首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The catalytic nucleotide binding subunit (subunit A) of the vacuolar proton-translocating ATPase (or V-ATPase) is homologous to the beta-subunit of the F-ATPase but contains a 90-amino acid insert not present in the beta-subunit, termed the nonhomologous region. We previously demonstrated that mutations in this region lead to changes in coupling of proton transport and ATPase activity and to inhibition of in vivo dissociation of the V-ATPase complex, an important regulatory mechanism (Shao, E., Nishi T., Kawasaki-Nishi, S., and Forgac, M. (2003) J. Biol. Chem. 278, 12985-12991). Measurement of the ATP dependence of coupling for the wild type and mutant proteins demonstrates that the coupling differences are observed at ATP concentrations up to 1 mm. A decrease in coupling efficiency is observed at higher ATP concentrations for the wild type and mutant V-ATPases. Immunoprecipitation of an epitope-tagged nonhomologous region from cell lysates indicates that this region is able to bind to the integral V0 domain in the absence of the remainder of the A subunit, an interaction confirmed by immunoprecipitation of V0. Interaction between the nonhomologous region and V0 is reduced upon incubation of cells in the absence of glucose, suggesting that the nonhomologous region may act as a trigger to activate in vivo dissociation. Immunoprecipitation suggests that the epitope tag on the nonhomologous region becomes less accessible upon glucose withdrawal, possibly due to binding to another cellular target. In vivo dissociation of the V-ATPase in response to glucose removal is also blocked by chloroquine, a weak base that neutralizes the acidic pH of the vacuole. The results suggest that the dependence of in vivo dissociation of the V-ATPase on catalytic activity may be due to neutralization of the yeast vacuole, which in turn blocks glucose-dependent dissociation.  相似文献   

2.
Two forms of DNA-dependent ATPase activity were previously purified from the yeast Saccharomyces cerevisiae and characterized (Plevani, P., Badaracco, G., and Chang, L. M. S. (1980) J. Biol. Chem. 255, 4957-4963). Here, an additional DNA-dependent ATPase (ATPase III) has been purified from S. cerevisiae to near homogeneity. This ATPase differs from those described previously in its chromatographic properties, molecular weight, reaction properties and immunological relatedness. Its molecular weight is about 63,000 in the presence of sodium dodecyl sulfate. It hydrolyzes ATP to ADP and orthophosphate in the presence of DNA as an effector. In addition, yeast DNA polymerase I, which is a true DNA replicase of yeast, is stimulated severalfold by this ATPase. Neither yeast DNA polymerase II nor prokaryotic DNA polymerases are stimulated. This stimulation is intrinsic to the ATPase activity, since both activities copurified in the last four steps of purification, showed the same heat stability and showed dependence on and hydrolysis of ATP. The ATPase III preparation also contains a DNA-unwinding (DNA helicase) activity, which unwinds double-stranded DNA in the presence of ATP. In the S. cerevisiae radiation-sensitive mutant rad3, no significant ATPase III activity could be detected, suggesting that the RAD3 gene, which codes for a different polypeptide, regulates the expression of ATPase III activity.  相似文献   

3.
Despite the usefulness of the patch-clamp technique, its application to ion pumps and transporters in biomembranes is limited. We developed a novel method for determining the activity of a proton-pumping pyrophosphatase (H(+)-PPase) made of a single protein. We heterologously highly expressed the enzyme in Saccharomyces cerevisiae, prepared giant vacuoles from the cells, and measured a PPi-dependent electrical current of 18 pA (10.5 fA/ micro m(2)) using the patch-clamp technique in the whole-vacuole recording mode. We determined the inhibitor sensitivity and affinity for substrate (K(m), 4.6 micro M). The enzyme number in a giant vacuole (4.2 x 10(6)) and the molecular activity of the expressed H(+)-PPase (14 s(-1)) were determined. An uncoupling-type H(+)-PPase mutant, of which the 263rd glutamate residue was replaced by aspartate, and of which H(+) pump activity was not detected with the fluorescence quenching method, showed a weak current with a high K(m). The high accuracy, effectiveness and applicability of the method for exogenously expressed ion transporters were also discussed.  相似文献   

4.
T(1), a mutant yeast lacking three regulatory proteins of F(1)F(o)ATPase, namely ATPase inhibitor, 9K protein and 15K protein, grew on non-fermentable carbon source at the same rate as normal cells but was less viable when incubated in water. During the incubation, the cellular ATP content decreased rapidly in the T(1) cells but not in normal cells, and respiration-deficient cells appeared among the T(1) cells. The same mutation was also induced in D26 cells lacking only the ATPase inhibitor. Overexpression of the ATPase inhibitor in YC63 cells, which were derived from the D26 strain harboring an expression vector containing the gene of the ATPase inhibitor, prevented the decrease of cellular ATP level and the mutation. Isolated T(1) mitochondria exhibited ATP hydrolysis for maintenance of membrane potential when antimycin A was added to the mitochondrial suspension, while normal and YC63 mitochondria continued to show low hydrolytic activity and low membrane potential. Thus, it is likely that deletion of the ATPase inhibitor induces ATPase activity of F(1)F(o)ATPase to create a dispensable membrane potential under the non-nutritional conditions and that this depletes mitochondrial and cellular ATP. The depletion of mitochondrial ATP in turn leads to occurrence of aberrant DNA in mitochondria.  相似文献   

5.
The electrical properties of the vacuolar-lysosomal H+ pumps were studied by direct measurement of the pump currents using the whole-cell configuration of the patch-clamp technique. Both pumps, the proton-translocating ATPase and pyrophosphatase, when activated by MgATP or inorganic Mg pyrophosphate (MgPP(i)), transport protons into the vacuole and polarize the membrane potential (positive inside the vacuole). Accumulation of protons in the lumen of vacuole vesicles was monitored by absorbance changes of the pH probe, acridine orange. The electrochemical gradient provided by both the ATPase and pyrophosphatase stimulates effectively the uptake of various metabolites such as malate, citrate and sucrose. The maximal current density produced by the ATPase was about 2.5 microA/cm2 and about 0.5 microA/cm2 for the pyrophosphatase. K(m)ATP was 0.6 mM; K(m)PPi was 15-20 microM with progressive inhibition above 150 microM. At a cytoplasmic pH of 7.5 both enzymes were capable of pumping protons against a 10,000-fold concentration gradient (pH 3.5 inside the vacuole). Proton current produced by the ATPase was blocked reversibly by extravacuolar NO(3)- only.  相似文献   

6.
In our previous study, we identified four chromatographically distinct DNA-dependent ATPases, B, C1, C2, and C3, in mouse FM3A cells (Tawaragi, Y., Enomoto, T., Watanabe, Y., Hanaoka, F., and Yamada, M. (1984) Biochemistry 23, 529-533). The DNA-dependent ATPase C1 has been purified and characterized in detail. A divalent cation and a polynucleotide cofactor were required for the ATPase activity. Poly(dT), single-stranded circular DNA, and heat-denatured DNA were very effective. Almost no ATPase activity was observed with S1 nuclease-treated native DNA. ATPase C1 hydrolyzed ATP only among the ribo- and deoxyribonucleoside triphosphates tested, and this fact distinguished ATPase C1 from ATPases B, C2, and C3, because the latter enzymes are capable of hydrolyzing both ATP and dATP. The purified DNA-dependent ATPase C1 fraction was shown to have a DNA helicase activity that was dependent on hydrolysis of ATP. The helicase activity and DNA-dependent ATPase activity cosedimented at 5.2 S on glycerol gradient centrifugation. Both activities showed similar preferences for nucleoside 5'-triphosphates and similar requirements for divalent cations. The DNA helicase activity was inhibited by the addition of single-stranded DNAs that served as cofactor for the ATPase activity. The efficiency of a single-stranded DNA to inhibit DNA helicase activity correlated well with the capacity of the DNA to serve as cofactor for DNA-dependent ATPase activity. The helicase was shown to migrate along the DNA strand in the 5' to 3' direction, which is the same direction of migration of the mouse DNA helicase B (Seki, M., Enomoto, T., Yanagisawa, J., Hanaoka, F., and Ui, M. (1988) Biochemistry 27, 1766-1771).  相似文献   

7.
An ATPase with Mr of 360,000 was purified from plasma membranes of a thermophilic eubacterium Thermus thermophilus, and was characterized. ATP hydrolytic activity of the purified enzyme was extremely low, 0.07 mumol of Pi released mg-1 min-1, and it was stimulated up to 30-fold by bisulfite. The following properties of the enzyme indicate that it is not a usual F1-ATPase but that it belongs to the V-type ATPase family, another class of ATPases found in membranes of archaebacteria and eukaryotic endomembranes. Among its four kinds of subunits with approximate Mr values of 66,000 (alpha), 55,000 (beta), 30,000 (gamma), and 12,000 (delta), the alpha subunit had a similar molecular size to the catalytic subunits of the V-type ATPases but was significantly larger than the alpha subunit of F1-ATPases. ATP hydrolytic activity was not affected by azide, an inhibitor of F1-ATPases, but was inhibited by nitrate, an inhibitor of the V-type ATPase. N-terminal amino acid sequences determined for the purified alpha and beta subunits showed much higher similarity to those of the V-type ATPases than those of F1-ATPases. Thus the distribution of the V-type ATPase in the prokaryotic kingdom may not be restricted to archaebacteria.  相似文献   

8.
Saccharomyces cerevisiae Piflp helicase is the founding member of the Pifl subfamily that isconserved from yeast to human.The potential human homolog of the yeast PIFI gene has been cloned fromthe cDNA library of the Hek293 cell line.Here,we described a purification procedure of glutathione S-transferase(GST)-fused N terminal truncated human Pifl protein(hPif1ΔN)from yeast and characterizedthe enzymatic kinetics of its ATP hydrolysis activity.The ATPase activity of human Pif1 is dependent ondivalent cation,such as Mg~(2 ),Ca~(2 )and single-stranded DNA.Km for ATP for the ATPase activity isapproximately 200 μM.As the ATPase activity is essential for hPifl's helicase activity,these results willfacilitate the further investigation on hPif1.  相似文献   

9.
The outer mantle epithelium of the freshwater bivalve, Anodonta cygnea, is responsible for the mineralisation of the shell. Under short circuit conditions, it generates a current that is due to the operation of an electrogenic proton pump located in the apical barrier of that epithelium. Bafilomycin A1 and Concanamycin A inhibited the short circuit current. The IC50 and maximum inhibition dose were 0.17 and 0.5 microM for Bafilomycin A1, and 0.7 and 5 microM for Concanamycin A. The present work was undertaken to further characterise V-type ATPase of the outer mantle cells. The V-ATPase enzymatic activity of crude homogenate, measured as the amount of inorganic phosphorous released, due to ATP hydrolysis, in the presence of Na2SO3 (200 mM) was found to be 4.6+/-1.1 micromol Pi/mg protein/h, at 27 degrees C, pH 7.0-7.4 and ATP 4.5-6.0 microM. Bafilomycin A1 and Concanamycin A inhibit the V-ATPase activity with an IC50 of 14 and 8 nmol mg(-1), respectively. Dicyclohexylcarbodiimide (DCCD; 100 mM) and NaNO3 (100 microM) inhibited the V-type ATPase in what it seems a non-specific manner and NEM (100 mM) was unable to do it. Bafilomycin A1 (10 microM) and Concanamycin A (10 microM), inhibited 50-60% of the total activity.  相似文献   

10.
1. Total ATPase levels were determined in homogenate fractions of baker's yeast, Saccharomyces cerevisiae K and Rhodotorula glutinis. The maximum ATPase activities in 8000 X g supernatant of the three yeast strains were 6.0, 1.9, and 2.2 mmol Pih-1 (gDS)-1, respectively; the activities in the sediment were somewhat higher. Exponential cells of S. cerevisiae K and R. glutinis exhibited higher ATPase levels than did the stationary cells. 2. The total ATPase activity in both yeast species showed a maximum at ph 6.8 a minimum at pH 7.2, and another broader masimum around pH 8.0. 3. No significant NaK-ATPase activity was detected in baker's yeast, in either the exponential or the stationary cells of R. glutinis, and in exponential S. cerevisiae K cells in the pH range of 6.0-9.3. 4. Stationary cells of S. cerevisiae K exhibited, at pH 7.0-8.5, A Na,K-ATPase activity attaining 9% of total ATPase level. 5.3 X 10(-3) M phenylmethyl sulphonyl fluoride had no effect on the total ATPase level in S. cerevisiae and inhibited the activity in R. glutinis by 25%; it did not bring forth any Na,K-ATPase activity apart from that found in its absence. 6. 1.5 M urea lowered the ATPase activity in R. glutinis by 68% but had no effect on S. cerevisiae cells. 10(-5) M dicyclohexylcarbodiimide suppressed the ATPase activity in S. cerevisiae and R. glutinis by 74 and 79%, respectively. Neither agent revealed and additional Na,K-ATPase activity. 7. The comparison of Na,K-ATPase activities with data on K+ fluxes across the yeast plasma membrane suggested that even with the lower flux values the Na,K-ATPase, even if present, would account for a mere 40% of transported ions. The results imply that the active ion transport in yeasts is energized by mechanisms other than the Na,K-ATPase.  相似文献   

11.
A chimeric plasmid carrying the structural gene (ATP2) for the mitochondrial ATPase beta subunit of Saccharomyces cerevisiae has been used to complement a mutant of Schizosaccharomyces pombe lacking the beta subunit (Boutry, M., and Goffeau, A. (1982) Eur. J. Biochem. 125, 471-477). Transformation with ATP2 restored the growth rate of S. pombe mutant on glycerol as well as the mitochondrial ATPase and 32Pi-ATP exchange activities to approximately 20% of the parental strain. Mitochondria prepared from the transformant contained a normal amount of a hybrid F1-ATPase consisting of the S. cerevisiae beta subunit assembled with the remaining subunits of the S. pombe ATPase complex. The presence of the S. cerevisiae beta subunit in the S. pombe ATPase complex conferred a sensitivity to the energy transfer inhibitors citreoviridin and oligomycin which was like that of the intact S. cerevisiae enzyme. The S. cerevisiae beta subunit assembled into the hybrid ATPase complex was the same size as the mature subunit in S. cerevisiae. These data indicate that the mechanism of mitochondrial import and the assembly of the cytoplasmically synthesized subunits is similar or identical in these evolutionary divergent yeasts. In addition, this study provides a new approach for the construction of hybrid mitochondrial ATPase complexes which can be used to examine the function of selected subunits in energy transduction.  相似文献   

12.
Salt tolerance in Saccharomyces cerevisiae is a complex trait, involving regulation of membrane polarization, Na(+) efflux and sequestration of Na(+) in the vacuole. Since transmembrane transport energized by H(+)-adenosine triphosphatases (ATPases) is common to all of these tolerance mechanisms, the objective of this study was to characterize the responses of the plasma membrane H(+)-ATPase, vacuolar H(+)-ATPase and mitochondrial F(1)F(0)-ATPase to NaCl stress. We hypothesized that since the vacuolar ATPase is responsible for generating the proton motive force required for import of cations (such as Na(+)) into the vacuole, strains lacking this activity should be hypersensitive to NaCl. We found that strains lacking vacuolar ATPase activity were in fact hypersensitive to NaCl, while strains lacking ATP synthase were not. This effect was specific to the ionic component of NaCl stress, since the mutant strains were indistinguishable from wild-type and complemented strains in the presence of sorbitol.  相似文献   

13.
We have investigated the vacuolar delivery of alpha-mannosidase, a marker enzyme of the vacuolar membrane in the yeast Saccharomyces cerevisiae, and found that the enzyme has several unique characteristics in its biosynthesis and vacuolar delivery. alpha-Mannosidase has no typical signal sequence (Yoshihisa, T., and Anraku, Y. (1989) Biochem. Biophys. Res. Commun. 163, 908-915) but is located on the inner surface of the vacuolar membrane. The enzyme is synthesized as a 107-kDa polypeptide and converted to a 73-kDa polypeptide. Although the conversion depends on a vacuolar processing protease, proteinase A, it is much slower (t1/2 = 10 h) than the proteinase A-dependent processing of other vacuolar proteins. None of Asn-X-Thr/Ser sites on the 107-kDa alpha-mannosidase or on two alpha-mannosidase-invertase fusion proteins that are localized inside the vacuole receives N-linked oligosaccharide, whereas those sites on a carboxypeptidase Y-alpha-mannosidase fusion protein are N-glycosylated. The newly synthesized alpha-mannosidase is normally delivered to the vacuole and converted to the 73-kDa polypeptide even when the secretory pathway is blocked by a subset of sec mutations. These characteristics are different from those of other vacuolar proteins targeted to the vacuole via the secretory pathway. We conclude that alpha-mannosidase is delivered to the vacuole in a novel pathway separate from the secretory pathway.  相似文献   

14.
We have solubilized and purified the histidine-tagged yeast secretory pathway/Golgi ion pump Pmr1 to near homogeneity in one step, using nickel affinity chromatography. The purified pump demonstrates both Ca(2+)- and Mn(2+)-dependent ATP hydrolysis and phosphoenzyme intermediate formation in forward (ATP) and reverse (P(i)) directions. This preparation has allowed us to examine, in detail, the properties of mutations D778A and Q783A in transmembrane segment M6 of Pmr1. In phenotypic screens of Ca(2+) chelator and Mn(2+) toxicity reported separately (Wei, Y., Chen, J., Rosas, G., Tompkins, D.A., Holt, P.A., and Rao, R. (2000) J. Biol. Chem. 275, XXXX-XXXX), D778A was a loss-of-function mutant apparently defective for transport of both Ca(2+) and Mn(2+), whereas mutant Q783A displayed a differential sensitivity consistent with the selective loss of Mn(2+) transport. We show that mutant D778A is devoid of cation-dependent ATP hydrolytic activity and phosphoenzyme formation from ATP. However, reverse phosphorylation from P(i) is preserved but is insensitive to inhibition by Ca(2+) or Mn(2+) ions, which is evidence for a specific inability to bind cations in this mutant. We also show that Ca(2+) can activate ATP hydrolysis in the purified Q783A mutant, with a half-maximal concentration of 0.06 micrometer, essentially identical to that of wild type (0.07 micrometer). Mn(2+) activation of ATP hydrolysis was half-maximal at 0.02 micrometer in wild type, establishing a normal selectivity profile of Mn(2+) > Ca(2+). Strikingly, Mn(2+)-ATPase in the Q783A mutant was nearly abolished, even at concentrations of up to 10 micrometer. These results were confirmed in assays of phosphoenzyme intermediates. Molecular modeling of the packing between helices M4 and M6 suggests that residue Gln(783) in M6 may form a critical hydrophobic interaction with Val(335) in M4, such that the Ala substitution modifies the packing or tilt of the helices and thus the ion pore. The data emphasize the critical role of transmembrane segment M6 in defining the cation binding pocket of P-type ATPases.  相似文献   

15.
Glial cell line-derived neurotrophic factor (GDNF) was reported to be effective for treating subjects with neurodegenerative diseases such as Parkinson's disease. In search of finding a compound which promotes GDNF secretion, we found that concanamycin A (ConA), a vacuolar ATPase (V-type ATPase) inhibitor purified from Streptomyces diastatochromogens, enhanced GDNF secretion from glioma cells. The rat glioma cell line, C6, and the human glioma cell lines, U87MG and T98G, abundantly expressed GDNF mRNA, and secreted GDNF into culture media, and this event was potently enhanced by a Ca(2+) ionophore and by phorbol ester, as noted in other cells. ConA concentration dependently and potently increased GDNF release from C6, U87MG and T98G cells into culture media. In addition, ConA enhanced GDNF secretion from astrocyte primary cultures prepared from the human fetus with the same potency seen in glioma cell lines. Likewise, another V-type ATPase inhibitor, bafilomycinA1 facilitated GDNF release from C6, U87MG and T98G glioma cells, in a concentration-dependent manner. The potencies of these V-type ATPase inhibitors in enhancing GDNF secretion were consistent with those which inhibited V-type ATPase activity. These results suggest that blockade of V-type ATPase potently stimulates the secretion of GDNF from glial cells. The V-type ATPase inhibitors may be beneficial to use for the treatment of diseases in which increase in GDNF could be effective.  相似文献   

16.
A number of proteins have been isolated from human cells on the basis of their ability to support DNA replication in vitro of the simian virus 40 (SV40) origin of DNA replication. One such protein, replication factor C (RFC), functions with the proliferating cell nuclear antigen (PCNA), replication protein A (RPA), and DNA polymerase delta to synthesize the leading strand at a replication fork. To determine whether these proteins perform similar roles during replication of DNA from origins in cellular chromosomes, we have begun to characterize functionally homologous proteins from the yeast Saccharomyces cerevisiae. RFC from S. cerevisiae was purified by its ability to stimulate yeast DNA polymerase delta on a primed single-stranded DNA template in the presence of yeast PCNA and RPA. Like its human-cell counterpart, RFC from S. cerevisiae (scRFC) has an associated DNA-activated ATPase activity as well as a primer-template, structure-specific DNA binding activity. By analogy with the phage T4 and SV40 DNA replication in vitro systems, the yeast RFC, PCNA, RPA, and DNA polymerase delta activities function together as a leading-strand DNA replication complex. Now that RFC from S. cerevisiae has been purified, all seven cellular factors previously shown to be required for SV40 DNA replication in vitro have been identified in S. cerevisiae.  相似文献   

17.
In the present study we have identified a new metalloprotease encoded by the nuclear ATP23 gene of Saccharomyces cerevisiae that is essential for expression of mitochondrial ATPase (F(1)-F(O) complex). Mutations in ATP23 cause the accumulation of the precursor form of subunit 6 and prevent assembly of F(O). Atp23p is associated with the mitochondrial inner membrane and is conserved from yeast to humans. A mutant harboring proteolytically inactive Atp23p accumulates the subunit 6 precursor but is nonetheless able to assemble a functional ATPase complex. These results indicate that removal of the subunit 6 presequence is not an essential event for ATPase biogenesis and that Atp23p, in addition to its processing activity, must provide another important function in F(O) assembly. The product of the yeast ATP10 gene was previously shown to interact with subunit 6 and to be required for its association with the subunit 9 ring. In this study one extra copy of ATP23 was found to be an effective suppressor of an atp10 null mutant, suggesting an overlap in the functions of Atp23p and Atp10p. Atp23p may, therefore, also be a chaperone, which in conjunction with Atp10p mediates the association of subunit 6 with the subunit 9 ring.  相似文献   

18.
Saccharomyces cerevisiae Atm1p has been cloned, over-expressed and purified from a yeast expression system. The sequence includes both the soluble ATPase and transmembrane-spanning domains. With the introduction of an N-terminal Kozak sequence and a C-terminal (His)(6)-tag, a yield of 1 mg of Atm1p was obtained from 3 g wet yeast cells, which is comparable to other membrane-associated proteins isolated from eukaryotic expression systems. The ATPase activity of Atm1p is sensitive to sodium vanadate, a P-type ATPase inhibitor, with an IC(50) of 4 microM. MgADP is a product inhibitor for Atm1p with an IC(50) of 0.9 mM. The Michaelis-Menten constants V(max), K(M) and k(cat) of Atm1p were measured as 8.7+/-0.3 microM/min, 107+/-16 microM and 1.24+/-0.06 min(-1), respectively. A plot of ATPase activity versus concentration of Atm1p exhibits a nonlinear relationship, suggesting an allosteric response and an important role for the transmembrane domain in mediating both ATP hydrolysis and MgADP release. The metal dependence of Atm1p ATPase activity demonstrated a reactivity order of Mg(2+)>Mn(2+)>Co(2+), while each divalent ion was found to be inhibitory at higher concentrations. The activation and inhibitory effect of phospholipids suggest that formation of a lipid-micelle complex is important for enzymatic activity and stability. Structural analysis of Atm1p by CD spectroscopy suggested a similarity of secondary structure to that found for other members of this ABC protein family.  相似文献   

19.
Several diseases such as proximal and distal renal tubular acidosis and osteoporosis are related to intracellular pH dysregulation resulting from mutations in genes coding for ion channels, including proteins comprising the proton-pumping V-type ATPase. V-type ATPase is a multi-subunit protein complex expressed in enamel forming cells. V-type ATPase plays a key role in enamel development, specifically lysosomal acidification, yet our understanding of the relationship between the endocytotic activities and dental health and disease is limited. The objective of this study is to better understand the ameloblast-associated pH regulatory networks essential for amelogenesis. Quantitative RT-PCR was performed on tissues from secretory-stage and maturation-stage enamel organs to determine which of the V-type ATPase subunits are most highly upregulated during maturation-stage amelogenesis: a time when ameloblast endocytotic activity is highest. Western blot analyses, using specific antibodies to four of the V-type ATPase subunits (Atp6v0d2, Atp6v1b2, Atp6v1c1 and Atp6v1e1), were then applied to validate much of the qPCR data. Immunohistochemistry using these same four antibodies was also performed to identify the spatiotemporal expression profiles of individual V-type ATPase subunits. Our data show that cytoplasmic V-type ATPase is significantly upregulated in enamel organ cells during maturation-stage when compared to secretory-stage. These data likely relate to the higher endocytotic activities, and the greater need for lysosomal acidification, during maturation-stage amelogenesis. It is also apparent from our immunolocalization data, using antibodies against two of the V-type ATPase subunits (Atp6v1c1 and Atp6v1e1), that significant expression is seen at the apical membrane of maturation-stage ameloblasts. Others have also identified this V-type ATPase expression profile at the apical membrane of maturation ameloblasts. Collectively, these data better define the expression and role of the V-type ATPase proton pump in the enamel organ during amelogenesis.  相似文献   

20.
The gene encoding a major exopolyphosphatase (scPPX1) in Saccharomyces cerevisiae (H. Wurst and A. Kornberg, J. Biol. Chem. 269:10996-11001, 1994) has been isolated from a genomic library. The gene, located at 57 kbp from the end of the right arm of chromosome VIII, encodes a protein of 396 amino acids. Overexpression in Escherichia coli allowed the ready purification of a recombinant form of the enzyme. Disruption of the gene did not affect the growth rate of S. cerevisiae. Lysates from the mutants displayed considerably lower exopolyphosphatase activity than the wild type. The enzyme is located in the cytosol, whereas the vast accumulation of polyphosphate (polyP) of the yeast is in the vacuole. Disruption of PPX1 in strains with and without deficiencies in vacuolar proteases allowed the identification of exopolyphosphatase activity in the vacuole. This residual activity was strongly reduced in the absence of vacuolar proteases, indicating a dependence on proteolytic activation. A 50-fold-lower protease-independent activity could be distinguished from this protease-dependent activity by different patterns of expression during growth and activation by arginine. With regard to the levels of polyP in various mutants, those deficient in vacuolar ATPase retain less than 1% of the cellular polyP, a loss that is not offset by additional mutations that eliminate the cytosolic exopolyphosphatase and the vacuolar polyphosphatases dependent on vacuolar protease processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号