首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Tat (twin-arginine protein translocation) system initially discovered in the thylakoid membrane of chloroplasts has been described recently for a variety of eubacterial organisms. Although in Escherichia coli four Tat proteins with calculated membrane spanning domains have been demonstrated to mediate Tat-dependent transport, a specific transport system for twin-arginine signal peptide containing phosphodiesterase PhoD of Bacillus subtilis consists of one TatA/TatC (TatAd/TatCd) pair of proteins. Here, we show that TatAd was found beside its membrane-integrated localization in the cytosol were it interacted with prePhoD. prePhoD was efficiently co-immunoprecipitated by TatAd. Inefficient co-immunoprecipitation of mature PhoD and missing interaction to Sec-dependent and cytosolic peptides by TatAd demonstrated a particular role of the twin-arginine signal peptide for this interaction. Affinity of prePhoD to TatAd was interfered by peptides containing the twin-arginine motif but remained active when the arginine residues were substituted. The selective binding of TatAd to peptides derived from the signal peptide of PhoD elucidated the function of the twin-arginine motif as a target site for pre-protein TatAd interaction. Substitution of the binding motif demonstrated the pivotal role of basic amino acid residues for TatA binding. These features suggest that TatA interacts prior to membrane integration with its pre-protein substrate and could therefore assist targeting of twin-arginine pre-proteins.  相似文献   

2.
The bacterial twin-arginine translocation (Tat) pathway has been recently described for PhoD of Bacillus subtilis, a phosphodiesterase containing a twin-arginine signal peptide. The expression of phoD is co-regulated with the expression of tatA(d) and tatC(d) genes localized downstream of phoD. To characterize the specificity of PhoD transport further, translocation of PhoD was investigated in Escherichia coli. By using gene fusions, we analyzed the particular role of the signal peptide and the mature region of PhoD in canalizing the transport route. A hybrid protein consisting of the signal peptide of beta-lactamase and mature PhoD was transported in a Sec-dependent manner indicating that the mature part of PhoD does not contain information canalizing the selected translocation route. Pre-PhoD, as well as a fusion protein consisting of the signal peptide of PhoD (SP(PhoD)) and beta-galactosidase (LacZ), remained cytosolic in the E. coli. Thus, SP(PhoD) is not recognized by E. coli transport systems. Co-expression of B. subtilis tatA(d)/C(d) genes resulted in the processing of SP(PhoD)-LacZ and periplasmic localization of LacZ illustrating a close substrate specificity of the TatA(d)/C(d) transport system. While blockage of the Sec-dependent transport did not affect the localization of SP(PhoD)-LacZ, translocation and processing was dependent on the pH gradient of the cytosolic membrane. Thus, the minimal requirement of a functional Tat-dependent protein translocation system consists of a twin-arginine signal peptide-containing Tat substrate, its specific TatA/C proteins, and the pH gradient across the cytosolic membrane.  相似文献   

3.
Alkaline phosphatases (APases) are important enzymes in organophosphate utilization. Three prokaryotic APase gene families, PhoA, PhoX, and PhoD, are known; however, their functional characterization in cyanobacteria largely remains to be clarified. In this study, we cloned the phoD gene from a halotolerant cyanobacterium, Aphanothece halophytica (phoD(Ap)). The deduced protein, PhoD(Ap), contains Tat consensus motifs and a peptidase cleavage site at the N terminus. The PhoD(Ap) enzyme was activated by Ca(2+) and exhibited APase and phosphodiesterase (APDase) activities. Subcellular localization experiments revealed the secretion and processing of PhoD(Ap) in a transformed cyanobacterium. Expression of the phoD(Ap) gene in A. halophytica cells was upregulated not only by phosphorus (P) starvation but also under salt stress conditions. Our results suggest that A. halophytica cells possess a PhoD that participates in the assimilation of P under salinity stress.  相似文献   

4.
[背景]碱性磷酸酶作为工具酶被广泛应用于各个领域,在免疫学检测方面应用较多的是PhoA家族的碱性磷酸酶,尚无关于PhoD家族的碱性磷酸酶在免疫学检测方面的研究。[目的]筛选出一株产高酶活性PhoD家族碱性磷酸酶的细菌,并将其phoD基因进行克隆表达,研究PhoD的酶学性质,为PhoD家族的碱性磷酸酶在免疫学检测方面的应用奠定一定的基础。[方法]采取有机质丰富的土样在有机磷平板中进行细菌分离,以4-硝基苯磷酸二钠盐(4-nitrophenyl phosphate disodium salt hexahydrate,p-NPP)为底物测定有机磷平板中单菌落的酶活性,选取酶活性高的菌株作为目的菌株,克隆其phoD基因。[结果]筛选到一株产碱性磷酸酶酶活性高的菌株S2-4,通过16S rRNA基因序列同源性比较分析,鉴定该菌株为解淀粉芽孢杆菌,克隆了其phoD基因并进行诱导表达。研究了纯化后PhoD的酶学性质,PhoD的最适反应温度为70℃;最适反应pH为9.8;PhoD最适Ca2+浓度为3 mmol/L,Mg2+对PhoD的酶活性有抑制作用,K  相似文献   

5.
The PhoD family of extra-cytoplasmic phosphodiesterases are among the most commonly occurring bacterial phosphatases. The exemplars for this family are the PhoD protein of Bacillus subtilis and the phospholipase D of Streptomyces chromofuscus. We present the crystal structure of B. subtilis PhoD. PhoD is most closely related to purple acid phosphatases (PAPs) with both types of enzyme containing a tyrosinate-ligated Fe3+ ion. However, the PhoD active site diverges from that found in PAPs and uses two Ca2+ ions instead of the single extra Fe2+, Mn2+, or Zn2+ ion present in PAPs. The PhoD crystals contain a phosphate molecule that coordinates all three active site metal ions and that is proposed to represent a product complex. A C-terminal helix lies over the active site and controls access to the catalytic center. The structure of PhoD defines a new phosphatase active site architecture based on Fe3+ and Ca2+ ions.  相似文献   

6.
Proteins that are exported from the cytoplasm to the periplasm and outer membrane of Gram-negative bacteria, or the cell wall and growth medium of Gram-positive bacteria, are generally synthesized as precursors with a cleavable signal peptide. During or shortly after pre-protein translocation across the cytoplasmic membrane, the signal peptide is removed by signal peptidases. Importantly, pre-protein processing by signal peptidases is essential for bacterial growth and viability. This review is focused on the signal peptidases of Gram-positive bacteria, Bacillus and Streptomyces species in particular. Evolutionary concepts, current knowledge of the catalytic mechanism, substrate specificity requirements and structural aspects are addressed. As major insights in signal peptidase function and structure have been obtained from studies on the signal peptidase LepB of Escherichia coli, similarities and differences between this enzyme and known Gram-positive signal peptidases are highlighted. Notably, while the incentive for previous research on Gram-positive signal peptidases was largely based on their role in the biotechnologically important process of protein secretion, present-day interest in these essential enzymes is primarily derived from the idea that they may serve as targets for novel anti-microbials.  相似文献   

7.
In the current study, three native signal peptides (SPs) from PhoC, PhoD, and ZMO0331were investigated and compared to construct novel secretion expression systems in Zymomonas mobilis. The secretion expression of target protein, α-amylase from Bacillus amyloliquefaciens (BAA), guided by PhoD’s SP resulted in more hydrolysis of starch than that by the other two SPs. Extracellular and intracellular α-amylase activities of the strain containing PhoD’s SP were also higher than the other two strains containing PhoC or ZMO0331’s SP. In addition, the evidence by alcohol dehydrogenase activity assay further confirmed that the starch hydrolysis was resulted from the secretion expression of BAA rather than the breakage of cells. Our results indicated that the SP of PhoD is able to serve as a promising candidate to assist secretion expression of heterogeneous genes in Z. mobilis. This will contribute to development of engineered Z. mobilis strains converting starch into ethanol.  相似文献   

8.
Proteins destined for translocation across the prokaryotic cytoplasmic membrane are synthesized as precursors carrying transient N-terminal extensions known as signal sequences. They facilitate initial engagement of precursor proteins with the sec-dependent translocase to initiate active threading of the polypeptide across the membrane. The translocated precursor is then processed by a transcytoplasmic signal peptidase anchored to the inner membrane. The temporal nature of cleavage of the signal sequence during pre-protein translocation has remained elusive. Using an engineered mammalian cytochrome b(5) precursor we demonstrate that the signal peptide processing in Escherichia coli is an event that can occur after almost complete exocytoplasmic translocation of the preprotein is accomplished. We discuss implications of the findings in light of the known working model of sec-dependent pre-protein translocon.  相似文献   

9.
蛋白质剪接及其在蛋白质工程中的应用   总被引:2,自引:0,他引:2  
赫冬梅  钱凯先  沈桂芳 《遗传》2004,26(2):249-252
蛋白质剪接是蛋白质内含肽介导的,一种在蛋白质水平上翻译后的加工过程,它由一系列分子内的剪切-连接反应组成。蛋白质内含肽是一个蛋白质前体中的多肽序列,可以催化自身从蛋白质前体中断裂,使两侧的蛋白质外显肽连接成成熟的蛋白质。蛋白质内含肽的发现,不仅丰富了遗传信息翻译后加工的理论,在实践中也有广泛的应用前景。Abstract: Protein splicing , which is an intein mediated posttranslational processing, involves a series of intramolecular cleavage-ligation reactions. Intein is an intervening polypeptide which can catalytic self-cleavage from a pre-protein accompanied by the concomitant joining of the two flanking polypeptides (the extein) through a peptide bond. Protein splicing not only enriches genetic theory of posttranslational processing, but also have wide application prospect.  相似文献   

10.
Proteins destined for translocation across the prokaryotic cytoplasmic membrane are synthesized as precursors carrying transient N-terminal extensions known as signal sequences. They facilitate initial engagement of precursor proteins with the sec-dependent translocase to initiate active threading of the polypeptide across the membrane. The translocated precursor is then processed by a transcytoplasmic signal peptidase anchored to the inner membrane. The temporal nature of cleavage of the signal sequence during pre-protein translocation has remained elusive. Using an engineered mammalian cytochrome b5 precursor we demonstrate that the signal peptide processing in Escherichia coli is an event that can occur after almost complete exocytoplasmic translocation of the preprotein is accomplished. We discuss implications of the findings in light of the known working model of sec-dependent pre-protein translocon.  相似文献   

11.
Escherichia coli containing a cloned gene encoding the Bordetella pertussis serotype 2 fimbrial subunit failed to produce detectable levels of the gene product in whole-cell extracts. To engineer plasmids capable of directing the expression in E. coli of high levels of this product, both as a pre-protein and as a methionylated mature form the upstream signals of the fimbrial subunit gene were replaced by the lambda P(L) and P(R) promoters and the E. coli atpE translational initiation region. These constructs did not result in the expression of fimbrial subunit at detectable levels in several E. coli strains including DH5. However, they did in E. coli CAG629, which is lon protease and heat shock protein deficient. Both pre-protein and methionylated mature protein had molecular weights of 25.0 kD, which indicated that correct processing of the leader sequence had occurred and thus that it was transposed across the inner membrane. Electron microscopic investigation of the cell surface of E. coli cells expressing either form of the fimbrial gene failed to detect the presence of filamentous structures. The methionylated mature form of the recombinant fimbrial subunit was purified to apparent homogeneity. After dialysis in appropriate conditions it was seen to autoassemble into protein polymers. Antibodies raised against polymerized recombinant subunit reacted weakly with whole B. pertussis serotype 2 fimbriae in immunodot blot assays. However, such antibodies reacted in Western blots equally well with the recombinant and wild-type form of the fimbrial subunit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Tat signal peptides provide the key signature for proteins that get exported by the bacterial twin arginine translocase. We have characterized the structure of the PhoD signal peptide from Bacillus subtilis in suitable membrane-mimicking environments. High-resolution (13)C/(15)N NMR analysis in detergent micelles revealed a helical stretch in the signal peptide between positions 5 and 15, in good agreement with secondary structure prediction and circular dichroism results. This helix was found to be aligned parallel to the membrane surface according to oriented circular dichroism experiments carried out with planar lipid bilayers. The N-terminal α-helix exhibits a pronounced amphiphilic character, in contrast to the general view in the literature. So far, signal sequences had been supposed to consist of a positively charged N-terminal domain, followed by an α-helical hydrophobic segment, plus a C-terminal domain carrying the peptidase cleavage site. Based on our new structural insights, we propose a model for the folding and membrane interactions of the Tat signal sequence from PhoD.  相似文献   

13.
J L Vilotte  S Soulier  J C Mercier 《Gene》1992,112(2):251-255
The structure of the mouse alpha-lactalbumin-encoding mRNA was deduced from sequence analysis of eight cDNA clones. The almost full-length mRNA of 732 nucleotides [poly(A) tail excluded] and the deduced pre-protein share 85% and 86% homology with their rat counterpart, respectively. Interspecies comparison of the pre-protein showed the occurrence of an extra amino acid (aa) in the signal peptide and of two mutations affecting two reported invariant aa residues at positions 44 and 107, which weakens the assumption that both aa residues might play a significant structural and/or functional role.  相似文献   

14.
15.
cDNAs encoding porcine beta-lactoglobulin were isolated and sequenced. The porcine beta-lactoglobulin cDNA is 768bp in length and encodes a pre-protein of 178 amino acids. One additional cDNA clone was found to encode an additional amino acid (lysine) in the mature protein.  相似文献   

16.
Bacteria employ twin‐arginine translocation (Tat) pathways for the transport of folded proteins to extracytoplasmic destinations. In recent years, most studies on bacterial Tat pathways addressed the membrane‐bound TatA(B)C subunits of the Tat translocase, and the specific interactions between this translocase and its substrate proteins. In contrast, relatively few studies investigated possible coactors in the TatA(B)C‐dependent protein translocation process. The present studies were aimed at identifying interaction partners of the Tat pathway of Bacillus subtilis, which is a paradigm for studies on protein secretion by Gram‐positive bacteria. Specifically, 36 interaction partners of the TatA and TatC subunits were identified by rigorous application of the yeast two‐hybrid (Y2H) approach. Our Y2H analyses revealed that the three TatA isoforms of B. subtilis can form homo‐ and heterodimers. Subsequently, the secretion of the Tat substrates YwbN and PhoD was tested in mutant strains lacking genes for the TatAC interaction partners identified in our genome‐wide Y2H screens. Our results show that the cell wall‐bound protease WprA is important for YwbN secretion, and that the HemAT and CsbC proteins are required for PhoD secretion under phosphate starvation conditions. Taken together, our findings imply that the Bacillus Tat pathway is embedded in an intricate protein–protein interaction network.  相似文献   

17.
Signal sequences of human MHC class I molecules are a unique source of epitopes for newly synthesized nonclassical HLA-E molecules. Binding of such conserved peptides to HLA-E induces its cell surface expression and protects cells from NK cell attack. After cleavage from the pre-protein, we show that the liberated MHC class I signal peptide is further processed by signal peptide peptidase in the hydrophobic, membrane-spanning region. This cut is essential for the release of the HLA-E epitope-containing fragment from the lipid bilayer and its subsequent transport into the lumen of the endoplasmic reticulum via the TAP.  相似文献   

18.
To examine the relationship between pre-protein cleavage and nascent chain glycosylation placental mRNA was translated in a reconstituted ascites cell-free system containing microsomal membranes prepared from tunicamycin-treated or untreated ascites tumor cells. In the absence of membranes, first trimester RNA directed the synthesis of the pre-form of the alpha subunit of human chorionic gonadotropin, whereas, in the presence of normal membranes, first trimester RNA directed the synthesis of a glycosylated form of the alpha subunit. Cell-free lysates containing membranes derived from tunicamycin-treated cells synthesized an alpha subunit protein with little, if any, carbohydrate. This protein was apparently sequestered into membranes since it was resistant to the action of trypsin which was added after translation. The pre-peptide of the alpha subunit protein was removed by treated membranes as determined by amino acid sequence analyses. The non-glycosylated protein pre-placental lactogen was also cleaved to its mature form by tunicamycin membranes. These data strongly suggest that, in vitro, glycosylation is not obligatory for pre-protein cleavage and sequestration of these placental protein hormones.  相似文献   

19.
20.
Signal peptides direct the export of secretory proteins from the cytoplasm. After processing by signal peptidase, they are degraded in the membrane and cytoplasm. The resulting fragments can have signaling functions. These observations suggest important roles for signal peptide peptidases. The present studies show that the Gram-positive eubacterium Bacillus subtilis contains two genes for proteins, denoted SppA and TepA, with similarity to the signal peptide peptidase A of Escherichia coli. Notably, TepA also shows similarity to ClpP proteases. SppA of B. subtilis was only required for efficient processing of pre-proteins under conditions of hyper-secretion. In contrast, TepA depletion had a strong effect on pre-protein translocation across the membrane and subsequent processing, not only under conditions of hyper-secretion. Unlike SppA, which is a typical membrane protein, TepA appears to have a cytosolic localization, which is consistent with the observation that TepA is involved in early stages of the secretion process. Our observations demonstrate that SppA and TepA have a role in protein secretion in B. subtilis. Based on their similarity to known proteases, it seems likely that SppA and TepA are specifically required for the degradation of proteins or (signal) peptides that are inhibitory to protein translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号