首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Four loci seem responsible for the dilution of the basic coat colours in horse: Dun (D), Silver Dapple (Z), Champagne (CH) and Cream (C). Apart from the current phenotypes ascribed to these loci, pearl has been described as yet another diluted coat colour in this species. To date, this coat colour seems to segregate only in the Iberian breeds Purebred Spanish horse and Lusitano and has also been described in breeds of Iberian origin, such as Quarter Horses and Paint Horse, where it is referred to as the ‘Barlink Factor’. This phenotype segregates in an autosomal recessive manner and resembles some of the coat colours produced by the champagne CHCH and cream CCr alleles, sometimes being difficult to distinguish among them. The interaction between compound heterozygous for the pearl Cprl and cream CCr alleles makes SLC45A2 the most plausible candidate gene for the pearl phenotype in horses. Our results provide documented evidence for the missense variation in exon 4 [SLC45A2:c.985G>A; SLC45A2:p.(Ala329Thr)] as the causative mutation for the pearl coat colour. In addition, it is most likely involved as well in the cremello, perlino and smoky cream like phenotypes associated with the compound CCr and Cprl heterozygous genotypes (known as cream pearl in the Purebred Spanish horse breed). The characterization of the pearl mutation allows breeders to identify carriers of the Cprl allele and to select this specific coat colour according to personal preferences, market demands or studbook requirements as well as to verify segregation within particular pedigrees.  相似文献   

2.
Lethal White Foal Syndrome is a disease associated with horse breeds that register white coat spotting patterns. Breedings between particular spotted horses, generally described as frame overo, produce some foals that, in contrast to their parents, are all white or nearly all white and die shortly after birth of severe intestinal blockage. These foals have aganglionosis characterized by a lack of submucosal and myenteric ganglia from the distal small intestine to the large intestine, similar to human Hirschsprung Disease. Some sporadic and familial cases of Hirschsprung Disease are due to mutations in the endothelin B receptor gene (EDNRB). In this study, we investigate the role of EDNRB in Lethal White Foal Syndrome. A cDNA for the wild-type horse endothelin-B receptor gene was cloned and sequenced. In three unrelated lethal white foals, the EDNRB gene contained a 2-bp nucleotide change leading to a missense mutation (I118K) in the first transmembrane domain of the receptor, a highly conserved region of this protein among different species. Seven additional unrelated lethal white foal samples were found to be homozygous for this mutation. No other homozygotes were identified in 138 samples analyzed, suggesting that homozygosity was restricted to lethal white foals. All (40/40) horses with the frame overo pattern (a distinct coat color pattern that is a subset of overo horses) that were tested were heterozygous for this allele, defining a heterozygous coat color phenotype for this mutation. Horses with tobiano markings included some carriers, indicating that tobiano is epistatic to frame overo. In addition, horses were identified that were carriers but had no recognized overo coat pattern phenotype, demonstrating the variable penetrance of the mutation. The test for this mutant allele can be utilized in all breeds where heterozygous animals may be unknowingly bred to each other including the Paint Horse, Pinto horse, Quarter Horse, Miniature Horse, and Thoroughbred. Received: 25 November 1997 / Accepted: 3 February 1998  相似文献   

3.
Kit基因对白马被毛褪色的影响   总被引:2,自引:0,他引:2  
Bai DY  Yang LH  Unerhu U  Zhao YP  Zhao QN  Hasigaowa H  Dugarjaviin M 《遗传》2011,33(11):1171-1178
马毛色是品种鉴定和个体识别的重要依据,也是制定育种方案时必须考虑的重要性状之一。因此,研究马被毛褪色已成为当今国际马毛色研究领域的重要内容,试图弄清导致马被毛褪色的真正机理。目前已经发现,许多马种被毛褪色表型个体中3号染色体上的kit基因存在不同的显著突变。研究结果表明马kit基因的正常表达与否与表皮中黑色素细胞及黑色素的形成密切相关,从而控制是否出现褪色表型。然而,研究证明在不同马种间褪色表型个体在该位点上出现的突变存在着较大的种间差异。具有被毛完全褪色表型的马群非常少见,只是偶尔见于有些马种,但在内蒙古锡林郭勒盟西乌珠穆沁旗生存着较大数量的被毛褪色表型个体,被称为蒙古白马。然而,造成其被毛褪色的机理还没有得到证实,有趣的是至今为止在蒙古白马kit基因的21个外显子中还没有发现任何典型突变。因此,文章对近些年国际上对马被毛褪色的分子研究进展做一比较系统的综合叙述,为蒙古白马毛色形成的机理研究奠定基础,为今后的马匹毛色研究及其育种工作提供有价值的参考依据。  相似文献   

4.
Although only a few specific pigmentation types are allowed within the Hucul horse registry, accurate determination of particular coat colors can be uncertain due to the presence of variation in color shades and segregation of multiple dun dilution variants. Herein, we genotyped the previously identified polymorphisms within two coat color loci TBX3 (T-box 3) and ASIP (Agouti Signaling Protein) in 462 Hucul individuals and compared the genotype predicted phenotypes with observed pigmentation types provided in the Polish Horse Breeders Association database. We identified disagreement between the predicted and recorded coat color in 157 horses (34%). The most common error was misclassification of horses with the nd1/nd1 and nd1/nd2 genotypes, what may be related with the occurrence of some ‘intermediate’ dilution phenotypes in such individuals. We have also proven that the frequency of the dominant dun dilution allele (D) (0.30) is higher than previously predicted by available studbooks. The D allele(s) is easily ‘hidden’ in various phenotypic groups including dark bay and black, therefore we hypothesized that the dun dilution effect itself is not as strongly epistatic in the Hucul horse as described in other horse breeds. This may be the result of an additional genetic modifier suppressing D allele phenotypic effect.  相似文献   

5.
Seven novel KIT mutations in horses with white coat colour phenotypes   总被引:2,自引:0,他引:2  
White coat colour in horses is inherited as a monogenic autosomal dominant trait showing a variable expression of coat depigmentation. Mutations in the KIT gene have previously been shown to cause white coat colour phenotypes in pigs, mice and humans. We recently also demonstrated that four independent mutations in the equine KIT gene are responsible for the dominant white coat colour phenotype in various horse breeds. We have now analysed additional horse families segregating for white coat colour phenotypes and report seven new KIT mutations in independent Thoroughbred, Icelandic Horse, German Holstein, Quarter Horse and South German Draft Horse families. In four of the seven families, only one single white horse, presumably representing the founder for each of the four respective mutations, was available for genotyping. The newly reported mutations comprise two frameshift mutations (c.1126_1129delGAAC; c.2193delG), two missense mutations (c.856G>A; c.1789G>A) and three splice site mutations (c.338-1G>C; c.2222-1G>A; c.2684+1G>A). White phenotypes in horses show a remarkable allelic heterogeneity. In fact, a higher number of alleles are molecularly characterized at the equine KIT gene than for any other known gene in livestock species.  相似文献   

6.
Variations in the SLC45A2 gene are responsible for the dilution phenotypes cream and pearl in domestic horses. Cream dilution is inherited in an incomplete dominant manner, diluting only red in the heterozygous state but both red and black pigments when two alleles are present. The pearl dilution is recessive and dilutes only the red and black pigment in the homozygous state or when paired with a cream allele. Horses that inherit one copy of pearl (Cprl) and one copy of the dominant cream allele (CCr) display a dilution phenotype similar to that of homozygous cream, suggesting that pearl is the result of a different variation in the same gene responsible for cream. We sequenced SLC45A2 in two ‘false double dilute’ horses that appeared phenotypically homozygous cream but tested as possessing only a single CCr allele. We also sequenced one known pearl carrier to screen for putative causal variants. The missense variant ECA21:SLC45A2:c.985G>A; p.Ala329Thr (Cprl) was present in one false double dilute and the pearl carrier and was also genotyped in an additional 126 horses for statistical evaluation. The genotype matched the expected phenotype in all horses (P‐value = 6.5 × 10?41) and is identical to a pearl variant found previously. The second false double dilute horse and one non‐dilute offspring genotyped as heterozygous for a novel missense variant ECA21:SLC45A2:c.568G>A (p.Gly190Arg), the proposed Csun variant (for the name of the horse). This variant produces a recessive dilution similar to pearl and indicates that multiple alleles of SLC45A2 result in dilution phenotypes in the domestic horse.  相似文献   

7.
8.
9.
Lavender Foal Syndrome (LFS) is a lethal inherited disease of horses with a suspected autosomal recessive mode of inheritance. LFS has been primarily diagnosed in a subgroup of the Arabian breed, the Egyptian Arabian horse. The condition is characterized by multiple neurological abnormalities and a dilute coat color. Candidate genes based on comparative phenotypes in mice and humans include the ras-associated protein RAB27a (RAB27A) and myosin Va (MYO5A). Here we report mapping of the locus responsible for LFS using a small set of 36 horses segregating for LFS. These horses were genotyped using a newly available single nucleotide polymorphism (SNP) chip containing 56,402 discriminatory elements. The whole genome scan identified an associated region containing these two functional candidate genes. Exon sequencing of the MYO5A gene from an affected foal revealed a single base deletion in exon 30 that changes the reading frame and introduces a premature stop codon. A PCR–based Restriction Fragment Length Polymorphism (PCR–RFLP) assay was designed and used to investigate the frequency of the mutant gene. All affected horses tested were homozygous for this mutation. Heterozygous carriers were detected in high frequency in families segregating for this trait, and the frequency of carriers in unrelated Egyptian Arabians was 10.3%. The mapping and discovery of the LFS mutation represents the first successful use of whole-genome SNP scanning in the horse for any trait. The RFLP assay can be used to assist breeders in avoiding carrier-to-carrier matings and thus in preventing the birth of affected foals.  相似文献   

10.
A novel coat-color mutant was found in the musk shrew (Suncus murinus). Mutant shrews were characterized by light-gray coat, pinkish skin and red eyes. Mating experiment demonstrated that the mutant character was controlled by a single autosomal recessive gene. The gene could be traced back to at least four heterozygous carriers captured in Naha city, Okinawa in 1983. The name, red-eyed dilution, was proposed for this mutant character with the gene symbol rd. Linkage analysis proved no close relationship of the rd locus with the cr (cream coat color) and ch (curly hair) loci. The red-eyed dilution shrews (+/+, rd/rd) could easily be distinguished from the cream coat shrews with dark-red eyes (cr/cr, +/+) and the double homozygotes exhibiting light-cream coat with pink eyes (cr/cr, rd/rd). The rd gene has been maintained in the OKI line about at 75% of its frequency in every generation. We have started to develop a new line triple-homozygous for the cr, ch and rd genes.  相似文献   

11.
The solute carrier family 26, member 2 (SLC26A2) gene belongs to a family of multifunctional anion exchangers. Mutations in the human SLC26A2 gene are associated with autosomal recessively inherited chondrodysplasias. Hence, we postulate that the equine SLC26A2 could be a candidate gene for conformational traits in horses. An equine BAC clone harboring the SLC26A2 gene was isolated. The complete 142,625 bp insert sequence of this clone was determined by transposon sequencing. Together with the SLC26A2 gene the BAC clone contains four genes, i.e. the macrophage colony stimulating factor 1 receptor precursor (CSF1R), KIAA0194 protein gene similar to the SMF protein (KIAA0194), a tigger transposable element derived 14 (TIGD14), the 3'-5'-cyclic GMP phosphodiesterase alpha-chain (EC 3.1.4.35) and one unidentified open reading frame. The equine SLC26A2 gene encompassing 6,152 bp consists of two exons. The complete open reading frame of 2,211 bp encodes a protein of 736 amino acids. A comparison of the amino acid sequence with other mammalian orthologs revealed homologies with identity in a range between 80% and 88%. By contrast, the equine SLC26A2 protein lacks five C-terminal amino acids. Four single nucleotide polymorphisms (SNP) were identified (three synonymous and one non-synonymous variant Ser210Leu) in the coding region by comparative sequencing of 50 DNA samples representing the German Riding horse. Allele frequencies and distribution were further evaluated in a variety of different breeds: Arabians (for all four SNPs), Old Kladrub Horses, Draught Horses (including Westphalian Draught Horses, Rheinish Westphalian Draught Horses, Saxon-Thuringia Coldbloods, Altmarker Coldbloods), American Saddlebreds, Miniature Horses, Australian Riding Ponies, Appaloosa, Morgan Horses, and Lipizzaner for C629T (Ser210Leu) alone. No animal carrying the homozygous genotype TT has been detected. The overall frequency of the newly described variant T is low (between 2% and 6%). Simulation studies on the protein conformation predict structural protein changes mediated by the SNP.  相似文献   

12.
Overlapping runs of homozygosity (ROH islands) shared by the majority of a population are hypothesized to be the result of selection around a target locus. In this study we investigated the impact of selection for coat color within the Noriker horse on autozygosity and ROH patterns. We analyzed overlapping homozygous regions (ROH islands) for gene content in fragments shared by more than 50% of horses. Long‐term assortative mating of chestnut horses and the small effective population size of leopard spotted and tobiano horses resulted in higher mean genome‐wide ROH coverage (SROH) within the range of 237.4–284.2 Mb, whereas for bay, black and roan horses, where rotation mating is commonly applied, lower autozygosity (SROH from 176.4–180.0 Mb) was determined. We identified seven common ROH islands considering all Noriker horses from our dataset. Specific islands were documented for chestnut, leopard spotted, roan and bay horses. The ROH islands contained, among others, genes associated with body size (ZFAT, LASP1 and LCORL/NCAPG), coat color (MC1R in chestnut and the factor PATN1 in leopard spotted horses) and morphogenesis (HOXB cluster in all color strains except leopard spotted horses). This study demonstrates that within a closed population sharing the same founders and ancestors, selection on a single phenotypic trait, in this case coat color, can result in genetic fragmentation affecting levels of autozygosity and distribution of ROH islands and enclosed gene content.  相似文献   

13.
马毛色遗传机理研究进展   总被引:2,自引:0,他引:2  
动物毛色是人类正向选择产生的表型之一,在遗传与进化过程中扮演着重要角色。其中马的毛色丰富多变,单从表型无法准确判别其属于哪种毛色,造成马品种登记时毛色性状记录不准确,因此研究马毛色形成机理在育种工作中具有重要意义。随着基因组学及测序技术的日益成熟,马毛色形成遗传机理的研究不断深入,并发现不同毛色性状与特定疾病之间的相关性。本文从遗传学的角度对马的毛色进行归类,对与其形成的相关基因、作用机理及应用等研究进展进行了综述,以期为马毛色形成机理的系统性研究和马匹选育提供借鉴和参考。  相似文献   

14.
Pinschers affected by coat color dilution show a specific pigmentation phenotype. The dilute pigmentation phenotype leads to a silver-blue appearance of the eumelanin-containing fur and a pale sandy color of pheomelanin-containing fur. In Pinscher breeding, dilute black-and-tan dogs are called "blue," and dilute red or brown animals are termed "fawn" or "Isabella fawn." Coat color dilution in Pinschers is sometimes accompanied by hair loss and a recurrent infection of the hair follicles. In human and mice, several well-characterized genes are responsible for similar pigment variations. To investigate the genetic cause of the coat color dilution in Pinschers, we isolated BAC clones containing the canine ortholog of the known murine color dilution gene Mlph. RH mapping of the canine MLPH gene was performed using an STS marker derived from BAC sequences. Additionally, one MLPH BAC clone was used as probe for FISH mapping, and the canine MLPH gene was assigned to CFA25q24.  相似文献   

15.
16.
White coat color has been a highly valued trait in horses for at least 2,000 years. Dominant white (W) is one of several known depigmentation phenotypes in horses. It shows considerable phenotypic variation, ranging from ~50% depigmented areas up to a completely white coat. In the horse, the four depigmentation phenotypes roan, sabino, tobiano, and dominant white were independently mapped to a chromosomal region on ECA 3 harboring the KIT gene. KIT plays an important role in melanoblast survival during embryonic development. We determined the sequence and genomic organization of the ~82 kb equine KIT gene. A mutation analysis of all 21 KIT exons in white Franches-Montagnes Horses revealed a nonsense mutation in exon 15 (c.2151C>G, p.Y717X). We analyzed the KIT exons in horses characterized as dominant white from other populations and found three additional candidate causative mutations. Three almost completely white Arabians carried a different nonsense mutation in exon 4 (c.706A>T, p.K236X). Six Camarillo White Horses had a missense mutation in exon 12 (c.1805C>T, p.A602V), and five white Thoroughbreds had yet another missense mutation in exon 13 (c.1960G>A, p.G654R). Our results indicate that the dominant white color in Franches-Montagnes Horses is caused by a nonsense mutation in the KIT gene and that multiple independent mutations within this gene appear to be responsible for dominant white in several other modern horse populations.  相似文献   

17.
Haase B  Jude R  Brooks SA  Leeb T 《Animal genetics》2008,39(3):306-309
The tobiano white-spotting pattern is one of several known depigmentation phenotypes in horses and is desired by many horse breeders and owners. The tobiano spotting phenotype is inherited as an autosomal dominant trait. Horses that are heterozygous or homozygous for the tobiano allele ( To ) are phenotypically indistinguishable. A SNP associated with To had previously been identified in intron 13 of the equine KIT gene and was used for an indirect gene test. The test was useful in several horse breeds. However, genotyping this sequence variant in the Lewitzer horse breed revealed that 14% of horses with the tobiano pattern did not show the polymorphism in intron 13 and consequently the test was not useful to identify putative homozygotes for To within this breed. Speculations were raised that an independent mutation might cause the tobiano spotting pattern in this breed. Recently, the putative causative mutation for To was described as a large chromosomal inversion on equine chromosome 3. One of the inversion breakpoints is approximately 70 kb downstream of the KIT gene and probably disrupts a regulatory element of the KIT gene. We obtained genotypes for the intron 13 SNP and the chromosomal inversion for 204 tobiano spotted horses and 24 control animals of several breeds. The genotyping data confirmed that the chromosomal inversion was perfectly associated with the To allele in all investigated horses. Therefore, the new test is suitable to discriminate heterozygous To/+ and homozygous To/To horses in the investigated breeds.  相似文献   

18.
19.
The American Paint Horse Association (APHA) records pedigree and performance information for their breed, a stock-type horse valued as a working farm or ranch horse and as a pleasure horse. As the name implies, the breed is also valued for its attractive white-spotting patterns on the coat. The APHA utilizes visual inspections of photographs to determine if coat spotting exceeds threshold anatomical landmarks considered characteristic of desirable patterns. Horses with sufficient white patterning enter the ‘Regular’ registry, rather than the ‘Solid Paint-Bred’ division, providing a threshold modeled phenotype. Genetic studies previously defined sequence variants corresponding to 35 alleles for white spotting in the horse. Here, we calculate the allele frequencies for nine common white-spotting alleles in the American Paint Horse using a sample of 1054 registered animals. The APHA spotting phenotype is altered by additive interactions among spotting loci, and epistatically by the MC1R and ASIP genes controlling pigment production. The W20 allele within the KIT gene, independent of other known spotting alleles, was strongly associated with the APHA-defined white-spotting phenotype (P = 1.86 × 10−18), refuting reports that W20 acts only as a modifier of other underlying white-spotting patterns. The parentage of an individual horse, either American Paint or American Quarter Horse, did not alter the likelihood of its entering the APHA Regular Registry. An empirical definition of the action of these genetic loci on the APHA-defined white-spotting phenotype will allow more accurate application of genome-assisted selection for improving color production and the marketability of APHA horses.  相似文献   

20.
The mast/stem cell growth factor receptor (KIT) and melanocortin receptor 1 (MC1R) mutations are responsible for coat color phenotypes in domestic pigs. Rongchang is a Chinese indigenous pig breed with a white coat color phenotype. To investigate the genetic variability of the KIT and MC1R genes and their possible association with the coat color phenotype in this breed, a gene duplication and splice mutation of KIT were diagnosed in a sample of 93 unrelated Rongchang animals. The results show that Rongchang pigs have a single copy of KIT without the splice mutation at the first nucleotide of intron 17, indicating that the dominant white I allele of KIT is not responsible for their white phenotype. The KIT mRNA and MC1R coding sequences were also determined in this breed. Three putative amino acid substitutions were found in the KIT gene between Rongchang and Western white pigs, their association with the Rongchang white phenotype remains unknown. For the MC1R gene, Rongchang pigs were demonstrated to have the same dominant black allele (E(D1)) as other Chinese breeds, supporting the previous conclusion that Chinese and Western pigs have independent domestication origin. We also clarified that the Rongchang white phenotype was recessive to nonwhite color phenotypes. Our results provide a good starting point for the identification of the mutations underlying the white coat color in Rongchang pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号