首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is not known how Mex67p and Mtr2p, which form a heterodimer essential for mRNA export, transport mRNPs through the nuclear pore. Here, we show that the Mex67p/Mtr2p complex binds to all of the repeat types (GLFG, FXFG, and FG) found in nucleoporins. For this interaction, complex formation between Mex67p and Mtr2p has to occur. MEX67 and MTR2 also genetically interact with different types of repeat nucleoporins, such as Nup116p, Nup159p, Nsp1p, and Rip1p/Nup40p. These data suggest a model in which nuclear mRNA export requires the Mex67p/Mtr2p heterodimeric complex to directly contact several repeat nucleoporins, organized in different nuclear pore complex subcomplexes, as it carries the mRNP cargo through the nuclear pore.  相似文献   

2.
Nuclear export of mRNAs and pre-ribosomal subunits (pre40S and pre60S) is fundamental to all eukaryotes. While genetic approaches in budding yeast have identified bona fide export factors for mRNAs and pre60S subunits, little is known regarding nuclear export of pre40S subunits. The yeast heterodimeric transport receptor Mex67-Mtr2 (TAP-p15 in humans) binds mRNAs and pre60S subunits in the nucleus and facilitates their passage through the nuclear pore complex (NPC) into the cytoplasm by interacting with Phe-Gly (FG)-rich nucleoporins that line its transport channel. By exploiting a combination of genetic, cell-biological, and biochemical approaches, we uncovered an unanticipated role of Mex67-Mtr2 in the nuclear export of 40S pre-ribosomes. We show that recruitment of Mex67-Mtr2 to pre40S subunits requires loops emanating from its NTF2-like domains and that the C-terminal FG-rich nucleoporin interacting UBA-like domain within Mex67 contributes to the transport of pre40S subunits to the cytoplasm. Remarkably, the same loops also recruit Mex67-Mtr2 to pre60S subunits and to the Nup84 complex, the respective interactions crucial for nuclear export of pre60S subunits and mRNAs. Thus Mex67-Mtr2 is a unique transport receptor that employs a common interaction surface to participate in the nuclear export of both pre-ribosomal subunits and mRNAs. Mex67-Mtr2 could engage a regulatory crosstalk among the three major export pathways for optimal cellular growth and proliferation.  相似文献   

3.
The yeast Mex67-Mtr2 complex and its homologous metazoan counterpart TAP-p15 operate as nuclear export receptors by binding and translocating mRNA through the nuclear pore complexes. Here, we show how Mex67-Mtr2 can also function in the nuclear export of the ribosomal 60S subunit. Biochemical and genetic studies reveal a previously unrecognized interaction surface on the NTF2-like scaffold of the Mex67-Mtr2 heterodimer, which in vivo binds to pre-60S particles and in vitro can interact with 5S rRNA. Crucial structural requirements for this binding platform are loop insertions in the middle domain of Mex67 and Mtr2, which are absent from human TAP-p15. Notably, when the positively charged amino acids in the Mex67 loop are mutated, interaction of Mex67-Mtr2 with pre-60S particles and 5S rRNA is inhibited, and 60S subunits, but not mRNA, accumulate in the nucleus. Thus, the general mRNA exporter Mex67-Mtr2 contains a distinct electrostatic interaction surface for transporting 60S preribosomal cargo.  相似文献   

4.
We identified the Schizosaccharomyces pombe mex67 gene (spmex67) as a multicopy suppressor of rae1-167 nup184-1 synthetic lethality and the rae1-167 ts mutation. spMex67p, a 596-amino-acid-long protein, has considerable sequence similarity to the Saccharomyces cerevisiae Mex67p (scMex67p) and human Tap. In contrast to scMEX67, spmex67 is essential for neither growth nor nuclear export of mRNA. However, an spmex67 null mutation (Deltamex67) is synthetically lethal with the rae1-167 mutation and accumulates poly(A)(+) RNA in the nucleus. We identified a central region (149 to 505 amino acids) within spMex67p that associates with a complex containing Rae1p that complements growth and mRNA export defects of the rae1-167 Deltamex67 synthetic lethality. This region is devoid of RNA-binding, N-terminal nuclear localization, and the C-terminal nuclear pore complex-targeting regions. The (149-505)-green fluorescent protein (GFP) fusion is found diffused throughout the cell. Overexpression of spMex67p inhibits growth and mRNA export and results in the redistribution of the diffused localization of the (149-505)-GFP fusion to the nucleus and the nuclear periphery. These results suggest that spMex67p competes for essential mRNA export factor(s). Finally, we propose that the 149-505 region of spMex67p could act as an accessory factor in Rae1p-dependent transport and that spMex67p participates at various common steps with Rae1p export complexes in promoting the export of mRNA.  相似文献   

5.
6.
Yra1p is an essential nuclear protein which belongs to the evolutionarily conserved REF (RNA and export factor binding proteins) family of hnRNP-like proteins. Yra1p contributes to mRNA export in vivo and directly interacts with RNA and the shuttling mRNP export receptor Mex67p in vitro. Here we describe a second nonessential Saccharomyces cerevisiae family member, called Yra2p, which is able to complement a YRA1 deletion when overexpressed. Like other REF proteins, Yra1p and Yra2p consist of two highly conserved N- and C-terminal boxes and a central RNP-like RNA-binding domain (RBD). These conserved regions are separated by two more variable regions, N-vr and C-vr. Surprisingly, the deletion of a single conserved box or the deletion of the RBD in Yra1p does not affect viability. Consistently, neither the conserved N and C boxes nor the RBD is required for Mex67p and RNA binding in vitro. Instead, the N-vr and C-vr regions both interact with Mex67p and RNA. We further show that Yra1 deletion mutants which poorly interact with Mex67p in vitro affect the association of Mex67p with mRNP complexes in vivo and are paralleled by poly(A)(+) RNA export defects. These observations support the idea that Yra1p promotes mRNA export by facilitating the recruitment of Mex67p to the mRNP.  相似文献   

7.
mRNA export is mediated by Mex67p:Mtr2p/NXF1:p15, a conserved heterodimeric export receptor that is thought to bind mRNAs through the RNA binding adaptor protein Yra1p/REF. Recently, mammalian SR (serine/arginine-rich) proteins were shown to act as alternative adaptors for NXF1-dependent mRNA export. Npl3p is an SR-like protein required for mRNA export in S. cerevisiae. Like mammalian SR proteins, Npl3p is serine-phosphorylated by a cytoplasmic kinase. Here we report that this phosphorylation of Npl3p is required for efficient mRNA export. We further show that the mRNA-associated fraction of Npl3p is unphosphorylated, implying a subsequent nuclear dephosphorylation event. We present evidence that the essential, nuclear phosphatase Glc7p promotes dephosphorylation of Npl3p in vivo and that nuclear dephosphorylation of Npl3p is required for mRNA export. Specifically, recruitment of Mex67p to mRNA is Glc7p dependent. We propose a model whereby a cycle of cytoplasmic phosphorylation and nuclear dephosphorylation of shuttling SR adaptor proteins regulates Mex67p:Mtr2p/NXF1:p15-dependent mRNA export.  相似文献   

8.
The transport receptor Mex67-Mtr2 functions in mRNA export, and also by a loop-confined surface on the heterodimer binds to and exports pre-60S particles. We show that Mex67-Mtr2 through the same surface that recruits pre-60S particles interacts with the Nup84 complex, a structural module of the nuclear pore complex devoid of Phe-Gly domains. In vitro, pre-60S particles and the Nup84 complex compete for an overlapping binding site on the loop-extended Mex67-Mtr2 surface. Chemical crosslinking identified Nup85 as the subunit in the Nup84 complex that directly binds to the Mex67 loop. Genetic studies revealed that this interaction is crucial for mRNA export. Notably, pre-60S subunit export impaired by mutating Mtr2 or the 60S adaptor Nmd3 could be partially restored by second-site mutation in Nup85 that caused dissociation of Mex67-Mtr2 from the Nup84 complex. Thus, the Mex67-Mtr2 export receptor employs a versatile binding platform on its surface that could create a crosstalk between mRNA and ribosome export pathways.  相似文献   

9.
The export of mRNA from the nucleus to the cytoplasm involves interactions of proteins with mRNA and the nuclear pore complex. We isolated Crp79p, a novel mRNA export factor from the same synthetic lethal screen that led to the identification of spMex67p in Schizosaccharomyces pombe. Crp79p is a 710-amino-acid-long protein that contains three RNA recognition motif domains in tandem and a distinct C-terminus. Fused to green fluorescent protein (GFP), Crp79p localizes to the cytoplasm. Like Mex67p, Crp79-GFP binds poly(A)(+) RNA in vivo, shuttles between the nucleus and the cytoplasm, and contains a nuclear export activity at the C-terminus that is Crm1p-independent. All of these properties are essential for Crp79p to promote mRNA export. Crp79p import into the nucleus depends on the Ran system. A domain of spMex67p previously identified as having a nuclear export activity can functionally substitute for the nuclear export activity at the C-terminus of Crp79p. Although both Crp79p and spMex67p function to export mRNA, Crp79p does not substitute for all of spMex67p functions and probably is not a functional homologue of spMex67p. We propose that Crp79p is a nonessential mRNA export carrier in S. pombe.  相似文献   

10.
11.
The DEAD-box RNA-helicase Dbp5/Rat8 is known for its function in nuclear mRNA export, where it displaces the export receptor Mex67 from the mRNA at the cytoplasmic side of the nuclear pore complex (NPC). Here we show that Dbp5 is also required for the nuclear export of both pre-ribosomal subunits. Yeast temperature-sensitive dbp5 mutants accumulate both ribosomal particles in their nuclei. Furthermore, Dbp5 genetically and physically interacts with known ribosomal transport factors such as Nmd3. Similar to mRNA export we show that also for ribosomal transport Dbp5 is required at the cytoplasmic side of the NPC. However, unlike its role in mRNA export, Dbp5 does not seem to undergo its ATPase cycle for this function, as ATPase-deficient dbp5 mutants that selectively inhibit mRNA export do not affect ribosomal transport. Furthermore, mutants of GLE1, the ATPase stimulating factor of Dbp5, show no major ribosomal export defects. Consequently, while Dbp5 uses its ATPase cycle to displace the export receptor Mex67 from the translocated mRNAs, Mex67 remains bound to ribosomal subunits upon transit to the cytoplasm, where it is detectable on translating ribosomes. Therefore, we propose a model, in which Dbp5 supports ribosomal transport by capturing ribosomal subunits upon their cytoplasmic appearance at the NPC, possibly by binding export factors such as Mex67. Thus, our findings reveal that although different ribonucleoparticles, mRNAs and pre-ribosomal subunits, use shared export factors, they utilize different transport mechanisms.  相似文献   

12.
13.
14.
15.
Lund MK  Guthrie C 《Molecular cell》2005,20(4):645-651
Eukaryotic mRNAs are exported from the nucleus to the cytoplasm as complex mRNA-protein particles (mRNPs), and translocation through the nuclear pore complex (NPC) is accompanied by extensive structural changes of the mRNP. We have tested the hypothesis that the DEAD-box ATPase Dbp5p is required for such an mRNP rearrangement. In dbp5 mutant cells, the mRNA export receptor Mex67p accumulates on mRNA. This aberrant accumulation of Mex67p with RNA and the cold-sensitive growth phenotype of a dbp5 allele are suppressed by a mex67 mutation. Moreover, Mex67 bound mRNA accumulates at the nuclear rim in a temperature-sensitive dbp5 mutant when the nuclear exosome is impaired. Importantly, although accumulation of Mex67p-containing mRNPs is also observed when a nuclear basket component is mutated, these mRNPs still contain the nuclear export factor Yra1p. In contrast, the dbp5-trapped mRNPs lack Yra1p. We propose that Dbp5p's function is specifically required to displace Mex67p from exported mRNPs, thus terminating export.  相似文献   

16.
Many messenger RNA export proteins have been identified; yet the spatial and temporal activities of these proteins and how they determine directionality of messenger ribonucleoprotein (mRNP) complex export from the nucleus remain largely undefined. Here, the bacteriophage PP7 RNA-labeling system was used in Saccharomyces cerevisiae to follow single-particle mRNP export events with high spatial precision and temporal resolution. These data reveal that mRNP export, consisting of nuclear docking, transport, and cytoplasmic release from a nuclear pore complex (NPC), is fast (∼200 ms) and that upon arrival in the cytoplasm, mRNPs are frequently confined near the nuclear envelope. Mex67p functions as the principal mRNP export receptor in budding yeast. In a mex67-5 mutant, delayed cytoplasmic release from NPCs and retrograde transport of mRNPs was observed. This proves an essential role for Mex67p in cytoplasmic mRNP release and directionality of transport.  相似文献   

17.
18.
19.
Scyl1 is an evolutionarily conserved N-terminal protein kinase-like domain protein that plays a role in COP1-mediated retrograde protein trafficking in mammalian cells. Furthermore, loss of Scyl1 function has been shown to result in neurodegenerative disorders in mice. Here, we report that Scyl1 is also a cytoplasmic component of the mammalian nuclear tRNA export machinery. Like exportin-t, overexpression of Scyl1 restored export of a nuclear export-defective serine amber suppressor tRNA mutant in COS-7 cells. Scyl1 binds tRNA saturably, and associates with the nuclear pore complex by interacting, in part, with Nup98. Scyl1 copurifies with the nuclear tRNA export receptors exportin-t and exportin-5, the RanGTPase, and the eukaryotic elongation factor eEF-1A, which transports aminoacyl-tRNAs to the ribosomes. Scyl1 interacts directly with exportin-t and RanGTP but not with eEF-1A or RanGDP in vitro. Moreover, exportin-t containing tRNA, Scyl1, and RanGTP form a quaternary complex in vitro. Biochemical characterization also suggests that the nuclear aminoacylation-dependent pathway is primarily responsible for tRNA export in mammalian cells. These findings together suggest that Scyl1 participates in the nuclear aminoacylation-dependent tRNA export pathway and may unload aminoacyl-tRNAs from the nuclear tRNA export receptor at the cytoplasmic side of the nuclear pore complex and channels them to eEF-1A.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号