首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Collagen lysyl and prolyl hydroxylase activities were measured in cultured fibroblasts from a child with clinical features of Ehlers-Danlos syndrome. Lysyl-to-prolyl hydroxylase activity ratios in cells from the proband, mother, father, and control were .24, .86, .52, and 1.00, respectively, providing a biochemical diagnosis of Ehlers-Danlos syndrome type VI and indicating an autosomal recessive mode of inheritance in this family. Prenatal assessment of lysyl hydroxylase deficiency was requested and accomplished for the first time during a subsequent pregnancy in the family. A series of control cultures established lysyl hydroxylase activity to be similar in cultured amniotic fluid cells (AF and F cells) and in cultured dermal fibroblasts. Cultured F and AF cells from the monitored pregnancy had enzyme activity similar to controls, indicating that the fetus should not be affected by lysyl hydroxylase deficiency. This finding was confirmed by demonstration of normal lysyl hydroxylase activity in fibroblasts cultured from the newborn baby. These studies show that cells cultured from second trimester amniotic fluid have collagen lysyl hydroxylase activity similar to that in dermal fibroblasts, making prenatal diagnosis of lysyl hydroxylase deficiency possible.  相似文献   

2.
Normal and Ehlers-Danlos syndrome type VI human skin and cornea fibroblasts were assayed for lysyl hydroxylase activity using two different collagen types as substrates. The enzyme from normal fibroblasts hydroxylated type I collagen more readily than type IV collagen. In the diseased cells the enzyme activity was significantly reduced, and the residual activity was preferentially directed towards type IV collagen. This suggests the existence of isoenzymes of lysyl hydroxylase or an alteration in the Ehlers-Danlos syndrome type VI that affects the binding of type I collagen more than that of type IV collagen.  相似文献   

3.
A defective LDL receptor gene in a child with familial hypercholesterolemia produces a receptor precursor that is 50,000 daltons larger than normal (apparent Mr 170,000 vs. 120,000). The elongated protein resulted from a 14 kilobase duplication that encompasses exons 2 through 8. The duplication arose from an unequal crossing-over between homologous repetitive elements (Alu sequences) in intron 1 and intron 8. The mutant receptor has 18 contiguous cysteine-rich repeat sequences instead of the normal nine. Seven of these duplicated repeats are derived from the ligand-binding domain, and two repeats are part of the epidermal growth factor precursor homology region. The elongated receptor undergoes normal carbohydrate processing, its apparent molecular weight increases to 210,000, and the receptor reaches the cell surface where it binds reduced amounts of LDL but undergoes efficient internalization and recycling. The current findings support an evolutionary model in which homologous recombination between repetitive elements in introns leads to exon duplication during evolution of proteins.  相似文献   

4.
This study describes the relative contribution of the 10 cysteine residues in lysyl hydroxylase 1 (LH1) to enzyme activity. We have identified a novel mutation of a 15-bp deletion in exon 11 in one LH1 allele, that codes for amino acids 367-371 (DLCRQ), in two unrelated compound heterozygous patients with Ehlers-Danlos type VI. The mutations in their other alleles were a C1119T change (exon 10) and a predicted Q49X (exon 2). We confirmed that the loss of cysteine 369 in the deleted sequence contributed to the diminished enzyme activity by structure/function analysis of mutant LH1 constructs, in which C369 and the nine other cysteines were individually mutated to serine by site-directed mutagenesis of a normal pAcGP67/LH1cDNA construct. Following their expression in an Sf9 insect cell/baculovirus system, SDS-PAGE and Western analysis showed that equivalent levels of correctly-sized (85-kDa) products were secreted. The mutation of residues C369 and also C375, C552 and C687 virtually eliminated LH activity, whereas mutations of C267, C270, and C680 had an intermediate effect. In contrast, the C204S, C484S and C566S constructs had normal activity. Although disulfide bond formation may affect the relative contribution of each cysteine to LH activity, catalytic activity does not appear to be directly related to dimerization of the enzyme.  相似文献   

5.
6.
We have determined the structure, at the nucleotide sequence level, of a duplication in the hprt gene in a patient with Lesch-Nyhan syndrome (LN). The duplication extends over exons 7 and 8 and approximately 1.8 kb of the surrounding hprt sequence. The duplication junction is localized within two Alu sequences and has apparently been generated by unequal homologous recombination. This is the second reported case of a partial duplication of the hprt gene in an LN patient, and the first that involves an Alu-Alu recombination.  相似文献   

7.
8.
Summary The parents of a child with the clinical symptoms of Ehlers-Danlos syndrome type VI were identified as third-degree cousins. Biochemical analysis of the dermis of the patient revealed a complete lack of hydroxylysine in the dermal collagen. The dermis of both parents contained only half the amount of hydroxylysine found in healthy individuals. Hydroxylation of prolyl residues was normal in the skin of the patient and his parents. Investigation of the collagen synthesized by fibroblasts derived from the skin of the patient showed a normal proportion of type I and type III collagen. However, while hydroxylation of prolyl residues was normal in type I and type III collagen, hydroxylation of lysyl residues was markedly lower than normal in both type I and type III collagen.Presented at the Annual Meeting of the Arbeitsgemeinschaft Dermatologische Forschung (ADF) Frankfurt, November 18–20, 1977  相似文献   

9.
10.
Jeong SJ  Li S  Luo R  Strokes N  Piao X 《PloS one》2012,7(1):e29767
It has recently been discovered that Collagen III, the encoded protein of the type IV Ehlers-Danlos Syndrome (EDS) gene, is one of the major constituents of the pial basement membrane (BM) and serves as the ligand for GPR56. Mutations in GPR56 cause a severe human brain malformation called bilateral frontoparietal polymicrogyria, in which neurons transmigrate through the BM causing severe mental retardation and frequent seizures. To further characterize the brain phenotype of Col3a1 knockout mice, we performed a detailed histological analysis. We observed a cobblestone-like cortical malformation, with BM breakdown and marginal zone heterotopias in Col3a1 −/− mouse brains. Surprisingly, the pial BM appeared intact at early stages of development but starting as early as embryonic day (E) 11.5, prominent BM defects were observed and accompanied by neuronal overmigration. Although collagen III is expressed in meningeal fibroblasts (MFs), Col3a1 −/− MFs present no obvious defects. Furthermore, the expression and posttranslational modification of α-dystroglycan was undisturbed in Col3a1 −/− mice. Based on the previous finding that mutations in COL3A1 cause type IV EDS, our study indicates a possible common pathological pathway linking connective tissue diseases and brain malformations.  相似文献   

11.
12.
13.
14.
Phenylketonuria (PKU) is an autosomal recessive disease due to deficiency of a hepatic enzyme, phenylalanine hydroxylase (PAH). The absence of PAH activity results in typical PKU while persistence of a residual enzyme activity gives rise to variant forms of the disease. We report here a 3-base pair in-frame deletion of the PAH gene (delta 194) in a mild variant, with markedly reduced affinity of the enzyme for phenylalanine (Km = 160 nM), and we provide functional evidence for responsibility of the deletion in the mutant phenotype. Since the deletion was located in the third exon of the gene, which presents no homology with other hydroxylases, we suggest that exon 3 is involved in the specificity of the enzyme for phenylalanine. Finally, since none of the 98 PKU patients tested were found to carry this particular deletion, our study suggests that this molecular event probably occurred recently on the background of a haplotype 2 gene in Portugal.  相似文献   

15.
Type IX of the Ehlers-Danlos syndrome (E-D IX) and the Menkes syndrome are X-linked recessively inherited disorders characterized by abnormalities in copper metabolism. These abnormalities are associated with a severe reduction in the activity of lysyl oxidase, the extracellular copper enzyme that initiates crosslinking of collagens and elastin. No increase in this deficient enzyme activity was obtained when culture media from fibroblasts of patients with E-D IX or the Menkes syndrome were incubated with copper under various conditions in vitro. A distinct, although small, increase in lysyl oxidase activity was obtained, however, when copper-supplemented media were used during culturing of the fibroblasts, although even under these conditions, the enzyme activity in the media from the affected cells remained markedly below that of the controls. Immunoprecipitation, dot-blotting, and immunoperoxidase staining experiments with antisera to human lysyl oxidase indicated that fibroblasts from patients with E-D IX or the Menkes syndrome do not secrete into their medium, or contain inside the cell, any significant amounts of a copper-deficient, catalytically inactive lysyl oxidase protein. These findings appear to be consistent with the hypothesis that synthesis of the lysyl oxidase protein itself is impaired. The possibility is not excluded, however, that a copper-deficient enzyme protein may be synthesized in normal amounts but become degraded very rapidly inside the cell. The failure to obtain any large increase in the deficient lysyl oxidase activity upon various forms of copper administration suggests that it may not be possible to obtain any significant improvement in the connective tissue manifestations of these disorders by copper therapy.  相似文献   

16.
Mutations in the COL3A1 gene that encodes the chains of type III procollagen result in the vascular form of Ehlers-Danlos syndrome (EDS), EDS type IV, if they alter the sequence in the triple-helical domain. Although other fibrillar collagen-gene mutations that lead to allele instability or failure to incorporate proalpha-chains into trimers-and that thus reduce the amount of mature molecules produced-result in clinically apparent phenotypes, no such mutations have been identified in COL3A1. Furthermore, mice heterozygous for Col3a1 "null" alleles have no identified phenotype. We have now found three frameshift mutations (1832delAA, 413delC, and 555delT) that lead to premature termination codons (PTCs) in exons 27, 6, and 9, respectively, and to allele-product instability. The mRNA from each mutant allele was transcribed efficiently but rapidly degraded, presumably by the mechanisms of nonsense-mediated decay. In a fourth patient, we identified a point mutation, in the final exon, that resulted in a PTC (4294C-->T [Arg1432Ter]). In this last instance, the mRNA was stable but led to synthesis of a truncated protein that was not incorporated into mature type III procollagen molecules. In all probands, the presenting feature was vascular aneurysm or rupture. Thus, in contrast to mutations in genes that encode the dominant protein of a tissue (e.g., COL1A1 and COL2A1), in which "null" mutations result in phenotypes milder than those caused by mutations that alter protein sequence, the phenotypes produced by these mutations in COL3A1 overlap with those of the vascular form of EDS. This suggests that the major effect of many of these dominant mutations in the "minor" collagen genes may be expressed through protein deficiency rather than through incorporation of structurally altered molecules into fibrils.  相似文献   

17.
We have characterized a deletion of approximately 9 kilobases which spans from intron 33 to exon 48 of one pro-alpha 1 (III) collagen allele in a patient with Ehlers-Danlos syndrome type IV. The mutation results in the production of an in-frame species of mRNA which lacks the sequences corresponding to residues 595-1,008 of the triple-helical domain. Thus, half of the pro-alpha 1 (III) chains synthesized by the patient's fibroblasts are nearly 30% shorter than normal. The procollagen III molecules composed of either three normal length or three shortened chains are thermally stable and efficiently secreted. In contrast, the procollagen III molecules that contain one or two shortened chains are unstable and are not secreted. Failure to secrete unstable molecules and a residual functional role of the shortened but stable homotrimers may explain the somewhat milder phenotype of this individual compared with that of another Ehlers-Danlos type IV patient bearing a deletion of similar size in the amino-terminal portion of the alpha 1 (III) collagen chain.  相似文献   

18.
Heterogeneous mutations in the X-linked gene RPS6KA3, encoding the protein kinase RSK2, are responsible for Coffin-Lowry Syndrome. Here we have further studied a male patient with a highly suggestive clinical diagnosis of CLS but in whom no mutation was found by exon sequencing. Western blot analysis revealed a protein much larger than the normal expected size. Sequencing of the RSK2 cDNA, showed the presence of an in-frame tandem duplication of exons 17–20. The mutated RSK2 protein was found to be inactive in an in-vitro kinase assay. This event, which was the result of a homologous unequal recombination between Alu sequences, is the first reported large duplication of the RPS6KA3 gene. Our finding provides further evidence that immunoblot analysis, or a molecular assay capable to detect large genomic mutational events, is essential for patients with a highly suggestive CLS clinical diagnosis but remaining without mutation after exon sequencing. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Experiments were carried out to test the hypothesis that a 19-year-old proband with a mild variant of Ehlers-Danlos syndrome type IV had a mutation in the gene for type III procollagen. cDNA and genomic DNA were analyzed by using the polymerase chain reaction and cloning of the products into M13 filamentous phage. A mutation was found that converted the codon for glycine 883 of the triple-helical domain in one allele for type III procollagen to a codon for aspartate. The polymerase chain reaction introduced a few artifactual single base substitutions. Also, it was difficult to distinguish copies from the two alleles in many of the M13 clones. Therefore, several different strategies and analyses of about 50,000 nucleotide sequences in a series of clones were used to demonstrate that the mutation in the codon for glycine 883 was the only mutation in coding sequences for the triple-helical domain of type III procollagen that could have contributed to the phenotype. The same mutation in the codon for glycine 883 in one allele for type III procollagen was found in the proband's 52-year-old father who also had a mild variant of Ehlers-Danlos syndrome type IV. The type III procollagen synthesized by the proband's fibroblasts was analyzed by polyacrylamide gel electrophoresis. Less type III procollagen was secreted by the proband's fibroblasts than by control fibroblasts. Also, the thermal stability of the type III procollagen synthesized by the proband's fibroblasts was lower than the thermal stability of normal type III procollagen as assayed by brief protease digestion. The results, therefore, demonstrated that the single base mutation that converted the codon of glycine 883 to a codon for aspartate destabilized the entire triple helix of type III procollagen and probably accounted for the mild phenotype of Ehlers-Danlos syndrome type IV seen in the proband and her father.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号