首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Type II restriction-modification (R-M) systems encode a restriction endonuclease that cleaves DNA at specific sites, and a methyltransferase that modifies same sites protecting them from restriction endonuclease cleavage. Type II R-M systems benefit bacteria by protecting them from bacteriophages. Many type II R-M systems are plasmid-based and thus capable of horizontal transfer. Upon the entry of such plasmids into a naïve host with unmodified genomic recognition sites, methyltransferase should be synthesized first and given sufficient time to methylate recognition sites in the bacterial genome before the toxic restriction endonuclease activity appears. Here, we directly demonstrate a delay in restriction endonuclease synthesis after transformation of Escherichia coli cells with a plasmid carrying the Esp1396I type II R-M system, using single-cell microscopy. We further demonstrate that before the appearance of the Esp1396I restriction endonuclease the intracellular concentration of Esp1396I methyltransferase undergoes a sharp peak, which should allow rapid methylation of host genome recognition sites. A mathematical model that satisfactorily describes the observed dynamics of both Esp1396I enzymes is presented. The results reported here were obtained using a functional Esp1396I type II R-M system encoding both enzymes fused to fluorescent proteins. Similar approaches should be applicable to the studies of other R-M systems at single-cell level.  相似文献   

2.
MmeI is an unusual Type II restriction enzyme that is useful for generating long sequence tags. We have cloned the MmeI restriction-modification (R-M) system and found it to consist of a single protein having both endonuclease and DNA methyltransferase activities. The protein comprises an amino-terminal endonuclease domain, a central DNA methyltransferase domain and C-terminal DNA recognition domain. The endonuclease cuts the two DNA strands at one site simultaneously, with enzyme bound at two sites interacting to accomplish scission. Cleavage occurs more rapidly than methyl transfer on unmodified DNA. MmeI modifies only the adenine in the top strand, 5′-TCCRAC-3′. MmeI endonuclease activity is blocked by this top strand adenine methylation and is unaffected by methylation of the adenine in the complementary strand, 5′-GTYGGA-3′. There is no additional DNA modification associated with the MmeI R-M system, as is required for previously characterized Type IIG R-M systems. The MmeI R-M system thus uses modification on only one of the two DNA strands for host protection. The MmeI architecture represents a minimal approach to assembling a restriction-modification system wherein a single DNA recognition domain targets both the endonuclease and DNA methyltransferase activities.  相似文献   

3.
4.
5.
Type I restriction-modification (R-M) systems encode multisubunit/multidomain enzymes. Two genes (M and S) are required to form the methyltransferase (MTase) that methylates a specific base within the recognition sequence and protects DNA from cleavage by the endonuclease. The DNA methyltransferase M.AhdI is a 170 kDa tetramer with the stoichiometry M(2)S(2) and has properties typical of a type I MTase. The M.AhdI enzyme has been prepared with deuterated S subunits, to allow contrast variation using small-angle neutron scattering (SANS) methods. The SANS data were collected in a number of (1)H:(2)H solvent contrasts to allow matching of one or other of the subunits in the multisubunit enzyme. The radius of gyration (R(g)) and maximum dimensions (D(max)) of the M subunits in situ in the multisubunit enzyme (50 A and 190 A, respectively) are close of those of the entire MTase (51 A and 190 A). In contrast, the S subunits in situ have experimentally determined values of R(g)=35 A and D(max)=110 A, indicating their more central location in the enzyme. Ab initio reconstruction methods yield a low-resolution structural model of the shape and subunit organization of M.AhdI, in which the Z-shaped structure of the S subunit dimer can be discerned. In contrast, the M subunits form a much more elongated and extended structure. The core of the MTase comprises the two S subunits and the globular regions of the two M subunits, with the extended portion of the M subunits most probably forming highly mobile regions at the outer extremities, which collapse around the DNA when the MTase binds.  相似文献   

6.
Genome sequence comparisons among multiple species of Pyrococcus, a hyperthermophilic archaeon, revealed a linkage between a putative restriction-modification gene complex and several large genome polymorphisms/rearrangements. From a region apparently inserted into the Pyrococcus abyssi genome, a hyperthermoresistant restriction enzyme [PabI; 5′-(GTA/C)] with a novel structure was discovered. In the present work, the neighboring methyltransferase homologue, M.PabI, was characterized. Its N-terminal half showed high similarities to the M subunit of type I systems and a modification enzyme of an atypical type II system, M.AhdI, while its C-terminal half showed high similarity to the S subunit of type I systems. M.PabI expressed within Escherichia coli protected PabI sites from RsaI, a PabI isoschizomer. M.PabI, purified following overexpression, was shown to generate 5′-GTm6AC, which provides protection against PabI digestion. M.PabI was found to be highly thermophilic; it showed methylation at 95°C and retained at least half the activity after 9 min at 95°C. This hyperthermophilicity allowed us to obtain activation energy and other thermodynamic parameters for the first time for any DNA methyltransferases. We also determined the kinetic parameters of kcat, Km, DNA, and Km, AdoMet. The activity of M.PabI was optimal at a slightly acidic pH and at an NaCl concentration of 200 to 500 mM and was inhibited by Zn2+ but not by Mg2+, Ca2+, or Mn2+. These and previous results suggest that this unique methyltransferase and PabI constitute a type II restriction-modification gene complex that inserted into the P. abyssi genome relatively recently. As the most thermophilic of all the characterized DNA methyltransferases, M.PabI may help in the analysis of DNA methylation and its application to DNA engineering.  相似文献   

7.
Phase variably expressed (randomly switching) methyltransferases associated with type III restriction-modification (R-M) systems have been identified in a variety of pathogenic bacteria. We have previously shown that a phase variable methyltransferase (Mod) associated with a type III R-M system in Haemophilus influenzae strain Rd coordinates the random switching of expression of multiple genes, and constitutes a phase variable regulon—‘phasevarion’. We have now identified the recognition site for the Mod methyltransferase in H. influenzae strain Rd as 5′-CGAAT-3′. This is the same recognition site as the previously described HinfIII system. A survey of 59 H. influenzae strains indicated significant sequence heterogeneity in the central, variable region of the mod gene associated with target site recognition. Intra- and inter-strain transformation experiments using Mod methylated or non-methylated plasmids, and a methylation site assay demonstrated that the sequence heterogeneity seen in the region encoding target site specificity does correlate to distinct target sites. Mutations were identified within the res gene in several strains surveyed indicating that Res is not functional. These data suggest that evolution of this type III R-M system into an epigenetic mechanism for controlling gene expression has, in some strains, resulted in loss of the DNA restriction function.  相似文献   

8.
The transmissive plasmid R64 (IncI1) performs an antirestriction function, reducing the efficiency of EcoKI-dependent restriction in Escherichia coli K12 cells approximately fivefold. The R64 ardA gene has been cloned and sequenced. The ArdA proteins specifically inhibit type I restriction–modification enzymes. R64 ArdA is highly homologous to ColIb-P9 ArdA: only 4 out of 166 amino acid residues differ. While ColIb-P9 inhibits both endonuclease and methylase activities of the type I restriction–modification enzyme EcoKI (R2M2S), R64 ArdA inhibits only its endonuclease activity. It has been assumed that R64 ArdA suppresses the binding of unmodified DNA with the R subunit, which is responsible for DNA translocation and cleavage. ColIb-P9 ArdA suppresses DNA binding not only with the R, but also with the S subunit, which contacts the sK site containing target adenines. The binding of ArdA with the specific site inhibits both endonuclease and methylase activities; the binding of ArdA with the nonspecific site of the R subunit inhibits only the endonuclease activity ofEcoKI (R2M2S).  相似文献   

9.
《Gene》1996,173(2):121-127
The xmnIRM genes from Xanthomonas manihotis 7AS1 have been cloned and expressed in Escherichia coli. The nucleotide (nt) sequences of both genes were determined. The XmnI methyltransferase (MTase)-encoding gene is 1861 by in length and codes for 620 amino acids (aa) (68660 Da). The restriction endonuclease (ENase)-encoding gene is 959 by long and therefore codes for a 319-aa protein (35275 Da). The two genes are aligned tail to tail and they overlap at their respective stop codons. About 4 × 104 units/g wet cell paste of R·XmnI was obtained following IPTG induction in a suitable E. coli host. The xmnIR gene is expressed from the T7 promoter. M·XmnI probably modifies the first A in the sequence, GAA(N)4TTC. The xmnIR and M genes contain regions of conserved similarity and probably evolved from a common ancestor. M·XmnI is loosely related to M·EcoRI. The XmnI R-M system and the type-I R-M systems probably derived from a common ancestor.  相似文献   

10.
The nucleotide sequence of the plasmid-encoded LlaKR2I restriction-modification (R-M) system of Lactococcus lactis subsp. lactis biovar diacetylactis KR2 was determined. This R-M system comprises divergently transcribed endonuclease (llaKR2IR) and methyltransferase (llaKR2IM) genes; located in the intergenic region is a copy of the insertion element IS982, whose putative transposase gene is codirectionally transcribed with llaKR2IM. The deduced sequence of the LlaKR2I endonuclease shared homology with the type II endonuclease Sau3AI and with the MutH mismatch repair protein, both of which recognize and cleave the sequence 5′ GATC 3′. In addition, M·LlaKR2I displayed homology with the 5-methylcytosine methyltransferase family of proteins, exhibiting greatest identity with M·Sau3AI. Both of these proteins shared notable homology throughout their putative target recognition domains. Furthermore, subclones of the native parental lactococcal plasmid pKR223, which encode M·LlaKR2I, all remained undigested after treatment with Sau3AI despite the presence of multiple 5′ GATC 3′ sites. The combination of these data suggested that the specificity of the LlaKR2I R-M system was likely to be 5′ GATC 3′, with the cytosine residue being modified to 5-methylcytosine. The IS982 element located within the LlaKR2I R-M system contained at its extremities two 16-bp perfect inverted repeats flanked by two 7-bp direct repeats. A perfect extended promoter consensus, which represented the likely original promoter of the llaKR2IR gene, was shown to overlap the direct repeat sequence on the other side of IS982. Specific deletion of IS982 and one of these direct repeats via a PCR strategy indicated that the LlaKR2I R-M determinants do not rely on elements within IS982 for expression and that the efficiency of bacteriophage restriction was not impaired.  相似文献   

11.
12.
Type-I DNA restriction–modification (R/M) systems are important agents in limiting the transmission of mobile genetic elements responsible for spreading bacterial resistance to antibiotics. EcoKI, a Type I R/M enzyme from Escherichia coli, acts by methylation- and sequence-specific recognition, leading to either methylation of DNA or translocation and cutting at a random site, often hundreds of base pairs away. Consisting of one specificity subunit, two modification subunits, and two DNA translocase/endonuclease subunits, EcoKI is inhibited by the T7 phage antirestriction protein ocr, a DNA mimic. We present a 3D density map generated by negative-stain electron microscopy and single particle analysis of the central core of the restriction complex, the M.EcoKI M2S1 methyltransferase, bound to ocr. We also present complete atomic models of M.EcoKI in complex with ocr and its cognate DNA giving a clear picture of the overall clamp-like operation of the enzyme. The model is consistent with a large body of experimental data on EcoKI published over 40 years.  相似文献   

13.
Different strains of Streptococcus suis serotypes 1 and 2 isolated from pigs either contained a restriction-modification (R-M) system or lacked it. The R-M system was an isoschizomer of Streptococcus pneumoniae DpnII, which recognizes nucleotide sequence 5′-GATC-3′. The nucleotide sequencing of the genes encoding the R-M system in S. suis DAT1, designated SsuDAT1I, showed that the SsuDAT1I gene region contained two methyltransferase genes, designated ssuMA and ssuMB, as does the DpnII system. The deduced amino acid sequences of M.SsuMA and M.SsuMB showed 70 and 90% identity to M.DpnII and M.DpnA, respectively. However, the SsuDAT1I system contained two isoschizomeric restriction endonuclease genes, designated ssuRA and ssuRB. The deduced amino acid sequence of R.SsuRA was 49% identical to that of R.DpnII, and R.SsuRB was 72% identical to R.LlaDCHI of Lactococcus lactis subsp. cremoris DCH-4. The four SsuDAT1I genes overlapped and were bounded by purine biosynthetic gene clusters in the following gene order: purF-purM-purN-purH-ssuMA-ssuMB-ssuRA-ssuRB-purD-purE. The G+C content of the SsuDAT1I gene region (34.1%) was lower than that of the pur region (48.9%), suggesting horizontal transfer of the SsuDAT1I system. No transposable element or long-repeat sequence was found in the flanking regions. The SsuDAT1I genes were functional by themselves, as they were individually expressed in Escherichia coli. Comparison of the sequences between strains with and without the R-M system showed that only the region from 53 bp upstream of ssuMA to 5 bp downstream of ssuRB was inserted in the intergenic sequence between purH and purD and that the insertion target site was not the recognition site of SsuDAT1I. No notable substitutions or insertions could be found, and the structures were conserved among all the strains. These results suggest that the SsuDAT1I system could have been integrated into the S. suis chromosome by an illegitimate recombination mechanism.  相似文献   

14.
The three-dimensional X-ray crystal structure of the ‘rare cutting’ type II restriction endonuclease SgrAI bound to cognate DNA is presented. SgrAI forms a dimer bound to one duplex of DNA. Two Ca2+ bind in the enzyme active site, with one ion at the interface between the protein and DNA, and the second bound distal from the DNA. These sites are differentially occupied by Mn2+, with strong binding at the protein–DNA interface, but only partial occupancy of the distal site. The DNA remains uncleaved in the structures from crystals grown in the presence of either divalent cation. The structure of the dimer of SgrAI is similar to those of Cfr10I, Bse634I and NgoMIV, however no tetrameric structure of SgrAI is observed. DNA contacts to the central CCGG base pairs of the SgrAI canonical target sequence (CR|CCGGYG, | marks the site of cleavage) are found to be very similar to those in the NgoMIV/DNA structure (target sequence G|CCGGC). Specificity at the degenerate YR base pairs of the SgrAI sequence may occur via indirect readout using DNA distortion. Recognition of the outer GC base pairs occurs through a single contact to the G from an arginine side chain located in a region unique to SgrAI.  相似文献   

15.
H Ueno  I Kato    Y Ishino 《Nucleic acids research》1996,24(12):2268-2270
BalI, a type II restriction-modification (R-M) system from the bacterium, Brevibacterium albidum, recognizes the DNA sequence 5'-TGGCCA-3'. We cloned the genes encoding the BalI restriction endonuclease and methyltransferase and expressed them in Escherichia coli. The two genes were aligned tail-to-tail and their termination codons overlapped. BalI restriction endonuclease and methyltransferase comprise 260 and 280 amino acids, respectively, and have molecular weights of 29 043 and 31 999 Da. The amino acid sequence of BalI methyltransferase is similar to that of other m6A MTases, although it has been categorized as a m5C methyltransferase. A high expression system for the BalI restriction endonuclease was constructed in E. coli for the production of large quantities of enzyme.  相似文献   

16.
Type I restriction-modification (R-M) endonucleases are composed of three subunits—HsdR, required for restriction, and HsdM and HsdS which can produce a separate DNA methyltransferase. The HsdS subunit is required for DNA recognition. In this paper we describe the effect of clonedEcoKI andEcoR124Ihsd genes on the resulting R-M phenotype. The variability in the expression of the wild type (wt) restriction phenotype after cloning of the wthsd genes in a multicopy plasmid inEscherichia coli recA + background suggests that the increased production of the restriction endonuclease from pBR322 is detrimental to the cell and this leads to the deletion of the clonedhsd genes from the hybrid plasmid and/or inactivation of the enzyme. The effect of a mutation inE. coli recA gene on the expression of R-M phenotype is described and discussed in relation to the role of the cell surface and the localization of the restriction endonuclease in the cell.  相似文献   

17.
Genes for the class IIPseudomonas alcaligenesNCIB 9867 restriction-modification (R-M) system,Pac25I, have been cloned from its 33-kb endogenous plasmid, pRA2. ThePac25I endonuclease and methylase genes were found to be aligned in a head-to-tail orientation with the methylase gene preceding and overlapping the endonuclease gene by 1 bp. The deduced amino acid sequence of thePac25I methylase revealed significant similarity with theXcyI,XmaI,Cfr9I, andSmaI methylases. High sequence similarity was displayed between thePac25I endonuclease and theXcyI,XmaI, andCfr9I endonucleases which cleave between the external cytosines of the recognition sequence (i.e., 5′-C↓CCGGG-3′) and are thus perfect isoschizomers. However, no sequence similarity was detected between thePac25I endonuclease and theSmaI endonuclease which cleaves between the internal CpG of the recognition sequence (i.e., 5′-CCC↓GGG-3′). Both thePac25I methylase and endonuclease were expressed inEscherichia coli.An open reading frame encoding a protein which shows significant similarity to invertases and resolvases was located immediately upstream of thePac25I R-M operon. In addition, a transposon designated Tn5563was located 1531 bp downstream of the R-M genes. The location on a self-transmissible plasmid as well as the close association with genes involved in DNA mobility suggests horizontal transfer as a possible mode of distribution of this family of R-M genes in various bacteria.  相似文献   

18.
Recognition of ‘foreign’ DNA by Type I restriction–modification (R-M) enzymes elicits an ATP-dependent switch from methylase to endonuclease activity, which involves DNA translocation by the restriction subunit HsdR. Type I R-M enzymes are composed of three (Hsd) subunits with a stoichiometry of HsdR2:HsdM2:HsdS1 (R2-complex). However, the EcoR124I R-M enzyme can also exist as a cleavage deficient, sub-assembly of HsdR1:HsdM2:HsdS1 (R1-complex). ATPγS was used to trap initial translocation complexes, which were visualized by Atomic Force Microscopy (AFM). In the R1-complex, a small bulge, associated with a shortening in the contour-length of the DNA of 8 nm, was observed. This bulge was found to be sensitive to single-strand DNA nucleases, indicative of non-duplexed DNA. R2-complexes appeared larger in the AFM images and the DNA contour length showed a shortening of ~11 nm, suggesting that two bulges were formed. Disclosure of the structure of the first stage after the recognition-translocation switch of Type I restriction enzymes forms an important first step in resolving a detailed mechanistic picture of DNA translocation by SF-II DNA translocation motors.  相似文献   

19.
The naturally competent organism Helicobacter pylori encodes a large number of restriction–modification (R–M) systems that consist of a restriction endonuclease and a DNA methyltransferase. R–M systems are not only believed to limit DNA exchange among bacteria but may also have other cellular functions. We report a previously uncharacterized H. pylori type II R–M system, M.HpyAXII/R.HpyAXII. We show that this system targets GTAC sites, which are rare in the H. pylori chromosome but numerous in ribosomal RNA genes. As predicted, this type II R–M system showed attributes of a selfish element. Deletion of the methyltransferase M.HpyAXII is lethal when associated with an active endonuclease R.HpyAXII unless compensated by adaptive mutation or gene amplification. R.HpyAXII effectively restricted both unmethylated plasmid and chromosomal DNA during natural transformation and was predicted to belong to the novel ‘half pipe’ structural family of endonucleases. Analysis of a panel of clinical isolates revealed that R.HpyAXII was functional in a small number of H. pylori strains (18.9%, n = 37), whereas the activity of M.HpyAXII was highly conserved (92%, n = 50), suggesting that GTAC methylation confers a selective advantage to H. pylori. However, M.HpyAXII activity did not enhance H. pylori fitness during stomach colonization of a mouse infection model.  相似文献   

20.
Type I restriction-modification (RM) systems are comprised of two multi-subunit enzymes, the methyltransferase (~160 kDa), responsible for methylation of DNA, and the restriction endonuclease (~400 kDa), responsible for DNA cleavage. Both enzymes share a number of subunits. An engineered RM system, EcoR124I(NT), based on the N-terminal domain of the specificity subunit of EcoR124I was constructed that recognises the symmetrical sequence GAAN(7)TTC and is active as a methyltransferase. Here, we investigate the restriction endonuclease activity of R. EcoR124I(NT)in vitro and the subunit assembly of the multi-subunit enzyme. Finally, using small-angle neutron scattering and selective deuteration, we present a low-resolution structural model of the endonuclease and locate the motor subunits within the multi-subunit enzyme. We show that the covalent linkage between the two target recognition domains of the specificity subunit is not required for subunit assembly or enzyme activity, and discuss the implications for the evolution of Type I enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号