首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The rapid aging of the world's population has led to a need to increase our understanding of the pathophysiology of the factors leading to frailty and cognitive decline. Peptides have been shown to be involved in the pathophysiology of frailty and cognitive decline. Weight loss is a major component of frailty. In this review, we demonstrate a central role for both peripheral peptides (e.g., cholecystokinin and ghrelin) and neuropeptides (e.g., dynorphin and alpha-MSH) in the pathophysiology of the anorexia of aging. Similarly, peripheral peptides (e.g., ghrelin, glucagon-like peptide 1, and cholecystokinin) are modulators of memory. A number of centrally acting neuropeptides have also been shown to modulate cognitive processes. Amyloid-beta peptide in physiological levels is a memory enhancer, while in high (pathological) levels, it plays a key role in the development of Alzheimer's disease.  相似文献   

3.
Summary To elucidate the role of hypothalamic neuropeptides in regulation of reproductive phenomena of seasonally breeding feral mammals, we used Japanese long-fingered bats, Miniopterus schreibersii fuliginosus, for immunocytochemical study of distribution of the following neuropeptides in the hypothalamus: arginin vasopressin, oxytocin, luteinizing hormone-releasing hormone, somatostatin, corticotropin-releasing factor, and growth hormone-releasing factor. The size, shape and location of supraoptic, paraventricular, suprachiasmatic, and arcuate nuclei of the bat were determined. Arginin vasopressin-and oxytocin-immunoreactive magnocellular neurons were found in the supraoptic and paraventricular nuclei, where they exhibited separate distribution into two distinct groups. Parvocellular arginin vasopressin neurons occurred only in the suprachiasmatic nucleus. The hibernating bats exhibited slightly increased numbers of vasopressin and oxytocin neurons in the supraoptic and paraventricular nuclei. The pregnant bat displayed further increased numbers of vasopressin and oxytocin neurons in both nuclei. Somatostatin-immunoreactive neurons in the paraventricular nucleus were also immunopositive to anti-oxytocin serum, while those in the ventromedial and arcuate nuclei reacted solely to anti-somatostatin serum. They projected to the anterior median eminence and infundibular stalk. Luteinizing hormone-releasing hormone-immunoreactive perikarya were scattered throughout the basal hypothalamus, being particularly abundant in the arcuate nucleus. They were larger in size in hibernating bats than those in normal (non-pregnant) and pregnant females. They projected fibers mainly to the internal layer of the median eminence and infundibular stalk. A few luteinizing hormone-releasing hormone-reactive fibers were also observed in the organum vasculosum laminae terminalis, lateral habenular nuclei, pineal stalk, retroflexus fasciculus, and olfactory tubercle. Corticotropin releasing factor-immunoreactive perikarya were distributed in the paraventricular nucleus and medial preoptic area and projected into the external layer of the anterior median eminence, while growth hormone-releasing factor-immunoreactive perikarya occurred only in the arcuate nucleus and projected into the posterior part of the median eminence.  相似文献   

4.
Summary The localisation and distribution of 10 vertebrate-derived neuropeptides in the earthworm, Lumbricus terrestris, have been determined by an indirect immunofluorescence technique. The peptides are pancreatic polypeptide (PP), peptide tyrosine tyrosine (PYY), neuropeptide Y (NPY), glucagon (C-terminal), vasoactive intestinal polypeptide (VIP), peptide histidine isoleucine (PHI), gastrinreleasing peptide (GRP), calcitonin gene-related peptide (CGRP), neurotensin (NT), and met-enkephalin. For 6 of the peptides — PYY, NPY, PHI, glucagon, GRP and CGRP — this is the first demonstration of their presence in any annelid, and NT has not previously been described in an oligochaete. Cell bodies and nerve fibres immunoreactive to the 10 peptides occur throughout the CNS. In the PNS, epidermal sensory cells displayed immunoreactivities to PP and PYY, and PP-, PYY-, NPY-, PHI- and GRP-like immunoreactivities occurred in nerve fibres supplying the main body muscles. Nerve fibres immunoreactive to PP and PYY are also associated with the innervation of the gut (pharynx, oesophageal glands, and mid and posterior regions of the intestine). No endocrine cells immunoreactive for any of the antisera tested could be identified in the gut epithelium, suggesting that dual location of peptides in the brain and gut epithelium is a phenomenon that occurred at a later stage in evolution. No immunoreactive elements were detected in any of the organs and ducts of the reproductive and excretory systems.  相似文献   

5.
6.
Summary The distribution of immunoreactive neuropeptides was investigated in the retina of three species of skates (Raja clavata, R. radiata, R. oscellata), elasmobranch fish often used in electrophysiological work on the retina. Enkephalins, neuropeptide Y (NPY), substance P and glucagon were found in different types of amacrine cells.All four peptides appeared in cell bodies in the innermost part of the inner nuclear layer. Processes from the cells containing enkephalins were numerous and ramified throughout the inner plexiform layer. Processes from the cells containing glucagon were thick and rare, and were found throughout the inner plexiform layer, at times with a predominance in sublaminae 1 and 4. NPY-immunoreactive fibres appeared mainly in sublamina 1 but also in 2 or 3, and substance-P-immunoreactive fibres in sublaminae 1,4 and 5.Antisera against somatostatin, VIP or neurotensin did not show any immunoreactivity in the skate retina.  相似文献   

7.
This study was conducted to determine the mechanisms by which serotonin (5-hydroxytryptamine, 5-HT) receptors are involved in the suppression of food intake in a rat stress model and to observe the degree of activation in the areas of the brain involved in feeding. In the stress model, male Sprague–Dawley rats (8 weeks old) were given intracerebroventricular injections of urocortin (UCN) 1. To determine the role of the 5-HT2c receptor (5-HT2cR) in the decreased food intake in UCN1-treated rats, specific 5-HT2cR or 5-HT2b receptor (5-HT2bR) antagonists were administered. Food intake was markedly reduced in UCN1-injected rats compared with phosphate buffered saline treated control rats. Intraperitoneal administration of a 5-HT2cR antagonist, but not a 5-HT2bR antagonist, significantly inhibited the decreased food intake. To assess the involvement of neural activation, we tracked the expression of c-fos mRNA as a neuronal activation marker. Expression of the c-fos mRNA in the arcuate nucleus, ventromedial hypothalamic nucleus (VMH) and rostral ventrolateral medulla (RVLM) in UNC1-injected rats showed significantly higher expression than in the PBS-injected rats. Increased c-fos mRNA was also observed in the paraventricular nucleus (PVN), the nucleus of the solitary tract (NTS), and the amygdala (AMG) after injection of UCN1. Increased 5-HT2cR protein expression was also observed in several areas. However, increased coexpression of 5-HT2cR and c-fos was observed in the PVN, VMH, NTS, RVLM and AMG. Whereas, pro-opiomelanocortin mRNA expression was not changed. In an UNC1-induced stress model, 5-HT2cR expression and activation was found in brain areas involved in feeding control.  相似文献   

8.
Recent findings by this group have led us to reconsider the view that amino (N−) terminal fragments of angiotensin (Ang) II are inactive degradation products of renin-angiotensin system. To further examine this possibility, an antibody to Ang-(1–7), the N-terminal heptapeptide, was produced to demonstrate the neuroanatomical distribution of the rat brain. Ang-(1–7)-immunoreactivity was found in paraventricular, supraoptic, and suprachiasmatic nuclei, bed nucleus of the stria terminalis, substantia innominata, median eminence, and neurohypophysis. This distribution of Ang-(1–7) in the rat forebrain, together with our previous demonstrations of vasopressin secretion in response to this peptide, suggest that Ang-(1–7) functions as a neuromodulator.  相似文献   

9.
Adrenocorticotropic Hormone (ACTH), Melanocyte-Stimulating Hormone (MSH), and related peptides have been shown to have several neurogenic effects: alteration of cerebral protein synthesis, RNA synthesis, protein phosphorylation, and neurotransmitter turnover. Furthermore, there appears to be an ACTH containing circuit in the CNS which originates in the arcuate nucleus. Changes in concentration of the peptides in this family have been shown to alter electrophysiology, neuromuscular function, and behavior (e.g., grooming, learning) in infrahuman subjects. These findings suggest that the neuropeptides MSH and ACTH influence the capacity of an organism to efficiently evaluate information and influence the affective functioning of humans.  相似文献   

10.
11.
Nitric oxide (NO) is synthesized in neurons and is a potent relaxor of vascular and nonvascular smooth muscle. The uterus contains abundant NO-synthesizing nerves which could be autonomic and/or sensory. This study was undertaken to determine: 1) the source(s) of NO-synthesizing nerves in the rat uterus and 2) what other neuropeptides or transmitter markers might coexist with NO in these nerves. Retrograde axonal tracing, utilizing Fluorogold injected into the uterine cervix, was employed for identifying sources of uterine-projecting neurons. NO-synthesizing nerves were visualized by staining for nicotinamide adenine dinucleotide phosphate (reduced)-diaphorase (NADPH-d) and immunostaining with an antibody against neuronal/type I NO synthase (NOS). NADPH-d-positive perikarya and terminal fibers were NOS-immunoreactive (-I). Some NOS-I/NADPH-d-positive nerves in the uterus are parasympathetic and originate from neurons in the pelvic paracervical ganglia (PG) and some are sensory and originate from neurons in thoracic, lumbar, and sacral dorsal root ganglia. No evidence for NOS-I/NADPH-d-positive sympathetic nerves in the uterus was obtained. Furthermore, double immunostaining revealed that in parasympathetic neurons, NO-I/NADPH-d-reactivity coexists with vasoactive intestinal polypeptide, neuropeptide Y, and acetylcholinesterase and in sensory nerves, NOS-I/NADPH-d-reactivity coexists with calcitonin generelated peptide and substance P. In addition, tyrosine hydroxylase(TH)-I neurons of the PG do not contain NOS-I/NADPH-d-reactivity, but some TH-I neurons are apposed by NOS-I varicosities. These results suggest NO-synthesizing nerves in the uterus are autonomic and sensory, and could play significant roles, possibly in conjunction with other putative transmitter agents, in the control of uterine myometrium and vasculature.  相似文献   

12.
Vaisman N  Hahn T  Karov Y  Sigler E  Barak Y  Barak V 《Cytokine》2004,26(6):255-261
The changes in cytokines and hormones involved in hematopoiesis were studied in the serum of 7 girls with anorexia nervosa, 15-24 yr old, on admission and after 5% and 10% weight gain. Hematopoiesis was studied by in-vitro culturing of circulating granulocyte-macrophage colony forming cells and erythroid burst forming cells. Nutritional status was studied by anthropometric measurements and resting energy expenditure. On admission, granulocyte-macrophage colony forming cells and erythroid burst forming cells were significantly lower than in age-matched controls and increased significantly along weight gain. Blood leptin and erythropoietin levels increased significantly with weight gain. TNF-alpha levels tended to decrease while IL-1beta levels were lower than in the controls on admission (p <0.05) and did not change significantly during weight gain. IL-3, GM-CSF and IL-6 were undetected on admission or along weight gain. The changes in granulocyte-macrophage colony forming cells and erythroid burst forming cells positively correlated with changes in resting energy expenditure and fat free mass. These results may suggest that undernutrition affects hematopoiesis as indicated by the reduction of hematopoietic progenitor cells before treatment and the significant increase with weight gain. The changes in the levels of hormones and cytokines known to be involved in hematopoiesis along refeeding may suggest a role for these factors in anorexia nervosa.  相似文献   

13.
Summary The present immunocytochemical study concerns the distribution of four neuropeptides, FMRF-amide, vasotocin, leu-enkephalin and neurotensin, and of the bioamine serotonin in the plerocercoid larva of Diphyllobothrium dendriticum. Anti-FMRF-amide and vasotocin-reactivity occurs in perikarya and nerve fibres in the CNS and PNS of this worm. The peptide-containing fibres surround and seem to innervate the musculature and to terminate beneath the basal lamina of the tegument at the inner surface of the bothridia, suggesting a neurotransmitter function. Antileu-enkephalin reaction occurs in perikarya and fibres in the main nerve cords and in the PNS. Anti-neurotensin reactive fibres were observed in the neuropile of the nerve cords. Serotonin immunoreactivity was found in neurons in the ganglionic commissure of the brain and along the main nerve cords. This study is the first immunocytochemical identification of neuropeptides and serotonin in a parasitic flatworm and the information gained may be of importance for the development of new antihelminthics.  相似文献   

14.
Indirect double immunofluorescence labelling for eight neuropeptides in the pancreas of the bullfrog, Rana catesbeiana, demonstrated the occurrence, distribution, and coexistence of certain neuropeptides in the exocrine and endocrine pancreas. Immunoreactivity of substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY), FMRFamide (FMRF), and galanin (GAL) was localized in nerve fibers distributed between the acini and around the duct system and vasculature of the exocrine pancreas. In these regions, CGRP-immunoreactive fibers were more numerous than those containing the other five peptides. Almost all SP fibers showed coexistence of SP with CGRP, and about one third of fibers also showed coexistence of SP with VIP, NPY, FMRF, and GAL. In the endocrine pancreas, SP, CGRP, VIP, and GAL were recognized in the nerve fibers around and within the islets of Langerhans, and VIP and GAL fibers were more numerous than SP and CGRP fibers. All CGRP fibers, and about half of the VIP and GAL fibers were immunoreactive for SP. NPY- and FMRF-immunoreactive cells were found at the periphery of the islets. These findings suggest that the exocrine and endocrine pancreatic functions of the bullfrog are under the control of peptidergic innervation.  相似文献   

15.
Identification of Bradykinin in Mammalian Brain   总被引:7,自引:6,他引:7  
Abstract: Bradykinin-like activity was purified from acetic acid extracts of saline-perfused rat brains by gel filtration chromatography and two reverse-phase HPLC systems capable of resolving bradykinin from lysyl-bradykinin and other bradykinin analogs and fragments. Addition of [3H]bradykinin to extracts permitted calculation of recoveries and monitoring of chromatographic fractions. Fractions were examined by radioimmunoassay using a potent and highly specific antiserum raised against bradykinin-human albumin conjugates in rabbits. Bradykinin receptor-active material was also measured by radioreceptor assay using guinea pig ileum, as well as by a bioassay with the estrous rat uterus. Active material chromatographed as authentic bradykinin in all systems. Levels of 0.6 pmol/g whole rat brain were detected, with eight times higher levels in the hypothalamus. Activity increased up to 10-fold following treatment with trypsin; treatment with α-chymotrypsin or angiotensin-converting enzyme substantially reduced activity. Similar levels and distribution of bradykinin-like activity were also detected in guinea pig brain extracts. These data substantiate the existence of authentic bradykinin in mammalian brain.  相似文献   

16.
17.
Alpha-melanocyte-stimulating hormone (α-MSH) and its receptors are critical and indispensable for maintaining appropriate feeding behavior and energy homeostasis in both mice and humans. Corticotropin-releasing factor (CRF) is a candidate for mediating the anorexic effect of α-MSH. In the present study, we examined whether CRF and its receptors are involved in the anorexic effect of α-MSH, using CRF-deficient (CRFKO) mice and a CRF receptor antagonist. Intracerebroventricular administration of NDP-MSH, a synthetic α-MSH analogue, suppressed food intake in wild-type (WT) mice. This effect was abolished by pretreatment with a non-selective CRF receptor antagonist, astressin, suggesting that the effect of α-MSH-induced anorexia was mediated by a CRF receptor. In CRFKO mice, administration with NDP-MSH did not affect food intake at an early phase (0–4 h). In addition, CRF mRNA levels in the hypothalamus were significantly increased in NDP-MSH-treated mice. Therefore, our findings, using CRFKO, strongly support evidence that CRF is involved in the acute anorexic effect of α-MSH. On the other hand, NDP-MSH administered to CRFKO mice led to suppressed food intake at the late phase (4–12 h), similar to the effect in WT mice. Further, NDP-MSH similarly reduced food intake during the late phase in all types of mice, including WT, CRFKO, and CRFKO with corticosterone replacement. The results would suggest that α-MSH-induced suppression of food intake at late phase was independent of glucocorticoids and CRF.  相似文献   

18.
The immunohistochemical localization of nine different neuropeptides was studied in the central nervous system of the amphioxus, Branchiostoma belcheri. In the brain, perikarya immunoreactive for urotensin I and FMRFamide were localized in the vicinity of the central canal. One of the processes of each of these perikarya was found to cross the dorso ventral slit-like lumen of the central canal. Oxytocin-immunoreactive short fibers, but not perikarya, were detected in the ventral part of the brain. Perikarya immunoreactive for arginine vasopressin/vasotocin, oxytocin and FMRFamide were widely distributed in the spinal cord. Arginine vasopressin/vasotocin-immunoreactive fibers often made contacts with Rohde cell axons. Angiotensin II-immunoreactive perikarya were observed in the posterior half of the spinal cord, and urotensin I-immunoreactive perikarya were found in the caudal region of the spinal cord. Cholecystokinin/gastrin-immunoreactive fibers, but not perikarya, were detected in the spinal cord; some extended as far as the ependymal layer of the cerebral ventricle. No colocalization of the peptides examined was observed. No immunoreactivity for atrial and brain natriuretic peptides nor for urotensin II was detected. The present study indicates that there are at least six separate neuronal systems that contain different peptides, respectively, in the central nervous system of the amphioxus. Their functions remain to be determined.Part of this investigation has previously been presented in abstract form (Uemura et al. 1989)  相似文献   

19.
Reporter mice that enable the activity of the endogenous p21 promoter to be dynamically monitored in real time in vivo and under a variety of experimental conditions revealed ubiquitous p21 expression in mouse organs including the brain. Low light bioluminescence microscopy was employed to localize p21 expression to specific regions of the brain. Interestingly, p21 expression was observed in the paraventricular, arcuate, and dorsomedial nuclei of the hypothalamus, regions that detect nutrient levels in the blood stream and signal metabolic actions throughout the body. These results suggested a link between p21 expression and metabolic regulation. We found that short-term food deprivation (fasting) potently induced p21 expression in tissues involved in metabolic regulation including liver, pancreas and hypothalamic nuclei. Conditional reporter mice were generated that enabled hepatocyte-specific expression of p21 to be monitored in vivo. Bioluminescence imaging demonstrated that fasting induced a 7-fold increase in p21 expression in livers of reporter mice and Western blotting demonstrated an increase in protein levels as well. The ability of fasting to induce p21 expression was found to be independent of p53 but dependent on FOXO1. Finally, occupancy of the endogenous p21 promoter by FOXO1 was observed in the livers of fasted but not fed mice. Thus, fasting promotes loading of FOXO1 onto the p21 promoter to induce p21 expression in hepatocytes.  相似文献   

20.
The distributions of neuropeptides in paraffin-embedded tissue sections (PETS) of the eyestalk, brain, and thoracic ganglia of the shrimp Penaeus monodon were visualized by imaging mass spectrometry (IMS). Peptide signals were obtained from PETS without affecting morphological features. Twenty-nine neuropeptides comprising members of FMRFamide, SIFamides, crustacean hyperglycaemic hormone, orcokinin-related peptides, tachykinin-related peptides, and allatostatin A were detected and visualized. Among these findings we first identified tachykinin-related peptide as a novel neuropeptide in this shrimp species. We found that these neuropeptides were distributed at specific areas in the three neural organs. In addition, 28 peptide sequences derived from 4 types of constitutive proteins, including actin, histones, arginine kinase, and cyclophilin A were also detected. All peptide sequences were verified by liquid chromatography-tandem mass spectrometry. The use of IMS on acetic acid-treated PETS enabled us to identify peptides and obtain their specific localizations in correlation with the undisturbed histological structure of the tissue samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号