首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD95 apoptosis resistance of tumor cells is often acquired through mutations in the death domain (DD) of one of the CD95 alleles. Furthermore, Type I cancer cells are resistant to induction of apoptosis by soluble CD95 ligand (CD95L), which does not induce efficient formation of the death-inducing signaling complex (DISC). Here, we report that tumor cells expressing a CD95 allele that lacks a functional DD, splenocytes from heterozygous lpr(cg) mice, which express one mutated CD95 allele, and Type I tumor cells stimulated with soluble CD95L can all die through CD95 when protein synthesis or nuclear factor kappa B is inhibited. This noncanonical form of CD95-mediated apoptosis is dependent on the enzymatic activity of procaspase-8 but does not involve fully processed active caspase-8 subunits. Our data suggest that it is possible to overcome the CD95 apoptosis resistance of many tumor cells that do not efficiently form a DISC through noncanonical activation of the caspase-8 proenzyme.  相似文献   

2.
Caspase-8 (FLICE) can associate with and be activated by CD95 (APO-1/Fas), an apoptosis-inducing member of the Tumour Necrosis Factor receptor family. We find that, in Jurkat T cells, the DNA damaging anti-cancer drug etoposide induces apoptosis and, surprisingly, processing of caspase-8. Therefore, we have investigated whether etoposide involves CD95 receptor activation. We find that etoposide does not induce CD95 ligand expression at the mRNA level. In addition, blocking of CD95 receptor function with a specific antibody does not inhibit etoposide-induced apoptosis. Apparently, in Jurkat cells, etoposide can induce caspase-8 processing and apoptosis in a CD95-independent fashion. Likewise, we find that thymocytes from the CD95-deficient lpr/lpr mouse strain readily undergo apoptosis in response to etoposide. Moreover, since inhibition of the secretory pathway with brefeldin A does not inhibit etoposide-induced apoptosis, we exclude the requirement for a newly synthesizedreceptor ligand to induce the apoptotic pathway. We conclude that, at least in certain cell types, etoposide does not require CD95 receptor function to induce caspase-8 processing and apoptosis.  相似文献   

3.
CD95/CD95L interactions are vital to normal lymphoid homeostasis and in the protection against autoimmunity. To directly assess the effects of CD95L on activated B cell survival and Ig responses, purified human peripheral blood B cells, activated in vitro with SAC + rIL2, were incubated with a soluble CD95L fusion protein (fp) and assayed for apoptosis and IgG/IgM production. CD95L fp reproducibly increased apoptosis of these activated B cells and inhibited their Ig production. However, CD95L fp-mediated effects on activated B cell survival could be uncoupled from those on Ig production in that a soluble CD40L fp was incapable of reversing CD95L fp-mediated downregulation of Ig responses despite inhibiting CD95L fp-mediated apoptosis. Moreover, despite the specific caspase-8 inhibitor z-IETD-fmk substantially protecting transformed CL-01 B cells from CD95L fp-mediated apoptosis and permitting their ongoing proliferation, caspase-8 inhibition had no protective effects on CD95L fp-mediated inhibition of constitutive IgM production by CL-01 B cells. Collectively, these results point to a CD95-based downregulatory pathway in activated B cells that need not necessarily culminate in their death.  相似文献   

4.
Induction of apoptosis in keratinocytes by UV light is a critical event in photocarcinogenesis. Although p53 is of importance in this process, evidence exists that other pathways play a role as well. Therefore, we studied whether the apoptosis-related surface molecule CD95 (Fas/APO-1) is involved. The human keratinocyte cell line HaCaT expresses CD95 and undergoes apoptosis after treatment with UV light or with the ligand of CD95 (CD95L). Incubation with a neutralizing CD95 antibody completely prevented CD95L-induced apoptosis but not UV-induced apoptosis, initially suggesting that the CD95 pathway may not be involved. However, the protease CPP32, a downstream molecule of the CD95 pathway, was activated in UV-exposed HaCaT cells, and UV-induced apoptosis was blocked by the ICE protease inhibitor zVAD, implying that at least similar downstream events are involved in CD95- and UV-induced apoptosis. Activation of CD95 results in recruitment of the Fas-associated protein with death domain (FADD) that activates ICE proteases. Immunoprecipitation of UV-exposed HaCaT cells revealed that UV light also induces recruitment of FADD to CD95. Since neutralizing anti-CD95 antibodies failed to prevent UV-induced apoptosis, this suggested that UV light directly activates CD95 independently of the ligand CD95L. Confocal laser scanning microscopy showed that UV light induced clustering of CD95 in the same fashion as CD95L. Prevention of UV-induced CD95 clustering by irradiating cells at 10°C was associated with a significantly reduced death rate. Together, these data indicate that UV light directly stimulates CD95 and thereby activates the CD95 pathway to induce apoptosis independently of the natural ligand CD95L. These findings further support the concept that UV light can affect targets at the plasma membrane, thereby even inducing apoptosis.  相似文献   

5.
Glucocorticoids (GC) act as potent anti-inflammatory and immunosuppressive agents on a variety of immune cells. However, the exact mechanisms of their action are still unknown. Recently, we demonstrated that GC induce apoptosis in human peripheral blood monocytes. In the present study, we examined the signaling pathway in GC-induced apoptosis. Monocyte apoptosis was demonstrated by annexin V staining, DNA laddering, and electron microscopy. Apoptosis required the activation of caspases, as different caspase inhibitors prevented GC-induced cell death. In addition, the proteolytic activation of caspase-8 and caspase-3 was observed. In additional experiments, we determined the role of the death receptor CD95 in GC-induced apoptosis. CD95 and CD95 ligand (CD95L) were up-regulated in a dose- and time-dependent manner on the cell membrane and also released after treatment with GC. Costimulation with the GC receptor antagonist mifepristone diminished monocyte apoptosis as well as CD95/CD95L expression and subsequent caspase-8 and caspase-3 activation. In contrast, the caspase inhibitor N:-acetyl-Asp-Glu-Val-Asp-aldehyde suppressed caspase-3 activation and apoptosis, but did not down-regulate caspase-8 activation and expression of CD95 and CD95L. Importantly, GC-induced monocyte apoptosis was strongly abolished by a neutralizing CD95L mAb. Therefore, our data suggest that GC-induced monocyte apoptosis is at least partially mediated by an autocrine or paracrine pathway involving the CD95/CD95L system.  相似文献   

6.
When T cells are activated, the expression of the CD95 ligand is elevated, with the purpose of inducing apoptosis in target cells and to later eliminate the activated T cells. We have shown previously that mitogen-activated protein kinase (MAPK or ERK) signaling suppresses CD95-mediated apoptosis in different cellular systems. In this study we examined whether MAPK signaling controls the persistence and CD95-mediated termination of an immune response in activated T cells. Our results show that activation of Jurkat T cells through the T cell receptor immediately suppresses CD95-mediated apoptosis, and that this suppression is mediated by MAPK activation. During the phase of elevated MAPK activity, the activation of caspase-8 and Bid is inhibited, whereas the assembly of a functional death-inducing signaling complex (DISC) is not affected. These results explain the resistance to CD95 responses observed during the early phase of T cell activation and suggest that MAPK-activation deflects DISC signaling from activating caspase-8 and Bid. The physiological relevance of the results was confirmed in activated primary peripheral T cells, in which inhibition of MAPK signaling markedly sensitized the cells to CD95-mediated apoptosis.  相似文献   

7.
Gamma-interferon (IFN-gamma) a cytokine produced by CD4+ T helper type 1 cells, CD8+ T cells and natural killer (NK) cells, plays a central role in the development of humoral and cell-mediated immunity. IFN-gamma participates in the maturation and differentiation of B cells, but it has been previously reported that IFN-gamma may inhibit the early stages of B cell activation. We report that the inhibition of the B lymphoma cell WEHI-279-proliferation induced by IFN-gamma, involves the induction of typical features of apoptosis (nuclear chromatin condensation and fragmentation, cell shrinkage, phosphatidyl-serine (PS) exposure and mitochondrial membrane potential (delta psim) loss). IFN-gamma-mediated B cell apoptosis was decreased by the addition of the T helper type 2 cytokine, IL-4. WEHI-279 cells express CD95 and undergo apoptosis after treatment with either an agonistic anti-CD95 Ab or with a soluble recombinant CD95L. However, incubation with CD95-Fc or TRAIL-R1-Fc fusion proteins, did not prevent IFN-gamma-mediated apoptosis, suggesting that IFN-gamma-mediated apoptosis occurs independently of CD95/CD95L and TRAIL-R/TRAIL interactions. IFN-gamma-mediated apoptosis is associated with caspase-3 activation that can be prevented by the addition of the broad caspase inhibitor zVAD-fmk. These data indicate that IFN-gamma may play a major role in the regulation of B cell apoptosis, and suggest the involvement of an alternative pathway which is independent of the death receptors.  相似文献   

8.
B L Lohman  E S Razvi    R M Welsh 《Journal of virology》1996,70(11):8199-8203
Infection of mice with lymphocytic choriomeningitis virus (LCMV) causes a major expansion of CD8+ T cells followed by a period of immune downregulation that coincides with the induction of lymphocyte apoptosis in the mouse spleen. CD95 (Fas) and its ligand are important for regulating peripheral T-lymphocyte numbers and can mediate apoptosis of mature T lymphocytes. We infected CD95- and CD95L-deficient mice (lpr and gld, respectively) with LCMV to determine if the immune downregulation that occurred following resolution of the LCMV infection was due to a CD95-dependent apoptotic mechanism. Lymphocytes from LCMV-infected lpr and gld mice were capable of normal T-cell expansion and cytolytic function but were, in contrast to activated cells from normal virus-infected mice, relatively more resistant to T-cell receptor-induced apoptosis in vitro. However, in vivo there were significant numbers of apoptotic cells in the spleens of lpr and gld mice recovering from the infection, and the T-cell number and cytolytic activity decreased to normal postinfection levels. Thus, CD95 is not required for the immune downregulation of the CD8+-T-lymphocyte response following acute LCMV infection.  相似文献   

9.
Advanced stages of HIV-1-infection are characterized by progressive CD4+ T cell depletion. Peripheral T cells from HIV-1+ donors show accelerated apoptosis in vitro. The CD95 (APO-1/Fas) receptor/ligand system is involved in this process. To further study deregulation of the CD95 system in peripheral T cells during HIV-1-infection, we measured CD95-expression on CD4+ and CD8+ T cells together with serum levels of soluble CD95 (sCD95) and anti-CD95 autoantibodies in HIV-1+ children and healthy controls. Anti-CD95 levels in HIV-1+ children were significantly elevated when compared to uninfected controls, whereas serum levels of sCD95 were not different. In HIV-1+ children, CD95-expression on CD4+ and CD8+ T cells increased with age. A strong correlation between depletion of CD4+ cells in vivo and increase in CD95-expression on CD4+ T cells was observed. In contrast, such a correlation was not found for CD8+ T cells. A negative correlation between anti-CD95 autoantibody levels and CD4+ T cell counts, that was predicted by multiple linear regression analysis of pooled data, was found in individual patients observed longitudinally by repeated measurements. Since anti-CD95 autoantibodies isolated from HIV-infected adults have previously been shown to induce apoptosis of sensitive target cells in vitro, we speculate that the interaction of these antibodies with CD95-positive and CD95-sensitive T cells in vivo might be involved in progressive T cell loss during HIV-1-infection.  相似文献   

10.
Wang Y  Liu Y  Zhang Y  Peng L  Ma J  Tang Z  Gao W  Zhu Z  Yao Z 《Cytokine》2006,35(3-4):193-199
AIM: Human cytomegalovirus (HCMV) has highly evolved mechanisms for avoiding detection by the host immune system. The aim of this study was to analyze the expression levels of TGFbeta1, soluble form of CD95, CD95 ligand (sCD95 and sCD95L, respectively) in plasma and CD95 expression on CD3(+) cells, CD38 expression on CD8(+) cells in liver transplanted recipients with active HCMV infection. METHODS: Blood samples were collected from 15 liver transplanted recipients with active HCMV infection and 15 recipients without HCMV infection. CD95 expression on CD3(+) cells and CD38 expression on CD8(+) cells were quantitatively detected with two-color fluorescence activated cell sorter (FACS) analysis. Lymphocyte surface phenotypes of CD4 and CD8 were detected with FACS analysis. Plasma sCD95, sCD95L and TGFbeta1 levels were determined with enzyme linked-immuno-sorbent assay (ELISA). The results were compared with that from 15 healthy individuals. RESULTS: CD95 expression on CD3(+) T-cells and CD38 expression on CD8(+) cells were significantly increased in active HCMV infection group compared with that in stable group or healthy group (P<0.01). No significant difference was seen between stable group and healthy group (P>0.05). The percentages of CD4(+) T-cell and CD4/CD8 ratio in active HCMV infection group were significantly lower than the values in stable group and healthy group (P<0.05). Plasma levels of TGFbeta1 and sCD95 were significantly increased in active HCMV infection group compared to stable group and healthy group (P<0.05). In contrast, plasma levels of sCD95L in healthy group were not significantly different from that expressed in active HCMV infection group and stable group (P>0.05). CONCLUSION: HCMV suppress proliferation of activated T cells by apoptosis and by releasing immunosuppressive cytokine TGFbeta1. This may provide an important clue to a better understanding of the pathogenesis in liver transplanted recipients with active HCMV infection.  相似文献   

11.
The elimination of activated T cells is important to maintain homeostasis and avoid immunopathology. CD95 (Fas/APO-1) has been identified as a death mediator for activated T cells in vitro but the function of CD95 in death of mature T cells in vivo is still controversial. Here we show that triggering of the costimulatory TNF receptor family member CD27 sensitized T cells for CD95-induced apoptosis. CD95-deficient (lpr/lpr) T cells massively expanded and differentiated into IFN-gamma-secreting effector cells in transgenic mice that constitutively express the CD27 ligand, CD70. Concomitantly, CD95-deficient CD70 transgenic mice became moribund by 4 wk of age with severe liver pathology and bone marrow failure. These findings establish that CD95 is a critical regulator of effector T cell homeostasis in chronic immune activation.  相似文献   

12.
Susceptibility to CD95 (Fas/APO-1)-mediated apoptosis in human glioma cells depends on CD95 expression and unknown factors that regulate signal transduction. Thus, LN-18 cells are highly sensitive to CD95 ligand (CD95L) whereas LN-229 cells require coexposure to inhibitors of RNA or protein synthesis for induction of apoptosis. Here, we report that caspase 8 and 3 activation, poly(ADP-ribose)polymerase cleavage and apoptosis are inhibited by the lipoxygenase inhibitor, nordihydroguaretic acid (NDGA), or ectopic expression of crm-A or bcl-2. CD95L-induced glioma cell apoptosis does not involve ceramide generation. Apoptosis induced by exogenous ceramide resembles CD95-mediated apoptosis in that bcl-2 is protective but differs in that NDGA and crm-A have no effect and in that cycloheximide (CHX) inhibits rather than potentiates ceramide-induced cell death. We conclude that caspase 8 and caspase 3 activation, but not ceramide generation, are required for CD95 ligand-induced apoptosis of glioma cells and that bcl-2, crm-A and NDGA all act upstream of caspases to inhibit apoptosis.  相似文献   

13.
The CD95 (APO-1/Fas) system can mediate apoptosis in immune cells as well as in tumour cells, where it may contribute to tumour immune-escape. On the other hand, its induction by anticancer drugs may lead to tumour reduction. Interferongamma (IFNgamma) increases the sensitivity of tumour cell lines to anti-CD95 antibody-mediated apoptosis. We describe induction of apoptosis by IFNgamma through the expression of CD95 and its ligand (CD95L) in human neuroblastoma cell lines. Neuroblastoma cells showed low constitutive expression of CD95 and CD95L. Subsequent to IFNgamma-modulated increase in CD95 and CD95L mRNA as well as protein levels, apoptosis was observed. Our results demonstrated that cytokine-mediated apoptosis was mediated through the activation of the CD95/CD95L autocrine circuit since: (i) cell death occurred following CD95/CD95L expression and correlated with CD95 and CD95L expression levels, (ii) failed to occur in a clone which weakly upregulated CD95 and lacked CD95L induction after IFNgamma stimulation, (iii) was at least partially inhibited by using blocking F(ab')2 anti-CD95 antibody fragments and the recombinant Fas-Fc protein, that prevented the interaction between CD95 and CD95L. The intracellular molecular mechanisms elicited by IFNgamma are clearly highly complex, with several signalling pathways being activated, including the CD95 system. These findings suggest that IFNgamma may have a significant potential in the therapy of neuroblastoma in vivo.  相似文献   

14.
Expression of CD95 ligand on parenchymal, epithelial, or tumor cells has been suggested to downregulate the immune response and to control lymphocyte activation. Suppression might be mediated by induction of apoptosis or by inhibition of Ca(2+) channels upon CD95 triggering. We, therefore, aimed to employ this model to modify the immune response to an antigen presented to cytotoxic T cells by antigen-presenting MC57 cells. This model would be very useful to specifically downregulate the immune response to autoantigens in autoimmune situations. However, cytotoxic T cell lines tested in the present study were resistant to CD95 ligand expression on antigen-presenting MC57 cells. In addition, coincubation of the lymphocytes with antigen presenting cells failed to block cytotoxicity mediated by the T lymphocytes. We, therefore, conclude that single expression of CD95 ligand on antigen-presenting cells is insufficient to specifically downregulate an immune response by CD8(+-)triggered immune response.  相似文献   

15.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent inducer of apoptosis in tumor cells but not in healthy cells. Similar to CD95 ligand (CD95L), TRAIL signaling requires ligand-receptor interaction; the downstream signaling molecules, such as Fas-associated death domain and caspase-8, also seem similar. Using cells stably expressing TRAIL and CD95L, we show that both TRAIL and CD95L induce apoptosis in the rat colon carcinoma cell line CC531. The mitochondrial damage (loss of mitochondrial membrane potential (MMP) and release of cytochrome c) observed after co-incubation with TRAIL-expressing cells occurs much earlier than that observed with CD95L-expressing cells. The decrease in MMP induced by both ligands was caspase-8-mediated; no difference in caspase-8 activation by TRAIL and CD95L was found. TRAIL, but not CD95L, induced activation of caspase-10. bcl-2 overexpression could not prevent TRAIL-induced mitochondrial dysfunction, whereas it completely prevented CD95L-mediated loss of MMP and cytochrome c release. The selective effect of TRAIL on tumor cells and the apparent inability of bcl-2 to block TRAIL-induced apoptosis suggest that TRAIL may offer a lead for cancer therapy in the future.  相似文献   

16.
Activation of the cell surface CD95 receptor triggers a cascade of signaling events, including assembly of the death-inducing signaling complex (DISC), that culminate in cellular apoptosis. In this study, we demonstrate a general requirement of receptor internalization for CD95 ligand-mediated DISC amplification, caspase activation and apoptosis in type I cells. Recruitment of DISC components to the activated receptor predominantly occurs after the receptor has moved into an endosomal compartment and blockade of CD95 internalization impairs DISC formation and apoptosis. In contrast, CD95 ligand stimulation of cells unable to internalize CD95 results in activation of proliferative Erk and NF-kappaB signaling pathways. Hence, the subcellular localization and internalization pathways of CD95 play important roles in controlling activation of distinct signaling cascades to determine divergent cellular fates.  相似文献   

17.
Wang F  He W  Zhou H  Yuan J  Wu K  Xu L  Chen ZK 《Cellular immunology》2007,250(1-2):68-74
CD8+ alloreactive T cells are the key mediators of accelerated rejection. Vigorous CD8+ alloreactive T cells responses against alloantigens, which is the main effector mechanism in acute allograft rejection, has been well described. But the molecular mechanisms to dampen activated CD8+ T cells are largely unknown. On the other hand, Tim-3 is a molecule expressed on terminally differentiated CD4+ Th1 cells. Engaging Tim-3 with its ligand galectin-9 causes an inhibitory signal, resulting in apoptosis of Th1 cells and negatively regulates Th1 type immunity. However, the question whether CD8+ T cells express surface molecular Tim-3 has not been fully elucidated. In this study, we have investigated which CD8+ subset express molecular Tim-3 by flow cytometric assay. In addition, cytotoxic assay was applied to analyze whether CD8+ alloreactive T cells were sensitive to galectin-9 induced apoptosis. Here, our results demonstrated that Tim-3 was expressed on activated CD8+ alloreactive T cells (CD8+CD44highCD62Llow), but not expressed on na?ve CD8+ T cells. Furthermore, alloreactive CD8+ cytotoxic T cells were sensitive to galectin-9 induced apoptosis both in vitro and vivo, resulting in attenuation of CD8+ alloreactive T cells mediated cytotoxicity and prolonged survival of skin graft.  相似文献   

18.
The CD95 (APO-1/Fas) system plays a critical role in activation-induced cell death (AICD) of T cells. We previously described two distinct CD95 (APO-1/Fas) signaling pathways: 1) type I cells show strong death-inducing signaling complex (DISC) formation and mitochondria-independent apoptosis and 2) DISC formation is reduced in type II cells, leading to mitochondria-dependent apoptosis. To investigate the relevance of these pathways, we set up an in vitro model that mimics the initiation and the down phase of an immune response, respectively. Freshly activated human T cells (initiation) are resistant toward CD95-mediated AICD despite high expression of CD95. We previously reported that these T cells show reduced DISC formation. In this study, we show that freshly activated T cells are CD95-type II cells that show high expression levels of Bcl-x(L) and display a block in the mitochondrial apoptosis pathway. Furthermore, we show that, upon prolonged culture (down phase), human T cells undergo a switch from type II to type I cells that renders T cells sensitive to CD95-mediated AICD. Finally, we demonstrate that this switch is dependent on the presence of IL-2. Our observations reveal for the first time that the existence of coexisting CD95 signaling pathways is of physiological relevance.  相似文献   

19.
The role of CD95 and CD95 ligand in cancer   总被引:1,自引:0,他引:1  
CD95 (Fas/APO-1) and its ligand, CD95L, have long been viewed as a death receptor/death ligand system that mediates apoptosis induction to maintain immune homeostasis. In addition, these molecules are important in the immune elimination of virus-infected cells and cancer cells. CD95L was, therefore, considered to be useful for cancer therapy. However, major side effects have precluded its systemic use. During the last 10 years, it has been recognized that CD95 and CD95L have multiple cancer-relevant nonapoptotic and tumor-promoting activities. CD95 and CD95L were discovered to be critical survival factors for cancer cells, and were found to protect and promote cancer stem cells. We now discuss five different ways in which inhibiting or eliminating CD95L, rather than augmenting, may be beneficial for cancer therapy alone or in combination with standard chemotherapy or immune therapy.  相似文献   

20.
CD95 ligand (CD95L) immunohistochemistry: a critical study on 12 antibodies   总被引:8,自引:0,他引:8  
In recent years, some studies on the expression of CD95(Fas/APO-1) ligand (CD95L) in tissues or cells raised concerns about the specificity of the antibodies used. We therefore tested 12 CD95L antibodies for their reliability in immunocyto/histochemistry by (i) staining CD95L-transfected and control CV-1/EBNA cells and (ii) comparing staining patterns in immunohistochemically labeled tissue sections with the localization of CD95L+ cells in in situ hybridization. While G247-4, NOK-1, NOK-2, 4H9, and MIKE-1 stained CD95L-transfected cells and did not significantly bind to controls, G247-4 was the only antibody giving satisfying signals in tissue sections perfectly matching the distribution of CD95L+ cells by in situ hybridization. MAb 33, C-20, and N-20 comparably stained both transfected and control cells and showed considerable background or falsely positive staining in sections. MIKE-2, 8B8, A11, and 4A5 did not or only very faintly bind to either cells and, thus, were not tested on sections. We conclude that G247-4 is the only tested antibody that is recommendable for immunohistochemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号