首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
The alpha and beta subunits of human follitropin were isolated in a high state of purity. The tryptophan fluorescence of the native hormone and the isolated beta subunit are different. The N-terminus of the alpha and beta subunits was identified as valine and aspartic acid respectively. While recombination of the isolated alpha and beta subunits restores the electrophoretic mobility of the intact hormone, its receptor binding activity cannot be fully regenerated. Substitution of the human follitropin alpha by an ovine lutropin alpha subunit, to form a recombinant with the follitropin beta subunit, generates a complex with 2-3 receptor binding activity of the native human follitropin and the same activity as ovine follitropin. Acylation of the intact hormone does not disrupt the quaternary structure but leads to complete inactivation. Acylation studies with the subunits suggests the crucial role of the epsilon-amino groups of the alpha subunit in determining biological activity.  相似文献   

2.
The subunits of ovine lutropin prepared by acid dissociation and salt precipitation were characterized by end group analysis, tryptic peptide mapping, SDS gel electrophoresis and biological activity. No evidence of internal peptide cleavage was found in the alpha subunit. The subunits possessed low activity. The alpha and beta subunits recombined effectively to generate a complex that had full receptor binding activity and in vitro biological activity. The recombinants of subunits prepared by countercurrent distribution showed only 50% activity in both assays. The salt precipitation method alpha subunit could be completely reduced and reoxidized in the absence of denaturants. The reoxidized alpha subunit combines with the native beta subunit generating full activity. However, this recombined hormone tends to lose activity with time, suggesting that the reoxidation may not fully restore the native structur of the reduced alpha subunit. The native lutropin alpha subunit effectively combined with follitropin beta subunit generating complete follitropin activity.  相似文献   

3.
Ben-Menahem D  Hyde R  Pixley M  Berger P  Boime I 《Biochemistry》1999,38(46):15070-15077
The human glycoprotein hormones chorionic gonadotropin (CG), thyrotropin (TSH), lutropin (LH), and follitropin (FSH) are heterodimers, composed of a common alpha subunit assembled to a hormone-specific beta subunit. The subunits combine noncovalently early in the secretory pathway and exist as heterodimers, but not as multimers. Little information is available regarding the steps associated with the assembly reaction. It is unclear if the initial alpha beta engagement results either in the formation of only mature heterodimer or if the nascent complex is reversible and can undergo an exchange of subunits or combine transiently with an additional subunit. This is relevant for the case of LH and FSH, because both are synthesized in the same cell (i.e., pituitary gonadotrophs) and several of the alpha subunit sequences required for association with either the LH beta or FSH beta subunits are different. Such features could favor the generation of short-lived, multi-subunit forms prior to completion of assembly. Previously, we showed that the CG beta or FSH beta subunit genes can be genetically fused to the alpha gene to produce biologically active single chains, CG beta alpha and F beta alpha, respectively. Studies using monoclonal antibodies sensitive to the conformation of the hCG subunits suggested that in contrast to the highly compact heterodimer, the interactions between the beta and alpha domains in the single chain are in a more relaxed configuration. That the tethered domains do not interact tightly predicts that they could combine with an additional subunit to form triple domain complexes. We tested this point by cotransfecting CHO cells with the genes encoding F beta alpha and the CG beta subunit or the CG beta alpha and FSH beta monomer. The CG beta subunit combined noncovalently with F beta alpha to form a F beta alpha/CG beta complex. Ternary complex formation was not restricted to a specific set of single chain/monomeric subunit, because a CG beta alpha/FSH beta complex was also detected implying that triple domain intermediates could be transiently generated along the secretory pathway. Monoclonal antibodies specific for the CG heterodimer recognized the F beta alpha/CG beta complex, which suggests that the epitopes unique for dimeric CG were established. In addition, media containing F beta alpha/CG beta displayed high-affinity binding to both CG and FSH receptors. The presence of CG activity is presumptive for the existence of a functional F beta alpha/CG beta complex, because neither F beta alpha nor the uncombined CG beta subunit binds to CG receptor. These data show that the alpha subunit of the tether, although covalently linked to the FSH beta domain, can functionally interact with a different beta subunit implying that the contacts in the nascent alpha beta dimer are reversible. The formation of a functional single chain/subunit complex was not restricted to the FSH single chain/CG beta subunit since CG single chain interacts with the monomeric FSH beta subunit and exhibits FSH activity. The presence of the triple domain configuration does not abolish bioactivity, suggesting that although the gonadotropins are heterodimers, the cognate receptor is capable of recognizing a larger ligand composed of three subunit domains.  相似文献   

4.
The folding of the bovine glycoprotein hormone alpha subunit, synthesized in bacteria following insertion of the nucleotide sequence coding for this polypeptide, has been studied to determine the effect that a complete lack of carbohydrate has on this process. The bacterially derived alpha polypeptide (bac-alpha), extracted from E. coli in the presence of reductant and denaturant, had an estimated 0.2% native structure as determined by a conformationally sensitive radioimmunoassay. Upon reduction of disulfide bonds and reoxidation in air, the amount of native structure increased about 18-fold. Approximately 2% of the refolded bac-alpha preparation combines with the beta subunit of human chorionic gonadotropin (hCG beta) to form a complex that binds to the gonadotropin receptor and elicits a biological response. Since the correct folding (by immunological criteria) of bac-alpha (ca 3%) is significantly greater than expected from a random formation of disulfide bonds (0.1%), it appears that correct folding of alpha subunit can occur in the complete absence of carbohydrate, though in very low yield. Native bovine lutropin alpha subunit (LH alpha) and chemically deglycosylated LH alpha (which retains two asparagine-linked N-acetyl glucosamine residues per alpha oligosaccharide) were subjected to the same reduction/reoxidation regimen as the bacterially produced alpha subunit. As has been reported previously [Giudice LC, Pierce, JG, J Biol Chem 251: 6392, 1976] intact LH alpha fully regained its native structure. The partially deglycosylated LH alpha also refolds to a native-like structure in high yield as assessed by immunological assays and by its ability to combine with HCG beta to form a biologically active complex. The data show that carbohydrate, while not obligatory for correct folding, greatly facilitates the formation of functional alpha subunit.  相似文献   

5.
Methionine residues of the alpha and beta subunits of bovine lutropin (LH) and bovine thyrotropin (TSH) have been specifically alkylated with iodoacetic acid. The alpha subunit has been modified so that two of the four methionines are quantitatively alkylated (residues 8 and 33, in agreement with studies by Cheng, K.-W. (1976) Biochem. J. 159, 71-77). Reassociation of the modified alpha subunit with unmodified LH-beta or thyrotropin (TSH)-beta resulted in reconstituted hormones which differed markedly in their respective biological activities. The alpha-modified TSH was fully active in both radioligand receptor and in vivo assays, while the alpha-modified LH, because of lowered affinity for receptor, lost approximately 70% of its activity in its radioligand receptor assay. This observation is the first to show that modification of the alpha subunit leads to a differential loss of activity in one glycoprotein hormone versus another. Circular dichorism studies revealed no changes in conformation; thus, the data strongly support, for LH, a direct interaction of the common subunit with receptor. Methionine 32 in TSH-beta can be modified with retention of full activity under conditions where methionines 8, 9, and 58 are not modified. In contrast, previous work on the modification of lysine 42 in LH-beta which lies in an analogous domain implicates that residue in receptor interaction (e.g. Liu, W.-K., Yang, K.-P., Nakagawa, Y., and Ward, D. N. (1974) J. Biol. Chem. 249, 5544-5550; Sairam, M. R., and Li, C.-H., (1975) ARch. Biochem. Biophys. 167, 534-539). These results further emphasize the probable importance of this domain in hormone specificity.  相似文献   

6.
Integrin alpha(IIb)beta(3), an abundant heterodimeric receptor at the surface of blood platelets, binds adhesive proteins after platelet activation and plays a primary role in haemostasis. In solution, it has been observed mainly in two conformations: the bent and the extended forms. Based on X-ray crystallography, electron microscopy and immunochemical observations of full-length integrin ectodomains and intact integrins, it has been agreed that unactivated integrins are in the bent conformation, both isolated in solution and in living cells. However, consensus is yet to emerge on the bent or extended conformation of activated integrins and on their mechanism of activation (the switchblade, the deadbolt and the S-S reduction models), which require further experimental tests at the cell level to become established facts. Here, we tested the proposed structural rearrangements undergone by integrin alpha(IIb)beta(3) after cell activation, by using F?rster-type fluorescence resonance energy transfer (FRET) and attached fluorescent labels to Fab fragments of monoclonal antibodies directed to the betaA domain of the beta(3) subunit (donor, Alexa488-P97 Fab) and to the Calf-2 domain of the alpha(IIb) subunit (acceptor, Cy3-M3 Fab or Cy3-M10 Fab). The FRET efficiencies observed after ADP or TRAP platelet activation changed less than 20% from the resting values, showing that the distance between the labeled Fab fragments changes only modestly after platelet activation by physiological agonists. This observation is consistent with a conformational model of the activated integrin in the cell less extended than in the switchblade model.  相似文献   

7.
The modification of the carboxyl groups of the subunits of bovine luteinizing hormone to neutral derivatives by carbodiimide-mediated coupling with glycine methyl ester has been studied. The modified alpha subunit, which has 8 residues of glycine methyl ester incorporated, will no longer recombine with native beta (hormone-specific) subunit, but the modified beta subunit, with 6 to 7 glycine methyl esters incorporated, will recombine with native alpha to yield a partially active hormone. Derivatization of the intact hormone results in dissociation to subunits together with formation of a major side product which is covalently cross-linked. Significant cross-linked product was not obtained during modification of individual subunits, thus indicating an orientation between an activated carboxyl group(s) and a nucleophile(s) in the intact hormone which favors coupling. Separation of subunits from the derivatized, noncross-linked fraction by countercurrent distribution reveals a heterogeneous preparation of the modified alpha subunit which also will not recombine with either a native or modified beta subunit. The beta subunit from the modified intact hormone was indistinguishable from the modified isolated beta subunit in amino acid composition and in ability to recombine with native alpha subunit. The results are consonant with data from this and other laboratories in which various modifications of the alpha chain, the subunit common to the glycoproteins, more seriously affect recombination than similar modifications of the beta subunits. The number of carboxyl groups modified in each subunit is compatible with but not in total agreement with assignments of amides reported from sequence studies.  相似文献   

8.
《The Journal of cell biology》1989,109(4):1429-1438
Chorionic gonadotropin (CG) and lutropin (LH) are members of a family of glycoprotein hormones that share a common alpha subunit but differ in their hormone-specific beta subunits. The glycoprotein hormone beta subunits share a high degree of amino acid homology that is most evident for the LH beta and CG beta subunits having greater than 80% sequence similarity. However, transfection studies have shown that human CG beta and alpha can be secreted as monomers and can combine efficiently to form dimer, whereas secretion and assembly of human LH beta is less efficient. To determine which specific regions of the LH beta and CG beta subunits are responsible for these differences, mutant and chimeric LH beta-CG beta genes were constructed and transfected into CHO cells. Expression of these subunits showed that both the hydrophobic carboxy-terminal seven amino acids and amino acids Trp8, Ile15, Met42, and Asp77 together inhibit the secretion of LH beta. The carboxy-terminal amino acids, along with Trp8, Ile15, Met42, and Thr58 are implicated in the delayed assembly of LH beta. These unique features of LH beta may also play an important role in pituitary intracellular events and may be responsible for the differential glycosylation and sorting of LH and FSH in gonadotrophs.  相似文献   

9.
The glycoprotein hormones lutropin (LH) and chorionic gonadotropin (CG) share a common structure consisting of an identical alpha subunit noncovalently linked to a hormone-specific beta subunit. While LH is produced in the anterior pituitary, CG is synthesized in placenta. To compare the assembly, processing, and secretion of human LH and CG in the same cell type, we have expressed their subunits, individually and together, in mouse C-127 mammary tumor cells. Analysis of transfected clones revealed an unexpected difference in the secretion of individually expressed subunits. Whereas alpha and CG beta subunits were rapidly and quantitatively secreted, only 10% of newly synthesized LH beta subunit reached the medium. The remaining subunit was found in an intracellular, endoglycosidase H (endo H)-sensitive pool that had a turnover rate of approximately 8 h. Coexpression with alpha subunit resulted in "rescue" of LH beta subunit by formation of LH dimer, which was efficiently secreted. However, combination of LH beta with alpha was slow, with an overall efficiency of only 50% despite the presence of excess alpha. In contrast, CG beta was rapidly assembled with the alpha subunit after synthesis. The two beta subunits also differed in their influence on the N-linked oligosaccharide processing of combined alpha. The oligosaccharides of LH dimer were endo H resistant, while those of CG dimer remained partially endo H sensitive. Thus, despite a high degree of homology between LH beta and CG beta, the two subunits differ in their secretion as free subunits, their rate of assembly with alpha subunit, and in their effect on the N-linked oligosaccharide processing of combined alpha.  相似文献   

10.
RNA derived from bovine steer pituitary was translated in wheat germ cell-free extracts containing [35S]methionine. Antisera generated against purified denatured alpha and beta subunits of lutropin were used to demonstrate the synthesis of both proteins in vitro. The immunoprecipitated products of the cell-free system were resolved on sodium dodecyl sulfate/polyacrylamide gels and it was observed that the molecular weight of the immunoprecipitated alpha subunit protein was approximately 14,000, while that of the beta protein was estimated to be 16,000. Since the molecular weights of authentic alpha and beta subunits are 10,600 and 14,000 respectively, the cell-free products presumably represented their pre-protein forms. The ratio of the immunoprecipitated subunit pre-proteins was dependent on the magnesium concentration in the translation mixtures; at 2.1 mM, translation of lutropin alpha and beta mRNAs was comparable. RNA isolated from cow pituitary tissue directed the synthesis of fivefold less of the alpha and beta immunoprecipitated proteins than did steer RNA. Since the blood levels of gonadal steroids are higher in the cow, the results supported the hypothesis that lutropin alpha and beta mRNA biosynthesis is repressed by these steroids. The data also suggest that synthesis of lutropin alpha and beta subunits is coordinately expressed in certain physiological situations.  相似文献   

11.
Bovine pituitary RNA was translated in heterologous cell-free systems derived from wheat germ and reticulocyte lysate. Analyses of the cell-free products by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed three major proteins, exhibiting apparent molecular weights of 25,000, 24,000, and 14,000. The two larger products were identified as preprolactin and pregrowth hormone by immunoprecipitation and thus demonstrated the fidelity of pituitary RNA translation. The 14,000-dalton product was shown to be immuno-precipitable with specific bovine lutropin (LH)alpha antisera. Since this protein is 3000 to 4000 daltons larger than the apoprotein form of the alpha subunits, it suggests that the subunit is synthesized in precursor form. The immunological specificity was further demonstrated by the successful competition with unlabeled alpha subunit plus the failure to immunoprecipitate this product using specific antisera to other pituitary hormones. Although specific antisera to bTSH(thyrotropin)beta and bLH(lutropin)beta failed to immunoprecipitate the 14,000-dalton product, LHbeta antisera precipitated a product with a molecular weight of approximately 18,000. Since the alpha and beta antisera specifically precipitated different products, and since a larger immunoprecipitable product was not detected, the results suggest that the two subunits are synthesized separately.  相似文献   

12.
A radioligand-receptor system for luteinizing hormone (LH), USING transplantable mouse luteoma, was used to investigate the interactions of LH, other peptide hormones, and LH subunits. Since tumor size decreased as did production of androgenic hormones following hypophysectomy, the luteoma is believed to have been dependent on pituitary tropic hormones; posthypophysectomy histologic changes supported this conclusion. An homogenate was prepared from 1-4 gm luteomas, which had been borne by mice for 4-10 months. Ovine LH, bovine LH, and human chorionic gonadotrophin reduced the binding of iodine-125 human luteinizing hormone (125-I-hLH). Growth hormone, adrenocorticotrophic hormone, and prolactin had no capacity to interfere with binding of 125-I-hLH. Though follicle-stimulating hormone (FSH) and thyroid-stimulating hormone (TSH) reduced the binding somewhat, the reductions were consistent with the known presence of contaminating amounts of LH in the FSH and TSH. The accumulated results of a number of experiments suggest that binding to the luteoma LH receptor requires a particular polypeptide structural conformation, one found in the native hormone but found in neither alpha nor beta subunit alone.  相似文献   

13.
The effects of various modifications on the beta subunit of lutropin have been studied using the binding characteristics of the reconstituted hormone in the rat testicular radioligand assay. Conditions for iodinating lutropin and lutropin derivatives were determined which resulted in 15 per cent specific binding when tested immediately and retention of 6 to 7 per cent specific binding even after storage for 6 months. Acetimidinyl, acetyl, and carbamyl derivatives of the beta subunit were prepared and combined with unmodified alpha subunit to form reconstituted lutropin. Modification of the beta subunit was shown to have no effect on the time course of binding to testicular receptors or, with one exception, on the extent of receptor saturation. Very high concentrations of lutropin reconstituted with acetylated beta subunit showed an anomalous binding behavior. Scatchard plots of the binding data support the view that the native hormone has a unique receptor affinity which is irreversibly disrupted by separation of subunits and that derivatization of the beta subunit does not alter this parameter further. These data also suggest that there are no significant differences in the amino groups modified on the beta subunit. Competition and preincubation tests for receptor sites that reacted only with modified lutropin and not with the native hormone were negative.  相似文献   

14.
The studies presented herein were aimed at characterizing the pathway involved in the internalization and degradation of human choriogonadotropin by cultured Leydig tumor cells. A quick biochemical method that differentiates between the surface-bound and internalized hormone was developed. Using this method and two hormone derivatives labeled exclusively (with 125I) in the alpha or beta subunits, it was possible to follow the fate of each hormone subunit during hormone binding, internalization, and degradation. The results show that the hormone is internalized in the intact form and that it reaches its place of degradation (presumably the lysosomes) in the intact form. The pathway for degradation of the internalized hormone is complex, and it appears to involve processing of one or both subunits of the intact hormone, followed by subunit dissociation and further degradation of the individual subunits. The alpha subunit is quickly degraded by the cells. The only detectable degradation products are extracellular amino acids. The beta subunit is degraded slower, and several intracellular degradation products are detectable before amino acids appear in the medium.  相似文献   

15.
The glycoprotein hormone family represents a class of heterodimers, which include the placental hormone human chorionic gonadotropin (CG) and the anterior pituitary hormones follitropin, lutropin, and thyrotropin. They are composed of common alpha subunit and a hormone-specific beta subunit. Based on the CG crystal structure, it was suggested that the quaternary subunit interactions are crucial for biological activity. However, recent observations using single chain glycoprotein hormone analogs, where the beta and alpha subunits are linked (NH(2)-CGbeta-alpha; CGbetaalpha orientation), implied that the heterodimeric-like quaternary configuration is not a prerequisite for receptor binding/signal transduction. To study the heterodimeric alignment of the two subunit domains in a single chain and its role in the intracellular behavior and biological action of the hormone, a single chain CG variant was constructed in which the carboxyl terminus of alpha was fused to the CGbeta amino terminus (NH(2)-alpha-CGbeta; alphaCGbeta orientation). The secretion rate of alphaCGbeta from transfected Chinese hamster ovary cells was less than that seen for CGbetaalpha. The alphaCGbeta tether was not recognized by dimer-specific monoclonal antibodies and did not bind to lutropin/CG receptor. To define if one or both subunit domains were modified in alphaCGbeta, it was co-transfected with a monomeric alpha or CGbeta gene. In each case, alphaCGbeta/alpha and alphaCGbeta/CGbeta complexes were formed indicating that CG dimer-specific epitopes were established. The alphaCGbeta/alpha complex bound to receptor indicating that the beta domain in the alphaCGbeta tether was still functional. In contrast, no significant receptor binding of alphaCGbeta/CGbeta was observed indicating a major perturbation in the alpha domain. These results suggest that although dimeric-like determinants are present in both alphaCGbeta/alpha and alphaCGbeta/CGbeta complexes, the receptor binding determinants in the alpha domain of the tether are absent. These results show that generating heterodimeric determinants do not necessarily result in a bioactive molecule. Our data also indicate that the determinants for biological activity are distinct from those associated with intracellular behavior.  相似文献   

16.
Tetranitromethane reaction with intact ovine lutropin and its isolated subunits was studied using spectrophotometric measurements, amino acid analysis, and isolation of tyrosyl peptides. Tyrosyl residues in the beta subunit (beta37, beta59) did not react with tetranitromethane in the intact hormone, but were nitrated in the isolated subunit. The sequence and extent of reaction of tetranitromethane with the tyrosyl residues in the alpha subunit was alpha21 = alpha92 = alpha93 (in intact hormone or isolated subunit) greater than alpha 41 (reacted in isolated subunit only) greater than alpha 30 (reacted in isolated subunit in 8 M urea only). Polymerization was observed as a side reaction in agreement with previous studies. The degree of polymerization appeared to be related to both primary sequence and tertiary structure, and for lutropin had the relation: alpha subunit (93% polymerized) greater than intact hormone greater than beta subunit (less than 40%). Polymerization observed with vasopressin was significantly greater than with oxytocin; for these peptides the tyrosine residues in the monomeric product were converted to 3-nitrotyrosine. Neither 3-nitrotyrosine nor tyrosine was detected in the polymerized by-products. In the tetranitromethane reaction with intact ovine lutropin, other reaction products charcterized by absorption spectra were found. Peptides isolated from these products lacked the characteristic 428 nm abosrption maxima of 3-nitrotyrosyl peptides and showed instead absorption in the 310 to 350 nm region. Similar products from tetranitromethane reactions with di- and tripeptides containing tyrosine have been observed previously (Boyd, N.D., and Smith, D.B. (1971) Can. J. Biochem, 49, 154-161), but they have not been studied in proteins. A possible relationship to the polymerization side reaction is suggested.  相似文献   

17.
Occupancy of integrin receptors induces conformational changes in the receptor, resulting in exposure of novel interactive sites termed ligand-induced binding sites (LIBS). We report here that Fab fragments of certain antibodies against LIBS on integrin alpha IIb beta 3 (platelet glycoprotein IIb-IIIa) block platelet aggregation. Thus, certain LIBS or the regions surrounding them may participate in events required for platelet aggregation. In addition, certain anti-alpha IIb beta 3 LIBS Fab fragments stimulated platelet aggregation. This was due to induction of fg binding to alpha IIb beta 3, apparently by shifting a conformational equilibrium between a "resting" and an "activated" state of alpha IIb beta 3. Some of the activating anti-LIBS Fab fragments also induced high affinity fibronectin binding to alpha IIb beta 3, whereas others did not. Thus, changes in the conformation of this integrin modulate both the specificity and affinity of ligand recognition.  相似文献   

18.
The glycoprotein hormones are a family of conserved heterodimeric proteins which share a common alpha subunit but differ in their hormone-specific beta subunits. We used chimeras of human chorionic gonadotropin (hCG) and luteinizing hormone (hLH) beta subunits to identify residues which enable monoclonal antibodies (mAb) to distinguish the two hormones. The LH beta-CG beta chimeras appeared to fold similar to hCG beta, since they combined with hCG alpha and, depending on their sequences, were recognized by hCG-selective mAbs. Amino acid residues Arg8-Arg10,Gly47-Ala51, and Gln89-Leu92 form a major epitope region and appear to be adjacent to each other on the surface of hCG beta. Gly47-Ala51 and Gln89-Leu92 are recognized by dimer-specific mAbs while Arg8-Arg10 is recognized by mAbs which have highest affinity for the free beta subunit. These observations suggest that the conformation of this region of the beta subunit changes when the alpha and beta subunits combine. Residues which are C-terminal of Asp112 form a second epitope domain. mAbs to the third domain distinguish hCG beta and hLH beta by the presence of Asn77 in hCG beta and can be detected after hCG binds to receptors. These findings were used to develop a model of hCG beta which predicts the locations of these residues and their positions relative to the alpha subunit and receptor interfaces.  相似文献   

19.
After binding to rat testicular or ovarian luteinizing hormone (LH) receptors, human chorionic gonadotropin (hCG) and mammalian LH can be detected with monoclonal antibodies directed against a conserved epitope on the beta subunit of the hormones. Two such anti-hCG/anti-LH monoclonal antibodies, known as B105 and B110, compete with one another for binding to this epitope region on free and receptor-bound hormone. By comparing the affinities of B105 and B110 for these two forms of hCG, we have detected apparent changes in the structure of the hormone which develop subsequent to receptor binding. Whereas the affinity of B105 for receptor-bound hCG is approximately 10-fold lower than that for free hCG, the affinity of B110 for receptor-bound hCG is nearly 20-fold greater than that for free hCG. Both B105.hCG and B110.hCG complexes bind to the receptor; however, they have approximately 25 and 50% lower affinity than hCG. Thus, although B110 binds better to the form of hCG which is bound to receptors, binding of B110 to hCG does not appear to induce a conformational change in the hormone which facilitates hormone-receptor binding. Consequently, both B105 and B110 partially inhibit binding of hCG to its receptors. Fab fragments of B105 and B110 are as effective as intact B105 and B110 in inhibiting the binding of labeled B105 and B110 to hCG-receptor complexes, suggesting that circular complexes which might be formed by the interaction of divalent antibody, two molecules of hCG, and two membrane-bound receptors or one divalent receptor are not contributing to the affinity of the antibodies for receptor-bound hCG. Alternatively, formation of circular complexes can explain an increase in apparent affinity of B105 for ovine or bovine LH-receptor complexes. Data obtained with B105 suggest either that the structure of the epitope is altered following binding or that a portion of the epitope is partially obscured when hCG binds to the receptor. In contrast, the data obtained using B110 are not explained by models in which steric factors reduce the affinity of the antibody for the hormone-receptor complex. Therefore, as a minimal explanation for these observations, we postulate that the conformation of the B105/B110 epitope region is altered following binding of the hormone to receptors. The nature of the conformational change and its relationship to LH/hCG action is unknown.  相似文献   

20.
Eukaryotic cells adhere to at least two different regions of the fibronectin molecule: a central domain present in all fibronectin isoforms, and the type III connecting segment domain (IIICS), the expression of which is controlled by complex alternative splicing of precursor mRNA. Using affinity chromatography on a matrix containing a synthetic peptide ligand (CS1) representing the strongest active site within the IIICS, we have isolated the human melanoma cell receptor recognizing this region of fibronectin. The receptor is a complex of two polypeptides with subunit molecular masses of 145 and 125 kDa. This heterodimeric structure resembles that of receptors for other extracellular matrix proteins. Immunological analysis with specific antibodies identified these polypeptides as the integrin subunits alpha 4 and beta 1. In addition, antifunctional monoclonal antibodies directed against either alpha 4 or beta 1, but not against other integrin subunits, were potent inhibitors of CS1-mediated melanoma cell spreading. Furthermore, when the function of the central cell-binding domain was blocked, anti-alpha 4 and anti-beta 1 antibodies abolished spreading of A375-M cells on fibronectin, indicating that alpha 4 beta 1 is an authentic fibronectin receptor. Taken together, these results identify the human fibronectin IIICS receptor as the integrin heterodimer alpha 4 beta 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号