首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K M Rose  P A Ruch  S T Jacob 《Biochemistry》1975,14(16):3598-3604
Factors affecting the inhibition of RNA polymerase II from rat liver by the O-n-octyloxime of 3-formylrifamycin SV (AF/013) were investigated. Using either native or denatured calf-thymus DNA as template, almost complete inhibition of RNA polymerase II was observed when AF/013 was added directly to the enzyme. Considerable resistance to AF/013 was observed when RNA polymerase II was preincubated with denatured DNA at either 0 or 37 degrees. However, under similar conditions, no resistance was observed when enzyme was preincubated with native DNA. Only when AF/013 was added to the ongoing reaction using native DNA did a resistance to AF/013 occur. The inhibition of RNA polymerase II by AF/013 was competitive with respect to all four nucleoside triphosphate substrates. The inhibition by AF/013 remaining after enzyme-DNA complex formation also appeared competitive with nucleoside triphosphate levels. The effect of exogenous protein (bovine serum albumin, BSA) on the inhibition of RNA polymerase II was also investigated. BSA reduced the extent of inhibition by AF/013, but did not alter the competitive nature of inhibition. Concurrently, the inhibition of highly purified nuclear poly(A) polymerase from rat liver, a template independent enzyme which incorporates AMP in a chain elongation reaction, was examined. As in the case of RNA polymerase, poly(A) polymerase was inhibited by AF/013 in a manner competitive with the nucleoside triphosphate substrate. The competitive nature of inhibition of RNA polymerase by AF/013 with respect to all four nucleoside triphosphate substrates, before and after enzyme-DNA complex formation, as well as the competitive nature of inhibition of poly(A) polymerase with respect to ATP tend to indicate that the major effect of AF/013 on RNA polymerase II is at the level of the substrate binding as opposed to a specific inhibition of initiation.  相似文献   

2.
3.
When preparations of chick oviduct progesterone receptor, labeled with [3H]progesterone, are suitably incubated with o-phenanthroline or rifamycin AF/013, the ability of the [3H]progesterone-receptor to bind to purified oviduct nuclei is almost completely abolished, although the steroid-receptor complex itself remains essentially intact. m-Phenanthroline and rifampicin do not cause significant inhibition of nuclear-binding ability. These findings are discussed in relation to known effects of the same compounds on nucleic acid polymerases. The effectiveness of o-phenanthroline suggests that the receptor may be a metalloprotein in which the metal ion participates in the attachment of receptor to nuclear binding sites.  相似文献   

4.
The androgen receptor (AR) regulates networks of genes in response to the steroid hormones testosterone and dihydrotestosterone. The receptor protein is made up of both stably folded globular domains, involved in hormone and DNA binding, and regions of intrinsic disorder, including the N-terminal domain (NTD). The AR-NTD has a modular activation function (termed AF1) and is important for gene regulation, participating in multiple protein-protein interactions. Biophysical studies have revealed that AR-NTD/AF1 has limited stable secondary structure and conforms to a 'collapsed disordered' conformation. The AR-NTD/AF1 has the propensity to adopt an α-helical conformation in response to a natural osmolyte or a co-regulatory binding partner. The AR is a key drug target in the management of advanced prostate cancer and recently a small molecule inhibitor was identified that interacts with the NTD/AF1 and impairs protein-protein interactions and recruitment of the receptor to target genes. In this review the role of intrinsic disorder in AR function is discussed along with the potential to develop new drugs that will target the structurally plastic NTD.  相似文献   

5.
Gene activation by steroid hormone receptors involves the recruitment of the steroid receptor coactivator (SRC)/p160 coactivator LXXLL motifs to activation function 2 (AF2) in the ligand binding domain. For the androgen receptor (AR), AF2 also serves as the interaction site for the AR NH(2)-terminal FXXLF motif in the androgen-dependent NH(2)-terminal and carboxyl-terminal (N/C) interaction. The relative importance of the AR AF2 site has been unclear, since the AR FXXLF motif interferes with coactivator recruitment by competitive inhibition of LXXLL motif binding. In this report, we identified the X chromosome-linked melanoma antigen gene product MAGE-11 as an AR coregulator that specifically binds the AR NH(2)-terminal FXXLF motif. Binding of MAGE-11 to the AR FXXLF alpha-helical region stabilizes the ligand-free AR and, in the presence of an agonist, increases exposure of AF2 to the recruitment and activation by the SRC/p160 coactivators. Intracellular association between AR and MAGE-11 is supported by their coimmunoprecipitation and colocalization in the absence and presence of hormone and by competitive inhibition of the N/C interaction. AR transactivation increases in response to MAGE-11 and the SRC/p160 coactivators through mechanisms that include but are not limited to the AF2 site. MAGE-11 is expressed in androgen-dependent tissues and in prostate cancer cell lines. The results suggest MAGE-11 is a unique AR coregulator that increases AR activity by modulating the AR interdomain interaction.  相似文献   

6.
7.
The effect of several rifamycin derivatives on poly(A) synthesis in vitro was tested using purified rat liver mitochondrial poly(A) polymerase assayed with an exogenous primer. When used at a concentration of 300 μg/ml, derivatives AF/013, PR/19, AF/AETP, M/88 and AF/ABDP completely inhibited activity corresponding to 50 μg of enzyme protein. Under similar conditions, derivatives DMAO and AF/MO failed to inhibit enzyme activity. Studies with PR/19 showed that the drug interacted directly with the enzyme molecule and did not affect the enzyme-primer complex formation. The inhibition by the drug could be reversed by increasing the substrate (ATP) concentration. It is concluded that some rifamycin derivatives can specifically inhibit template-independent nucleotide chain elongation reactions.  相似文献   

8.
Nuclear receptor corepressor (N-CoR) and silencing mediator of retinoid and thyroid hormone receptors (SMRT) form heterogeneous complexes with various histone deacetylases (HDACs). In this report, we found that ER alpha-Delta AF2, a mutant estrogen receptor alpha (ER alpha) deleted for the C-terminal activation function 2 (AF2) core domain, directs estradiol (E(2))-dependent repression and impairs E(2)-induced transactivation by wild type ER alpha. This repression required coexpressed BRG1 in SW-13 cells that lack BRG1, the ATPase constituent of the chromatin-remodeling SWI.SNF complex, and was abolished by HDAC inhibitor trichostatin A. We further demonstrated that ER alpha-Delta AF2 constitutively associates with SMRT but binds DNA in an E(2)-dependent manner in vivo. These results suggest that ER alpha-Delta AF2 and similar mutant receptors recently found associated with certain tumors may actively perturb the normal E(2) signaling via SWI/SNF, N-CoR/SMRT, and HDAC.  相似文献   

9.
10.
11.
12.
13.
14.
15.
Natural variations of wild Caenorhabditis elegans isolates having either Phe-215 or Val-215 in NPR-1, a putative orphan neuropeptide Y-like G protein-coupled receptor, result in either "social" or "solitary" feeding behaviors (de Bono, M., and Bargmann, C. I. (1998) Cell 94, 679-689). We identified a nematode peptide, GLGPRPLRF-NH2 (AF9), as a ligand activating the cloned NPR-1 receptor heterologously expressed in mammalian cells. Shifting cell culture temperatures from 37 to 28 degrees C, implemented 24 h after transfections, was essential for detectable functional expression of NPR-1. AF9 treatments linked both cloned receptor variants to activation of Gi/Go proteins and cAMP inhibition, thus allowing for classification of NPR-1 as an inhibitory G protein-coupled receptor. The Val-215 receptor isoform displayed higher binding and functional activity than its Phe-215 counterpart. This finding parallels the in vivo observation of a more potent repression of social feeding by the npr-1 gene encoding the Val-215 form of the receptor, resulting in dispersing (solitary) animals. Since neuropeptide Y shows no sequence homology to AF9 and was functionally inactive at the cloned NPR-1, we propose to rename NPR-1 and refer to it as an AF9 receptor, AF9-R1.  相似文献   

16.
17.
Rahman MM  McFadden G 《Journal of virology》2011,85(23):12505-12517
The myxoma virus (MYXV)-encoded pyrin domain-containing protein M013 coregulates inflammatory responses mediated by both the inflammasome and the NF-κB pathways. Infection of human THP-1 monocytic cells with a MYXV construct deleted for the M013 gene (vMyxM013-KO), but not the parental MYXV, activates both the inflammasome and NF-κB pathways and induces a spectrum of proinflammatory cytokines and chemokines, like interleukin-1β (IL-1β), tumor necrosis factor (TNF), IL-6, and monocyte chemoattractant protein 1. Here, we report that vMyxM013-KO virus-mediated activation of inflammasomes and secretion of IL-1β are dependent on the adaptor protein ASC, caspase-1, and NLRP3 receptor. However, vMyxM013-KO virus-mediated activation of NF-κB signaling, which induces TNF secretion, was independent of ASC, caspase-1, and either the NLRP3 or AIM2 inflammasome receptors. We also report that early synthesis of pro-IL-1β in response to vMyxM013-KO infection is dependent upon the components of the inflammasome complex. Activation of the NLRP3 inflammasome and secretion of IL-1β was also dependent on the release of cathepsin B and production of reactive oxygen species (ROS). By using small interfering RNA screening, we further demonstrated that, among the RIG-I-like receptors (RLRs) and Toll-like receptors (TLRs), only TLR2, TLR6, TLR7, and TLR9 contribute to the NF-κB-dependent secretion of TNF and the inflammasome-dependent secretion of IL-1β in response to vMyxM013-KO virus infection. Additionally, we demonstrate that early triggering of the mitogen-activated protein kinase pathway by vMyxM013-KO virus infection of THP-1 cells plays a critical common upstream role in the coordinate induction of both NF-κB and inflammasome pathways. We conclude that an additional cellular sensor(s)/receptor(s) in addition to the known RLRs/TLRs plays a role in the M013 knockout virus-induced activation of NF-κB pathway signaling, but the activation of inflammasomes entirely depends on sensing by the NLRP3 receptor in response to vMyxM013-KO infection of human myeloid cells.  相似文献   

18.
19.
Glucose-dependent insulinotropic polypeptide (GIP) is an endogenous hormonal factor (incretin) that, upon binding to its receptor (GIPr; a class B G-protein-coupled receptor), stimulates insulin secretion by beta cells in the pancreas. There has been a lack of potent inhibitors of the GIPr with prolonged in vivo exposure to support studies on GIP biology. Here we describe the generation of an antagonizing antibody to the GIPr, using phage and ribosome display libraries. Gipg013 is a specific competitive antagonist with equally high potencies to mouse, rat, dog, and human GIP receptors with a Ki of 7 nm for the human GIPr. Gipg013 antagonizes the GIP receptor and inhibits GIP-induced insulin secretion in vitro and in vivo. A crystal structure of Gipg013 Fab in complex with the human GIPr extracellular domain (ECD) shows that the antibody binds through a series of hydrogen bonds from the complementarity-determining regions of Gipg013 Fab to the N-terminal α-helix of GIPr ECD as well as to residues around its highly conserved glucagon receptor subfamily recognition fold. The antibody epitope overlaps with the GIP binding site on the GIPr ECD, ensuring competitive antagonism of the receptor. This well characterized antagonizing antibody to the GIPr will be useful as a tool to further understand the biological roles of GIP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号