首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rin1 regulates insulin receptor signal transduction pathways   总被引:1,自引:0,他引:1  
Rin1 is a multifunctional protein containing several domains, including Ras binding and Rab5 GEF domains. The role of Rin1 in insulin receptor internalization and signaling was examined by expressing Rin1 and deletion mutants in cells utilizing a retrovirus system. Here, we show that insulin-receptor-mediated endocystosis and fluid phase insulin-stimulated endocytosis are enhanced in cells expressing the Rin1:wild type and the Rin1:C deletion mutant, which contain both the Rab5-GEF and GTP-bound Ras binding domains. However, the Rin1:N deletion mutant, which contains both the SH2 and proline-rich domains, blocked insulin-stimulated receptor-mediated and insulin-stimulated fluid phase endocytosis. In addition, the expression of Rin1:delta (429-490), a natural occurring splice variant, also blocked both receptor-mediated and fluid phase endocystosis. Furthermore, association of the Rin1 SH2 domain with the insulin receptor was dependent on tyrosine phosphorylation of the insulin receptor. Morphological analysis indicates that Rin1 co-localizes with insulin receptor both at the cell surface and in endosomes upon insulin stimulation. Interestingly, the expression of Rin1:wild type and both deletion mutants blocks the activation of Erk1/2 and Akt1 kinase activities without affecting either JN or p38 kinase activities. DNA synthesis and Elk-1 activation are also altered by the expression of Rin1:wild type and the Rin1:C deletion mutant. In contrast, the expression of Rin1:delta stimulates both Erk1/2 and Akt1 activation, DNA synthesis and Elk-1 activation. These results demonstrate that Rin1 plays an important role in both insulin receptor membrane trafficking and signaling.  相似文献   

2.
The PI3K/AKT signaling pathway has an important regulatory role in cancer cell growth and tumorigenesis. Signal transduction through this pathway requires the assembly and activation of PDK1 and AKT at the plasma membrane. On activation of the pathway, PDK1 and AKT1/2 translocate to the membrane and bind to phosphatidylinositol-(3,4,5)-trisphosphate (PIP3) through interaction with their pleckstrin-homology domains. A biochemical method was developed to measure the kinase activity of PDK1 and AKT1/2, utilizing nickel-chelating coated lipid vesicles as a way to mimic the membrane environment. The presence of these vesicles in the reaction buffer enhanced the specific activity of the His-tagged PDK1 (full-length, and the truncated kinase domain) and the activity of the full-length His-tagged AKT1 and AKT2 when assayed in a cascade-type reaction. This enhanced biochemical assay is also suitable for measuring the inhibition of PDK1 by several selective compounds from the carbonyl-4-amino-pyrrolopyrimidine (CAP) series. One of these inhibitors, PF-5168899, was further evaluated using a high content cell-based assay in the presence of CHO cells engineered with GFP-PDK1.  相似文献   

3.
4.
Wood CD  Kelly AP  Matthews SA  Cantrell DA 《FEBS letters》2007,581(18):3494-3498
Phosphoinoisitide dependent kinase l (PDK1) is proposed to phosphorylate a key threonine residue within the catalytic domain of the protein kinase C (PKC) superfamily that controls the stability and catalytic competence of these kinases. Hence, in PDK1-null embryonic stem cells intracellular levels of PKCalpha, PKCbeta1, PKCgamma, and PKCepsilon are strikingly reduced. Although PDK1-null cells have reduced endogenous PKC levels they are not completely devoid of PKCs and the integrity of downstream PKC effector pathways in the absence of PDK1 has not been determined. In the present report, the PDK1 requirement for controlling the phosphorylation and activity of a well characterised substrate for PKCs, the serine kinase protein kinase D, has been examined. The data show that in embryonic stem cells and thymocytes loss of PDK1 does not prevent PKC-mediated phosphorylation and activation of protein kinase D. These results reveal that loss of PDK1 does not functionally inactivate all PKC-mediated signal transduction.  相似文献   

5.
Murine protein serine-threonine kinase 38 (MPK38) is a member of the AMP-activated protein kinase-related serine/threonine kinase family, which acts as cellular energy sensors. In this study, MPK38-induced PDK1 phosphorylation was examined to elucidate the biochemical mechanisms underlying phosphorylation-dependent regulation of 3-phosphoinositide-dependent protein kinase-1 (PDK1) activity. The results showed that MPK38 interacted with and inhibited PDK1 activity via Thr(354) phosphorylation. MPK38-PDK1 complex formation was mediated by the amino-terminal catalytic kinase domain of MPK38 and the pleckstrin homology domain of PDK1. This activity was dependent on insulin, a PI3K/PDK1 stimulator, as well as various apoptotic stimuli, including TNF-α, H(2)O(2), thapsigargin, and ionomycin. MPK38 inhibited PDK1 activity in a kinase-dependent manner and alleviated PDK1-mediated suppression of TGF-β (or ASK1) signaling, probably via the phosphorylation of PDK1 at Thr(354). In addition, MPK38-mediated inhibition of PDK1 activity was accompanied by the modulation of PDK1 binding to its positive and negative regulators, serine/threonine kinase receptor-associated protein and 14-3-3, respectively. Together, these findings suggest an important role for MPK38-mediated phosphorylation of PDK1 in the negative regulation of PDK1 activity.  相似文献   

6.
Ribosomal protein S6 kinase (S6K) is involved in the regulation of cell growth and cellular metabolism. The activation of S6K in response to diverse extracellular stimuli is mediated by multiple phosphorylations coordinated by the mTOR and PI3K signaling pathways. We have recently found that both forms of S6K are modified by ubiquitination. Following these findings, we demonstrate here for the first time that S6K1 associates specifically with ubiquitin ligase ROC1 in vitro and in vivo. The interaction was initially identified in the yeast two-hybrid screening and further confirmed by pull-down and co-immunoprecipitation assays. Furthermore, the overexpression of ROC1 leads to an increase in S6K1 ubiquitination. Consistent with this observation, we showed that the steady-state level of S6K1 is regulated by ROC1, since downregulation of ROC1 by specific siRNA promotes stabilization of S6K1 protein. The results suggest the involvement of ROC1 in S6K1 ubiquitination and subsequent proteasomal degradation.  相似文献   

7.
Pim-1 kinase phosphorylates substrates whose activities are linked to proliferation, survival, differentiation, and apoptosis. Although pim-1 is induced by hormones and cytokines, the hormonal control and contribution of Pim-1 to mammary gland development have not been evaluated. We examined Pim-1 expression in mammary cell lines, investigated whether Pim-1 levels could be altered in breast epithelia by mammogenic hormones, and evaluated Pim-1 expression during mammary development. We found that Pim-1 was elevated in most mammary carcinoma cell lines and progesterone increased Pim-1 protein to some extent in non-tumorigenic mammary epithelia. Pim-1 expression in situ was consistent with the documented profile of progesterone activity in mouse mammary glands. Pim-1 nuclear localization correlated with cytoplasmic distribution for its substrate, p21(CIP/Waf1), and we found that Pim-1 and p21 associate in vitro. Our results suggest that Pim-1 expression may be regulated by progesterone during mammary development and Pim-1 associates with p21 in mammary epithelial cells.  相似文献   

8.
9.
Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia.  相似文献   

10.
Bioactive phytochemicals can suppress the growth of malignant cells, and investigation of the mechanisms responsible can assist in the identification of novel therapeutic strategies for cancer therapy. Ginger has been reported to exhibit potent anti-cancer effects, although previous reports have often focused on a narrow range of specific compounds. Through a direct comparison of various ginger compounds, we determined that gingerenone A selectively kills cancer cells while exhibiting minimal toxicity toward normal cells. Kinase array screening revealed JAK2 and S6K1 as the molecular targets primarily responsible for gingerenone A-induced cancer cell death. The effect of gingerenone A was strongly associated with relative phosphorylation levels of JAK2 and S6K1, and administration of gingerenone A significantly suppressed tumor growth in vivo. More importantly, the combined inhibition of JAK2 and S6K1 by commercial inhibitors selectively induced apoptosis in cancer cells, whereas treatment with either agent alone did not. These findings provide rationale for dual targeting of JAK2 and S6K1 in cancer for a combinatorial therapeutic approach.  相似文献   

11.
Lipid rafts are plasma membrane microdomains that are highly enriched with cholesterol and sphingolipids and in which various receptors and other proteins involved in signal transduction reside. In the present work, we analyzed the effect of cholesterol biosynthesis inhibition on lipid raft/caveolae composition and functionality and assessed whether sterol precursors of cholesterol could substitute for cholesterol in lipid rafts/caveolae. 3T3-L1 preadipocytes were treated with distal inhibitors of cholesterol biosynthesis or vehicle (control) and then membrane rafts were isolated by sucrose density gradient centrifugation. Inhibition of cholesterol biosynthesis with either SKF 104976, AY 9944, 5,22-cholestadien-3β-ol or triparanol, which inhibit different enzymes on the pathway, led to a marked reduction in cholesterol content and accumulation of different sterol intermediates in both lipid rafts and non-raft domains. These changes in sterol composition were accompanied by disruption of lipid rafts, with redistribution of caveolin-1 and Fyn, impairment of insulin-Akt signaling and the inhibition of insulin-stimulated glucose transport. Cholesterol repletion abrogated the effects of cholesterol biosynthesis inhibitors, reflecting they were specific. Our results show that cholesterol is required for functional raft-dependent insulin signaling.  相似文献   

12.
Following the discovery of imidazopyridine 1 as a potent IGF-1R tyrosine kinase inhibitor, the aniline part has been modified with the aim to optimize the properties of this series. The structure-activity relationships against IGF-1R kinase activity as well as inhibition of the hERG ion channel are discussed.  相似文献   

13.
Epithelial calcium (re)absorption is mediated by TRPV5 and TRPV6 channels. TRPV5 is modulated by the SGK1 kinase, a process requiring the PDZ-domain containing scaffold protein NHERF2. The present study explored whether TRPV6 is similarly regulated by SGKs and the scaffold proteins NHERF1/2. In Xenopus oocytes, SGKs activate TRPV6 by increasing its plasma membrane abundance. Deletion of the putative PDZ binding motif on TRPV6 did not abolish channel activation by SGKs. Furthermore, coexpression of neither NHERF1 nor NHERF2 affected TRPV6 or potentiated the SGKs stimulating effect. The present observations disclose a novel TRPV6 regulatory mechanism which presumably participates in calcium homeostasis.  相似文献   

14.
Despite evidence that interleukin (IL)-1 promotes the proliferation of some T helper 2 (Th2) cell clones in vitro, the physiological role of IL-1 in the regulation of antigen-specific immune responses remains undefined. Using a liposome-DNA delivery system, we transiently expressed IL-1 receptor antagonist (IL-1Ra) to suppress IL-1 functions at the site of the antigen-specific primary immune response. Our data indicate, for the first time, that IL-1Ra downregulates antigen-specific IL-4 and IgE responses, with concomitant enhancement of interferon- and IgG2a responses in vivo. In addition, IL-1 can promote Th2 development in an IL-4-independent manner in vitro. Thus, the balance between endogenous IL-1 and IL-1Ra during the primary immune response can be an important factor in determining the antigen-specific effector function of T cells.  相似文献   

15.
Although receptor tyrosine kinases (RTKs) play a pivotal role in the development and maintaining the homeostasis of the body, overexpression or mutation of RTKs often induces tumorigenesis or metastasis. To mimic the function of RTKs, we developed two fusion receptors consisting of anti‐fluorescein antibody single‐chain Fv, extracellular D2 domain of erythropoietin receptor and transmembrane/intracellular domains of epidermal growth factor receptor or c‐fms based on previously constructed antibody/cytokine receptor chimeras. The expression of these chimeric receptors in the hematopoietic cell line Ba/F3 and non‐hematopoietic cell line NIH/3T3 resulted in the activation of receptors themselves, downstream signaling molecules and cell proliferation in response to fluorescein‐conjugated BSA, leading to selective expansion of transduced cells up to almost 100%. These results indicate that the cognate antigen could activate the chimeric receptors even though the wild‐type extracellular domains were switched to the antibody fragment. This is the first study to show that our antigen‐mediated genetically modified cell amplification (AMEGA) system could be applied to non‐hematopoietic cells by utilizing antibody/RTK chimeras. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

16.
Stress-activated protein (SAP) kinases and the mitochondrial pro-apoptotic Bcl-2 protein Bak are important regulators of apoptosis. Reduced expression of Bak increases cellular resistance to the anticancer agent cisplatin, and we report here that mouse embryo fibroblasts deficient in the SAP kinase jnk1 are highly resistant to apoptosis induced by cisplatin. When human melanoma cells were treated with cisplatin, Bak function was found to be regulated in two distinct steps by two SAP kinases, MEKK1 and JNK1. The first of these steps involves MEKK1-controlled conformational activation of Bak. The second step leads to formation of 80-170 kDa Bak complexes correlating with apoptosis, and is controlled by JNK1. Inhibition of MEKK1 blocked the initial Bak conformational activation but did not block JNK1 activation, and deficiency in, or inhibition of, JNK1 did not prevent conformational activation of Bak. Furthermore, inducible expression of a constitutively active form of MEKK1 led to Bak conformational activation, but not to 80-170 kDa complexes. Consequently, apoptosis was delayed unless JNK was exogenously stimulated, indicating that Bak conformational activation is not necessarily an apoptotic marker. The two-step regulation of Bak revealed here may be important for tight control of mitochondrial factor release and apoptosis.  相似文献   

17.
Glucocorticoids (GCs) are effective therapeutics commonly used in multiple myeloma (MM) treatment. Clarifying the pathway of GC-induced apoptosis is crucial to understanding the process of drug resistance and to the development of new targets for MM treatment. We have previously published results of a micro-array identifying glucocorticoid-induced leucine zipper (GILZ) as GC-regulated gene in MM.1S cells. Consistent with those results, GCs increased GILZ in MM cell lines and patient samples. Reducing the levels of GILZ with siRNA decreased GC-induced cell death suggesting GILZ may mediate GC-killing. We conducted a screen to identify other pathways that affect GILZ regulation and report that inhibitors of PI3-kinase/AKT enhanced GILZ expression in MM cell lines and clinical samples. The combination of dexamethasone (Dex) and LY294002, wortmannin, triciribine, or AKT inhibitor VIII dramatically up regulated GILZ levels and enhanced apoptosis. Addition of interleukin-6 (IL-6) or insulin-like growth factor (IGF1), both which activate the PI3-kinase/AKT pathway and inhibit GC killing, blocked up regulation of GILZ by GC and PI3-kinase/AKT inhibitors. In summary, these results identify GILZ as a mediator of GC killing, indicate a role of PI3-kinase/AKT in controlling GILZ regulation and suggest that the combination of PI3-kinase/AKT inhibitors and GCs may be a beneficial MM treatment.  相似文献   

18.
CD148 is a receptor-like protein-tyrosine phosphatase known to inhibit transduction of mitogenic signals in non-hematopoietic cells. Similarly, in the hematopoietic lineage, CD148 inhibited signal transduction downstream of T cell receptor. However, it also augmented immunoreceptor signaling in B cells and macrophages via dephosphorylating C-terminal tyrosine of Src family kinases (SFK). Accordingly, endogenous CD148 compensated for the loss of the main SFK activator CD45 in murine B cells and macrophages but not in T cells. Hypothetical explanations for the difference between T cells and other leukocyte lineages include the inability of CD148 to dephosphorylate a specific set of SFKs involved in T cell activation or the lack of CD148 expression during critical stages of T cell development. Here we describe striking differences in CD148 expression between human and murine thymocyte subsets, the only unifying feature being the absence of CD148 during the positive selection when the major developmental block occurs under CD45 deficiency. Moreover, we demonstrate that similar to CD45, CD148 has both activating and inhibitory effects on the SFKs involved in TCR signaling. However, in the absence of CD45, activating effects prevail, resulting in functional complementation of CD45 deficiency in human T cell lines. Importantly, this is independent of the tyrosines in the CD148 C-terminal tail, contradicting the recently proposed phosphotyrosine displacement model as a mechanism of SFK activation by CD148. Collectively, our data suggest that differential effects of CD148 in T cells and other leukocyte subsets cannot be explained by the CD148 inability to activate T cell SFKs but rather by its dual inhibitory/activatory function and specific expression pattern.  相似文献   

19.
Axl receptor tyrosine kinase is implicated in several malignancies and is the receptor for the vitamin K-dependent growth factor Gas6. From a yeast two-hybrid screen of protein-protein interactions with the Axl cytoplasmic domain, we detected a previously uncharacterised SH2 domain-containing protein. We cloned two novel splice variants of this protein that give rise to 1409- and 1419-amino acid proteins, differing only in their N-terminal residues and yielding a 150-kDa protein product by in vitro translation. The Axl-interacting C-terminus contains a tandem SH2 and PTB domain combination homologous to the focal adhesion protein tensin. We detected interaction of Axl with both domains in mammalian cells by co-immunoprecipitation and two-hybrid analyses. In addition, the protein possesses an N-terminal putative phorbol ester-binding C1 domain as well as a central tyrosine phosphatase motif. Thus, we have named the protein C1 domain-containing phosphatase and TENsin homologue (C1-TEN). Northern blot analysis of C1-TEN in human tissues revealed highest expression in heart, kidney, and liver. In summary, we have identified a novel multi-domain intracellular protein that interacts with Axl and which may furthermore be involved in other signal transduction pathways.  相似文献   

20.
The p70 S6 ribosomal protein kinase 1 (S6K) is a substrate and effector of the mammalian target of rapamycin (mTOR). The mTOR/S6K pathway is implicated in cancer and metabolic disorders. To study the molecular regulation of S6K and identify specific inhibitors, availability of active recombinant S6K and robust enzyme assays are critically needed. To date, however, expression of active recombinant S6K has not been feasible as S6K activation requires a cascade of phosphorylation events. We have compared several engineered S6K enzymes. Expression of the Flag-S6KDeltaCT(T389E) in HEK293 cells resulted in a highly active S6K that was constitutively phosphorylated on T229 in the activation-loop (T-loop). The active enzyme was readily purified in large scale by anti-Flag affinity chromatography achieving a high purity. We developed a high capacity homogeneous time-resolved fluorescence resonance energy transfer. Lance assay for measurement of substrate phosphorylation and analysis of kinetic parameters. The Michaelis constant (Km) values of S6K for ATP and the Biotin-S6 substrate peptide were determined to be 21.4+/-0.29 and 0.9+/-0.48 microM, respectively. The Lance assay was further validated with a diverse panel of literature inhibitors, in which the PKC inhibitors staurosporine, Ro-318220, and the PKA inhibitor Balanol potently inhibited S6K. Dose-response and inhibition mechanism by these inhibitors were also studied. Our data provide a new simplified strategy to achieve rapid production of active S6K and demonstrate utility of the Lance assay for S6K enzyme screen in searching for specific inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号