 6 of culture, numerous myocytes exhibited spontaneous, synchronous contractions, excellent dye coupling, and synchronized intracellular Ca2+ fluctuations. We treated the cells with 1.5, 2.0, 2.5, and 3.0 mmol/liter heptanol. With 1.5 mmol/liter heptanol, we could not observe significant effects on spontaneous contraction of myocytes. At 3.0 mmol/liter, the highest concentration used in the current experiment, heptanol inhibited synchronous contractions and even after washing out of heptanol, synchronous contraction was not rapidly recovered. On the other hand, at the intermediate concentrations of 2.0 and 2.5 mmol/liter, heptanol reversely inhibited synchronized contraction, gap junctional intercellular communication, and synchronization of intracellular Ca2+ fluctuations in the myocytes without preventing contraction and changes of intracellular Ca2+ in individual cells. Brief exposure (5-20 min) to heptanol (2.0 mmol/liter) did not cause detectable changes in the expression, phosphorylation, or localization of Cx43, despite strong inhibition of gap junctional intercellular communication. These results suggest that gap junctional intercellular communication plays an important role in synchronous intracellular Ca2+ fluctuations, which facilitate synchronized contraction of cardiac myocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号