首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W. Hinderer  M. Petersen  H. U. Seitz 《Planta》1984,160(6):544-549
In carrot cells (Daucus carota L.), cultured in the presence of gibberellic acid, anthocyanin synthesis is blocked at the level of chalcone synthase. By feeding suitable precursors for anthocyanins (naringenin, eriodictyol, dihydroquercetin) biosynthesis of cyanidin glycosides can be restored. After addition of these substrates to the culture medium in the presence of gibberellic acid, the activity of chalcone synthase remained as low as in the control without precursors. The highest increase in anthocyanin content was achieved using dihydroquercetin as the added precursor. The time course of this supplementation showed a rapid response; within 4 h a substantial increase in anthocyanin could be observed. In contranst, the flavonol quercetin is not a precursor for cyanidin. The fact that naringenin was also accepted for cyanidin synthesis leads to the conclusion that hydroxylation in 3-position of ring B in Daucus carota takes place at the flavonoid stage.Abbreviations CHI Chalcone isomerase - CHS chalcone synthase - DMSO dimethylsulfoxide - GA3 gibberellic acid - PAL phenylalanine ammonia-lyase  相似文献   

2.
During the biosynthesis of anthocyanins in Petunia hybrida, the 3-hydroxyl group is glucosylated. Their supposed biosynthetic precursors, the dihydroflavonols, are glucosylated at the 7 or 4 positions. The question arose of whether these glucosides or the aglucones act as a substrate in anthocyanin synthesis. Using isolated flower buds of white flowering mutants that were blocked in an earlier step of biosynthesis, it was found that anthocyanin-3-glucosides and dihydroquercetin-7-glucoside were synthesized if dihydroquercetin, dihydroquercetin-7-glucoside, or dihydroquercetin-4-glucoside were used as precursors in these experiments. Intracellular dihydroquercetin-glucosides were not used as a substrate for anthocyanin synthesis. The results are explained by deglucosylation of dihydroquercetin-glucosides during uptake by isolated flower limbs. Dihydroquercetin-7-glucoside, formed intracellularly, is not available as a precursor for anthocyanins. We conclude that the aglucone form of dihydroquercetin acts as a substrate in anthocyanin biosynthesis.Abbreviations dHO dihydroquercetin - dHQ-7=g dihydroquercetin-7-glucoside - dHQ-4-g dihydroquercetin-4-glucoside  相似文献   

3.
M. Teusch  G. Forkmann  W. Seyffert 《Planta》1986,168(4):586-591
In flower extracts of defined genotypes of Matthiola incana, an enzyme was demonstrated which catalyzes the transfer of the glucosyl moiety of uridine 5-diphosphoglucose (UDPGlc) to the 5-hydroxyl group of pelargonidin and cyanidin 3-glycosides and acylated derivatives. The best substrate for 5-glucosylation is the 3-xylosylglucoside acylated with p-coumarate, followed by the 3-xylosylglucoside and by the acylated (p-coumarate) 3-glucoside. The 3-glucoside itself is a very poor substrate. Besides UDPGlc, thymine 5-diphosphoglucose is a suitable glucosyl-donor, but with a reduced reaction rate (42%). The anthocyanin 5-O-glucosyltransferase exhibits a pH optimum at 7.5 and is generally inhibited by divalent ions and by ethylenediaminetetraacetic acid and p-chloromercuribenzoate. Investigations on different genotypes showed that the 5-O-glucosyltransferase activity is clearly controlled by the gene l. In confirmation of earlier chemogenetic work, enzyme activity is only present in lines with the wild-type allele l+. The anthocyanin 5-O-glucosyltransferase activity is strictly correlated with the formation of 5-glucosylated anthocyanins during bud development.Abbreviations Cg 3,5-T-cyanidin 3-sambubioside-5-glucoside - EDTA ethylene diaminetetraacetic acid - 5GT UDP-glucose: anthocyanin 5-O-glucosyltransferase - 3GT UDP-glucose: anthocyanidin/flavonol 3-O-glucosyltransferase - HPLC high-performance liquid chromatography - TLC thin-layer chromatography - UDPGlc uridine 5-diphospho-glucose  相似文献   

4.
G. Forkmann  B. Kuhn 《Planta》1979,144(2):189-192
The gene Po in pollen of Petunia hybrida Vilm. controls a discrete step in flavonoid biosynthesis. In recessive genotypes, naringenin-chalcone (4, 2,4,6-tetrahydroxychalcone) is accumulated, whereas, under the influence of the wild-type allele flavonols and anthocyanins are formed. Enzymic investigations on anthers of four genetically defined lines with different pollen colouration revealed a clear correlation between accumulation of naringenin-chalcone and deficiency of chalcone isomerase (EC 5.5.1.6). The results allow the conclusion that chalcone is the first product of the flavanone synthase reaction in anthers of Petunia hybrida and that chalcone isomerase is essential for the formation of flavonols and anthocyanins. These results were similar to those previously obtained with Callistephus chinensis (L.) Nees.Abbreviations EGME ethylen glycol monomethyl ether - MeOH methanol - CI chalcone isomerase - HOAc acetic acid - TLC thinlayer chromatography  相似文献   

5.
The present study has surveyed a collection of indica rice (Oryza sativa) lines for tissue-specific anthocyanin pigmentation pattern, which has also been used for a genetically meaningful classification. This classification helped predict probable genotypes of rice lines and, in the process, a leaf blade-specific dominant inhibitor of pigmentation (Ilb) was predicted and its presence later confirmed in two lines. We ascribe most tissue-specific accumulation of anthocyanins to the presence of a different set of Pl alleles. Cyanidin, as a major pigment, and peonidin, as a minor pigment, were detected in purple-pigmented tissues. Further, the floral organ-derived tissues always contained a higher level of anthocyanins and, correspondingly, a relatively increased proportion of peonidin. One line, N22B, with a brown pericarp was identified and shown to accumulate proanthocyanidins, but with no anthocyanins, in the pericarp. We propose that the accumulation of proanthocyanidins is due to a block in the anthocyanin biosynthetic pathway in rice at the anthocyanidin synthase-mediated conversion of leucoanthocyanidin to anthocyanidin.  相似文献   

6.
Callus cell lines of potato (Solanum tuberosum L. cv. Zarevo) were obtained from seedlings germinated from gamma-irradiated seeds (200 Gy). Some of these cell lines produce red-violet pigments which were identified as acylated anthocyanins. The major anthocyanin was determined to be peonidin 3-O-[6-O-(4-O-E-p-coumaroyl-rhamnosyl)-glucoside]-5-O-glucoside (peonanin). Single cell-derived protoclones from non-pigmented protoplasts sometimes also gave rise to pigmented cell clusters thus indicating that the changes in the expression of the anthocyanin pathway can also occur after the stage of initial callus induction.  相似文献   

7.
The flower-color mutants of Petunia hybrida W37 and W18, which are homozygous recessive for the anthocyanin gene An3, accumulate flavanone glycosides in the flowers. It is concluded that the gene An3 is not directly involved in the synthesis of the C15 skeleton, but that it probably takes part in modifying the skeleton. Complementation experiments with the mutants W18 and M5 show that the hydroxylating gene Ht1, which is reponsible for the introduction of the second hydroxyl group in the B-ring at position 3, is expressed after gene An3. In P. hybrida introduction of the 3-hydroxyl group is therefore not achieved by specific incorporation of caffeic acid during synthesis of the C15 skeleton, but by hydroxylation of a C15 skeleton. When anthocyanin synthesis is blocked by homozygous recessive hydroxylating genes Ht1 and Hf1, as in the mutant M5, dihydrokaempferol-7-glucoside is accumulated. This intermediate is discussed as a possible substrate for B-ring hydroxylation.  相似文献   

8.
Anthocyanic vacuolar inclusions (AVIs) appear as dark red-to-purple spheres of various sizes in vacuoles of grapevine (Vitis vinifera L.) cell suspension culture due to their interaction with anthocyanins. AVIs were purified and the bound anthocyanins extracted and analysed by HPLC from two lines of V. vinifera isolated from the same callus accumulating anthocyanin in the dark, yet varying in their anthocyanin profiles and accumulation. An intermediate-pigmented line (FU-1) with a 1.3:1 ratio of acylated:non-acylated anthocyanins, a colour value of 0.84 units and cyanidin and peonidin as the dominant species was compared with a high-pigmented line (FU-2) with a 1.2:1 ratio of acylated:non-acylated anthocyanins, a colour value of 3.72 units and malvidin predominating. The profile of AVI-bound anthocyanins showed an increase in acylated anthocyanins in both lines of approx. 28–29%, with no apparent preference for anthocyanin species. This resulted in a ratio of acylated:non-acylated anthocyanins of 6.2:1 for FU-1 and 4.9:1 for FU-2. The reasons for the selectivity of the AVIs for acylated (specifically p-coumaroylated) species compared with the whole cell profile are discussed.  相似文献   

9.
Anthocyanins are the largest group of plant pigments responsible for colors ranging from red to violet and blue. The biosynthesis of anthocyanins, as part of the larger phenylpropanoid pathway, has been characterized in great detail. In contrast to the detailed molecular knowledge available on anthocyanin synthesis, very little is known about the stability and catabolism of anthocyanins in plants. In this study we present a preliminary characterization of active in planta degradation of anthocyanins, requiring novel mRNA and protein synthesis, in Brunfelsia calycina flowers. Brunfelsia is a unique system for this study, since the decrease in pigment concentration in its flowers (from dark purple to white) is extreme and rapid, and occurs at a specific and well-defined stage of flower development. Treatment of detached flowers with protein and mRNA synthesis inhibitors, at specific stages of flower development, prevented degradation. In addition, treatment of detached flowers with cytokinins delayed senescence without changing the rate of anthocyanin degradation, suggesting that degradation of anthocyanins is not part of the general senescence process of the flowers but rather a distinctive and specific pathway. Based on studies on anthocyanin degradation in wine and juices, peroxidases are reasonable candidates for the in vivo degradation. A significant increase in peroxidase activity was shown to correlate in time with the rate of anthocyanin degradation. An additional indication that oxidative enzymes are involved in the process is the fact that treatment of flowers with reducing agents, such as DTT and glutathione, caused inhibition of degradation. This study represents the first step in the elucidation of the molecular mechanism behind in vivo anthocyanin degradation in plants.  相似文献   

10.
陈俊洁  梅松  胡彦如 《广西植物》2020,40(8):1169-1180
脱落酸(abscisic acid,ABA)激素是一类重要的生长调节物质,参与调控植物的多种生理过程。花青素(anthocyanins)是植物次生代谢产生的类黄酮化合物,对植物的生长发育和逆境胁迫响应有重要作用。该文以拟南芥(Arabidopsis thaliana)为研究对象,探讨ABA信号对花青素生物合成的调控功能和作用机制。结果表明:外源施加ABA显著提高野生型幼苗茎尖中花青素的积累。相一致的是,ABA能诱导某些与花青素合成相关的转录因子及合成酶基因的表达。遗传学分析发现,ABA诱导花青素合成部分依赖于MBW复合体中的核心转录因子,如TTG1、TT8及MYB75等。初步机制研究揭示,ABA信号途径中的bZIP类转录因子ABI5能与TTG1、TT8及MYB75等相互作用形成蛋白复合物。综上结果认为,ABA信号诱导拟南芥幼苗中花青素的积累,并可能通过ABI5与MBW复合体协同作用调控花青素的合成。  相似文献   

11.
12.
In addition to contributing to the coloration of plant organs and their defense against herbivores, the consumption of anthocyanins in the human diet has a number of health benefits. Crabapple (Malus sp.) represents a valuable experimental model system to research the mechanisms and regulation of anthocyanin accumulation, in part due to the often vivid and varied petal and leaf coloration that is exhibited by various cultivars. The enzyme anthocyanidin synthase (ANS) plays a pivotal role in anthocyanin biosynthesis; however, the relationship between ANS expression and petal pigmentation has yet to be established in crabapple. To illuminate the mechanism of anthocyanin accumulation in crabapple petals, we evaluated the expression of two crabapple ANS allelic genes (McANS-1 and McANS-2) and the levels of anthocyanins in petals from cultivars with dark red (‘Royalty’) and white (‘Flame’) petals, as well as another (‘Radiant’) whose petals have an intermediate pink color. We determined that the expression of McANS in the three cultivars correlated with the variation of anthocyanin accumulation during different petal developmental stages. Furthermore, transgenic tobacco plants constitutively overexpressing one of the two McANS genes, McANS-1, had showed elevated anthocyanin accumulation and a deeper red coloration in their petals than those from untransformed control lines. In conclusion, we propose that McANS are responsible for anthocyanin accumulation during petal coloration in different crabapple cultivars.  相似文献   

13.
Coaction of three factors controlling chlorophyll and anthocyanin synthesis   总被引:1,自引:0,他引:1  
Helga Kasemir  Hans Mohr 《Planta》1982,156(3):282-288
In a three-factor analysis the rate of chlorophyll a (Chl) accumulation in excised mustard cotyledons was studied as a function of kinetin, light (operating through phytochrome, P fr) and an excision factor. It was found that the three factors operate additively provided that the P fr level is high enough. When the P fr level is below approximately 1 per cent (<0.01) the effectiveness of the excision factor decreases while the effect of kinetin remains additive. The observed additivity is explained by a model where the three factors operate independently through a common intermediate (presumably 5-aminolevulinate) in the biosynthetic chain leading to Chl. With regard to the coaction of the excision factor and phytochrome it is concluded that the production of the excision factor requires the operation of phytochrome (even though saturated at a low P fr level) while the action of the excision factor is independent of phytochrome. This conclusion was confirmed by experiments in which the rate of light-mediated anthocyanin synthesis was measured in excised mustard cotyledons. The effect of excision in the case of anthocyanin formation differs kinetically from the effect of excision on Chl formation.Abbreviations Chl chlorophyll(ide) a - P fr far-red absorbing form of phytochrome - P fr/P tot ratio at photoequilibrium - RL red light - FR far-red light - GL green light - RG9 light long wavelength far-red light - WL white light  相似文献   

14.
Jasmonic acid altered the accumulation of major anthocyanins in Vitis vinifera cell culture. Peonidin 3-glucoside content at day three was increased from 0.3 to 1.7 mg g–1 dry cell wt while other major anthocyanins were increased by smaller increments. By day 14, the content of methylated and acylated anthocyanins (peonidin 3-p-coumaroylglucoside and malvidin 3-p-coumaroylglucoside) was 6.3 mg g–1 DCW, in response to treatment with jasmonic acid, and comprising 45% (w/w) of total anthocyanins. In comparison, the untreated control culture contained 1.2 mg g–1 DCW which made up 32% (w/w) of total anthocyanins. Light further enhanced anthocyanin accumulation induced by jasmonic acid elicitation. The content of peonidin 3-glucoside at day 3 was 6.6 mg g–1 DCW, 22-fold higher than control cultures while the content in response to light irradiation alone was 0.6 mg g–1 DCW. When a highly pigmented cell line was elicited with jasmonic acid total anthocyanins increased from 9.2 to 20.7 mg g–1 DCW, but there was no change in the anthocyanin composition.  相似文献   

15.
Summary Genetic analysis was conducted on the qualitative and quantitative traits of sexual progeny derived from embryogenic cultures of two inbred lines of Pennisetum glaucum (L.) R. Br. (pearl millet). These lines included a genetically stable inbred of Tift 23 BE and a genetic marker line, derived from Tift 23BE, which bore qualitative genetic markers for a dominant purple plant trait (P) and two recessive traits, early flowering (e1) and yellow stripe (ys). Tissue culture regenerant populations (R0) and progeny populations (R1) produced from these plants by selfing showed no qualitative genetic variation when derived from the genetically stable inbred Tift 23BE. In contrast, stably inherited qualitative variation for a number of genetic markers was observed in R0, R1, and R2 progeny of the genetic marker line. In a population of 1,911 plants regenerated over a 12-month period, 0.02% of the population lost or showed reduced expression of the purple plant trait and 92% of plants were chlorophyll deficient. Plants showing reduction or loss of anthocyanin synthesis also flowered later. None of the purple plants showed any significant variation in flowering time. The incidence of chlorophyll deficiency increased with time in culture, 51 % of the progeny regenerated after 1 month were chlorophyll deficient, while 100% of the plants regnerated after 12 months were chlorophyll deficient. Qualitative variation was also observed in control populations of the genetic marker line where 1 plant in a total of 1,010 lacked purple pigmentation and a total of 6% showed chlorophyll variation in the first generation (S0). The presence of qualitative variation in controls suggests that the inherent variation present in the original explant was expressed and perpetuated in vitro. Quantitative variation was observed for a number of traits in the first sexual cycle (R1) of the marker line but did not occur in a subsequent generation, suggesting that this variation was epigenetic.  相似文献   

16.
Summary The difference in colour intensity between flowers of sporogenic revertants of the white flowering lines W17 and W28 is caused by an incompletely dominant gene Inl. This gene is not linked to the anthocyanin gene Anl. In the dominant state Inl causes a 50% decrease in colour intensity of selfcoloured red flowers.Chromatographic analysis of anthocyanins of plants homozygous recessive or dominant for Inl showed that the same anthocyanins are produced in both genotypes (cyanidin-3-glucoside and cyanidin-3-diglucoside). Anthocyanin synthesis starts at the same stage of development of the flower in both genotypes. When the bud reaches a length of approximately 45 mm, however, anthocyanin synthesis in the Inl Inl line slows down.No influence of the gene Inl on the concentration of dihydroquercetin-7-glucoside in buds and flowers could be observed, which indicates that the influence of Inl on flower colour development is restricted to the last part of the biosynthesis of anthocyanins, i.e. the conversion of dihydroflavonols into anthocyanins.In addition to Inl having a decreasing effect on flower colour intensity, evidence is produced that the gene Inl also influences the reversion frequency of unstable alleles of the gene Anl.  相似文献   

17.
Michal Oren-Shamir   《Plant science》2009,177(4):310-316
In contrast to the detailed knowledge available on anthocyanin synthesis, very little is known about its stability and catabolism in plants. Here we review evidence supporting in planta turnover and degradation of anthocyanins. Transient anthocyanin accumulation and disappearance during plant development or changes in environmental conditions suggest that anthocyanin degradation is controlled and induced when beneficial to the plant. Several enzymes have been isolated that degrade anthocyanins in postharvest fruit that may be candidates for in vivo degradation. Three enzyme groups that control degradation rates of anthocyanins in fruit extracts and juices are polyphenol oxidases, peroxidases and β-glucosidases. Evidence supporting the involvement of peroxidases and β-glucosidases in in vivo anthocyanin degradation in Brunfelsia flowers is presented. Understanding the in vivo anthocyanin degradation process has potential for enabling increased pigmentation and prevention of color degradation in crops.  相似文献   

18.
A method for analyzing the pedigrees of cultivars is developed that allows for the calculation of the effective number of origin lines (n OL ). The n OL is defined as the average number of alleles, not identical by descent, per locus in a set of lines. Its relationship with the commonly used coefficient of parentage is clarified. A related quantity, the effective overlap of origin lines (r OL ) is defined as the average number of alleles, not identical by descent, per locus common in two sets of individuals. A set of 85 modern barley cultivars is used to illustrate the application of n OL and r OL . This set originated from 153 mutually unrelated ancestors. The degree to which each ancestor contributed was quantified, and the result was a n OL of only 43.1. In the set were 51 spring and 34 winter cultivars, with a n OL of 25.0 and 21.0, respectively. Consequently, the r OL of these two groups was 2.9, indicating that the two groups can be considered to be nearly distinct genetically since they have only 2.9 origin lines in common. How the effective number of origin lines can be used to create a core collection of cultivars with known pedigrees by maximizing the n OL in a set of cultivars of given size is also discussed.  相似文献   

19.
Aleurone tissue of c2 Pr, C2 pr, or c2 pr genotypes can utilize either of two flavanones (naringenin, homoeriodictyol) or a flavanonol (dihydroquercetin) to synthesize anthocyanin. The anthocyanins formed have substitution patterns corresponding to those of the precursors, but c2 Pr tissue can hydroxylate the 4-OH precursor at the 3 position. The results presented suggest that C2 acts before the flavanone step and that the hydroxylation gene (Pr) can act after C2.This study constitutes research conducted in partial fulfillment of the requirements for the Ph.D in genetics at the University of Missouri. Missouri Agricultural Experiment Station, journal series No. 7999. Aided by Agricultural Research Service, U.S. Department of Agriculture, support to E. H. Coe.  相似文献   

20.
G. Forkmann 《Planta》1980,148(2):157-161
In flowers of Matthiola incana, the B-ring hydroxylation pattern of anthocyanins is controlled by the locus b. Recessive genotypes produce pelargonidin and genotypes with wild-type alleles cyanidin as the aglycone. Supplementation experiments on acyanic flowers using extracts of pelargonidin-and cyanidin-producing flowers, respectively, showed not only the presence of compounds with a precursor function for anthocyanin synthesis in the cyanic flowers but also differences in the B-ring hydroxylation pattern of these compounds. Chromatographic investigations proved that flavanones and dihydroflavonols occur in extracts of cyanic flowers. Naringenin, dihydrokaempferol, and their 7-glucosides could be demonstrated in all flower extracts, but in extracts of cyanidin-producing flowers, dihydroquercetin and a further 3, 4-hydroxylated dihydroflavonol, tentatively identified as dihydroquercetin 3-glycoside, were additionally found. In no case, however, could eriodictyol be detected. From these results and from the ready hydroxylation of dihydrokaempferol to dihydroquercetin in a white mutant line of Matthiola incana, it can be concluded that introduction of the 3-hydroxyl group of anthocyanins is not achieved by specific incorporation of caffeic acid during synthesis of the flavonoid skeleton, but by hydroxylation at the dihydroflavonol stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号