首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have purified and characterized an oligopeptide binding protein released from the periplasm of Escherichia coli W by mild osmotic shock. The purified protein was greater than 97% homogeneous as determined by either sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Mr = 60,000) or isoelectric focusing (pI = 5.95). The binding protein has a Stokes radius of 30 A and a sedimentation coefficient (s(0)20,w) of 4.6 S. Based on these hydrodynamic studies, the native protein has a molecular weight of 56,000. The tripeptide, Ala-Phe-[3H]Gly, which is transported via the shock-sensitive sensitive oligopeptide permease, binds to the purified protein in dilute solution with a Kd of 0.1 microM and a stoichiometry of approximately 1 to 1. Results from this study support the hypothesis that this periplasmic oligopeptide binding protein functions in the initial recognition of peptide substrates for the oligopeptide permease system.  相似文献   

2.
Bacterial periplasmic binding protein-dependent transport systems require the function of a specific substrate-binding protein, located in the periplasm, and several membrane-bound components. We present evidence for a nucleotide-binding site on one of the membrane components from each of three independent transport systems, the hisP, malK and oppD proteins of the histidine, maltose and oligopeptide permeases, respectively. The amino acid sequence of the oppD protein has been determined and this protein is shown to share extensive homology with the hisP and malK proteins. Three lines of evidence lead us to propose the existence of a nucleotide-binding site on each of these proteins. A consensus nucleotide-binding sequence can be identified in the same relative position in each of the three proteins. The oppD protein binds to a Cibacron Blue affinity column and can be eluted by ATP but not by CTP or NADH. The oppD protein is labelled specifically by the nucleotide affinity analogue 5'-p-fluorosulphonylbenzoyladenosine. The identification of a nucleotide-binding site provides strong evidence that transport by periplasmic binding protein-dependent systems is energized directly by the hydrolysis of ATP or a closely related nucleotide. The hisP, malK and oppD proteins are thus responsible for energy-coupling to their respective transport systems.  相似文献   

3.
The Escherichia coli periplasmic dipeptide binding protein functions in both peptide transport and taxis toward peptides. The structure of the dipeptide binding protein in complex with Gly-Leu (glycyl-L-leucine) has been determined at 3.2 A resolution. The binding site for dipeptides is designed to recognize the ligand's backbone while providing space to accommodate a variety of side chains. Some repositioning of protein side chains lining the binding site must occur when the dipeptide's second residue is larger than leucine. The protein's fold is very similar to that of the Salmonella typhimurium oligopeptide binding protein, and a comparison of the structures reveals the structural basis for the dipeptide binding protein's preference for shorter peptides.  相似文献   

4.
The proU locus of Salmonella typhimurium encodes an osmotically induced betaine transport system. We have identified a 31 kDa periplasmic protein, encoded by proU, whose synthesis is induced by osmotic stress. A specific betaine-binding activity with a KD of about 1 microM is also present in the periplasm of osmotically induced cells. This activity is absent in those proU mutants which lack the 31 kDa periplasmic protein. Thus, ProU is a periplasmic binding-protein-dependent transport system.  相似文献   

5.
The structural properties required for the binding of peptide substrates to the Escherichia coli periplasmic protein involved in oligopeptide transport were surveyed by measuring the ability of different peptides to compete for binding in an equilibrium dialysis assay with the tripeptide Ala-Phe-[3H]Gly. The protein specifically bound oligopeptides and failed to bind amino acids or dipeptides. Acetylation of the peptide amino terminus of (Ala)3 severely impaired binding, whereas esterification of the carboxyl terminus significantly reduced but did not completely eliminate binding. Peptides composed of L-amino acids competed more effectively than did peptides containing D-residues or glycine. Experiments with a series of alanyl peptide homologs demonstrated a decrease in competitive ability with increasing chain length beyond tripeptide. Competition studies with tripeptide homologs indicated that a wide variety of amino acyl side chains were tolerated by the periplasmic protein, but side-chain composition did affect binding. Fluorescence emission data suggested that this periplasmic protein possesses more than one substrate-binding site capable of distinguishing peptides on the basis of amino acyl side chains.  相似文献   

6.
In Escherichia coli K-12, the accumulation of arginine is mediated by two distinct periplasmic binding protein-dependent transport systems, one common to arginine and ornithine (AO system) and one for lysine, arginine, and ornithine (LAO system). Each of these systems includes a specific periplasmic binding protein, the AO-binding protein for the AO system and the LAO-binding protein for the LAO system. The two systems include a common inner membrane transport protein which is able to hydrolyze ATP and also phosphorylate the two periplasmic binding proteins. Previously, a mutant resistant to the toxic effects of canavanine, with low levels of transport activities and reduced levels of phosphorylation of the two periplasmic binding proteins, was isolated and characterized (R. T. F. Celis, J. Biol. Chem. 265:1787–1793, 1990). The gene encoding the transport ATPase enzyme (argK) has been cloned and sequenced. The gene possesses an open reading frame with the capacity to encode 268 amino acids (mass of 29.370 Da). The amino acid sequence of the protein includes two short sequence motifs which constitute a well-defined nucleotide-binding fold (Walker sequences A and B) present in the ATP-binding subunits of many transporters. We report here the isolation of canavanine-sensitive derivatives of the previously characterized mutant. We describe the properties of these suppressor mutations in which the transport of arginine, ornithine, and lysine has been restored. In these mutants, the phosphorylation of the AO- and LAO-binding proteins remains at a low level. This information indicates that whereas hydrolysis of ATP by the transport ATPase is an obligatory requirement for the accumulation of these amino acids in E. coli K-12, the phosphorylation of the periplasmic binding protein is not related to the function of the transport system.  相似文献   

7.
During bacterial growth, cell wall peptides are released from the murein and reused for the synthesis of new cell wall material. Mutants defective in peptide transport were unable to reutilize cell wall peptides, demonstrating that these peptides are taken up intact into the cytoplasm prior to reincorporation into murein. Furthermore, cell wall peptide recycling was shown to play an important physiological role; peptide transport mutants which were unable to recycle these peptides showed growth defects under appropriate conditions. Using mutants specifically defective in each of the three peptide transport systems, we showed that the uptake of cell wall peptides was mediated solely by the oligopeptide permease (Opp) and that neither the dipeptide permease (Dpp) nor the tripeptide permease (Tpp) played a significant role in this process. Our data indicate that the periplasmic oligopeptide-binding protein has more than one substrate-binding site, each with different though overlapping specificities.  相似文献   

8.
The nucleotide sequence of the gene for the spermidine and putrescine transport system that maps at 15 min on the Escherichia coli chromosome was determined. It contained four open reading frames encoding A, B, C, and D proteins. By making several subclones, we showed that expression of all the four proteins was necessary for maximal spermidine and putrescine transport activity. A single transport system was involved in the transport of both spermidine and putrescine. The A protein (Mr 43K) was found to be associated with membranes, as shown by Western blot analysis of the cell fractions. In addition, it had consensus amino acid sequences for the nucleotide binding site. B (Mr 31K) and C (Mr 29K) proteins consisted of six putative transmembrane spanning segments linked by hydrophilic segments of variable length as shown by cell localization of the proteins synthesized in maxicells and by hydropathy profiles. D protein (Mr 39K) was inferred to be a polyamine binding protein existing in a periplasmic fraction from the results of Western blot analysis of the cell fractions and from measurements of polyamine binding to the protein. These results indicate that the spermidine and putrescine transport system can be defined as a bacterial periplasmic transport system.  相似文献   

9.
The oligopeptide permease of Salmonella typhimurium is a periplasmic binding protein-dependent transport system. Five gene products, OppABCDF, are required for the functioning of this transporter, two of which (OppB and OppC) are highly hydrophobic, integral membrane proteins and are responsible for mediating passage of peptides across the cytoplasmic membrane. OppB and OppC are each predicted, from their sequences, to span the membrane many times. In this paper we describe experimental evidence confirming these predictions using a combination of biochemical, immunological and genetic procedures. Each of these two proteins is shown to span the membrane six times, with the N- and C-termini both being located at the cytoplasmic face of the membrane. Opp is apparently a typical member of the ABC (ATP-binding cassette) superfamily of transporters. These findings, therefore, have general implications for the organization and function of other ABC transporters, including the human multidrug resistance protein and the product of the cystic fibrosis gene.  相似文献   

10.
The oligopeptide permease (Opp) of Salmonella typhimurium is a periplasmic binding protein-dependent transport system and handles any peptides containing from two to five amino acid residues. Opp plays an important nutritional role and is also required for the recycling of cell wall peptides. We have determined the nucleotide sequence of the opp operon. In addition to the four opp genes identified previously by genetic means (oppABCD) a fifth gene, oppF, is shown to be cotranscribed as part of the opp operon. Using reverse genetics, we show that oppF also encodes an essential component of the Opp transport system. The five proteins, OppABCDF, are shown to be the only proteins required for Opp function. Regulation of opp expression and of the differential expression of genes within the operon is investigated. We have devised a simple means of constructing lacZ gene fusions to any S. typhimurium chromosomal gene in vivo, using derivatives of bacteriophage Mu. Using this procedure, opp-lacZ gene fusions were selected. The resultant Opp-LacZ hybrid proteins were used to show that OppB, OppC and OppD are membrane-associated proteins. A detailed comparison of the Opp components with those of other binding protein-dependent transport systems provides insight into the mechanisms and evolution of these transport systems.  相似文献   

11.
Lactococcus lactis ML3 possesses two different peptide transport systems of which the substrate size restriction and specificity have been determined. The first system is the earlier-described proton motive force-dependent di-tripeptide carrier (E. J. Smid, A. J. M. Driessen, and W. N. Konings, J. Bacteriol. 171:292-298, 1989). The second system is a metabolic energy-dependent oligopeptide transport system which transports peptides of four to at least six amino acid residues. The involvement of a specific oligopeptide transport system in the utilization of tetra-alanine and penta-alanine was established in a mutant of L. lactis MG1363 that was selected on the basis of resistance to toxic analogs of alanine and alanine-containing di- and tripeptides. This mutant is unable to transport alanine, dialanine, and trialanine but still shows uptake of tetra-alanine and penta-alanine. The oligopeptide transport system has a lower activity than the di-tripeptide transport system. Uptake of oligopeptides occurs in the absence of a proton motive force and is specifically inhibited by vanadate. The oligopeptide transport system is most likely driven by ATP or a related energy-rich, phosphorylated intermediate.  相似文献   

12.
Due to its extreme insolubility, Fe3+ is not transported as a monoatomic ion. In microbes, iron is bound to low molecular weight carriers, designated siderophores. For uptake into cells of Escherichia coli Fe3+ siderophores have to be translocated across two membranes. Transport across the outer membrane is receptor-dependent and energy-coupled; transport across the cytoplasmic membrane seems to follow a periplasmic binding protein-dependent transport mechanism. In support of this notion we demonstrate specific binding of the Fe3+ hydroxamate compounds ferrichrome, aerobactin, and coprogen, which are transported via the Fhu system, to the periplasmic FhuD protein, and no binding of the transport inactive ferrichrome A, ferric citrate, and iron sulfate. About 10(4) ferrichrome molecules were bound to the FhuD protein of cells which overproduced plasmid-encoded FhuD. Binding depended on transport across the outer membrane mediated by the FhuA receptor and the TonB protein. Binding to FhuD was supported by the exclusive resistance of FhuD to proteinase K in the presence of the transport active hydroxamates. The overproduced precursor form of the FhuD protein was not protected by the Fe3+ hydroxamates indicating a conformation different to the mature form. The FhuD protein apparently serves as a periplasmic carrier for Fe3+ hydroxamates with widely different structures.  相似文献   

13.
Two mutants of Escherichia coli K-12, defective in the oligopeptide and dipeptide transport system, are described. A mutant defective in the oligopeptide transport system (opp-1) was isolated as resistant to the inhibitory action of triornithine; this mutant is also resistant to glycylglycylvaline and does not concentrate (14)C-glycylglycylglycine, although it is still as sensitive as the parental strain to glycylvaline and valine. Starting from the opp-1 strain, a mutant defective also in the dipeptide transport system (dpp-1) was isolated; this mutant is resistant to the inhibitory action of glycylvaline, valylleucine, and leucylvaline and does not concentrate (14)C-glycylglycine, although it is still as sensitive as the parental strain to valine. The apparent kinetic constants for oligopeptide and dipeptide transport were measured. The opp marker is co-transducible with trp at 27 min on the E. coli genetic map. The dpp locus is separated from opp and is located between proC (10 min) and opp.  相似文献   

14.
A major component of the Escherichia coli response to elevated medium osmolarity is the synthesis of a periplasmic protein with an Mr of 31,000. The protein was absent in mutants with lambda placMu insertions in the proU region, a locus involved in transport of the osmoprotectant glycine betaine. This periplasmic protein has now been purified to homogeneity. Antibody directed against the purified periplasmic protein crossreacts with the fusion protein produced as a result of the lambda placMu insertion, indicating that proU is the structural gene specifying the 31-kDa protein. The purified protein binds glycine betaine with high affinity but has no affinity for either proline or choline, clarifying the role of proU in osmoprotectant transport. The amino-terminal sequence of the mature glycine betaine binding protein is Ala-Asp-Leu-Pro-Gly-Lys-Gly-Ile-Thr-Val-Asn-Pro.  相似文献   

15.
The tripeptide, glycyl-d,l-leucyl-l-tyrosine was chemically synthesized in radioactive form and used to directly study the specificity, regulation, and properties of an oligopeptide transport system in Neurospora. Transport activity is sensitive to azide but does not result in the accumulation of the intact peptide; rather, the radioactive label is accumulated as free tyrosine. Inhibition studies suggest that the transport system probably has a relatively wide range of specificity and is responsible for uptake of short oligopeptides of quite distinct sequences. However, free amino acids and dipeptides are not transported significantly, if at all, by the oligopeptide transport system. A free amino group appears to be a requirement for peptide transport. A mutant strain that is unable to use various peptides for growth is further described and shown to be reduced greater than 90% in transport of the tripeptide.  相似文献   

16.
The histidine permease of Salmonella typhimurium consists of four protein components, one located in the periplasm and three in the cytoplasmic membrane. Genetic evidence indicated that the periplasmic protein interacts with the membrane proteins during transport. We have utilized two different methods to demonstrate that the periplasmic protein cross-links specifically to one of the membrane components, the Q protein. Formaldehyde, a water-soluble permeant molecule was used in vivo. Sulfosuccinimidyl 6-(4'-azido-2'-nitrophenylamino)hexanoate, a photoactivatable cross-linking reagent, was used in vitro in a reconstituted membrane vesicle system. Furthermore, we show that a mutant periplasmic protein, capable of binding substrate but not transporting it, is defective in cross-linking to the membrane protein, indicating this interaction to be a crucial step in the mechanism of transport.  相似文献   

17.
The arginine-ornithine periplasmic binding protein, an essential component of the arginine-ornithine transport system of Escherichia coli, was isolated in a phosphorylated form and in a non-phosphorylated form from the periplasmic fluid, after incubation of intact cells with (32P)orthophosphate under conditions similar to those used for arginine transport studies. The binding protein could also be labeled with 32Pi by incubation in vitro of the periplasmic fluid with [gamma-32P]ATP, or by incubation in vitro of the purified binding protein with radioactive ATP, Mg2+ and a phosphokinase enzyme released by osmotic-shock treatment. The two forms of the protein were separated by DEAE-Sephacel chromatography. By several different criteria, which included binding studies, analyses of the amino acid composition of the two forms of the protein, analysis by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and testing for other components of the periplasmic space with affinities for inorganic phosphate, it was concluded that the 32P-labeled protein corresponds to a phosphorylated form of the arginine-ornithine-binding protein. The phosphorylation reaction required Mg2+ and a phosphokinase from the periplasmic fluid. The dissociation constant of the phosphorylated protein for arginine was 5.0 microM (dissociation constant of the unmodified protein equals 0.1 microM), suggesting that the chemically modified protein is the active form of the molecule which releases the ligand for its translocation through the cytoplasmic membrane. The pH-stability profile of the phosphoprotein has a 'U'-shape characteristic of acyl phosphates. Reaction of the phosphorylated binding protein with hydroxylamine at pH 5.4, also released Pi from the phosphoprotein. These properties suggest that the phosphoryl group of the phosphoprotein is linked covalently to a carboxyl function of the protein. This information indicates that ATP is a direct energy donor for the active transport of arginine and ornithine in E. coli, and a step of phosphorylation of the arginine-ornithine-binding protein appears to be involved in the utilization of the phosphate bond energy by the arginine-ornithine transport system.  相似文献   

18.
19.
Protein leakage is induced in well-mixed fed-batch bioreactor by comparison with cultures carried out in scale-down conditions. This effect is attributed to a progressive increase of cell membrane permeability and the synthesis of several outer-membrane components allowing to cope with substrate limitation commonly found in high cell density culture. A comparative analysis of protein leakage has thus been performed in well-mixed bioreactors and in scale-down devices. The extracellular proteome of E.coli has been investigated by 2D-gel electrophoresis and identified by subsequent MALDI-TOF analysis. On 110 picked spots, 67 proteins have been identified and the sub-localisation and the molecular function of these proteins have been determined. A majority of the extracellular proteome was composed of outer-membrane and periplasmic proteins (64 %) confirming the fact that leakage is involved in high cell density cultures. About 50 % of this extracellular proteome was composed of transport and binding proteins. Furthermore, the more abundant spots on the gel corresponded to porin proteins and periplasmic transporters. In particular, the OmpC porin was found to be very abundant. Moreover, the scale-down effect on this extracellular proteome has been investigated by two-dimensional differential in-gel electrophoresis analysis (2D-DIGE), and significant differences have been observed by comparison with culture carried out in well-mixed systems. Indeed, since substrate limitation signal is alleviated in this kind of apparatus, cell permeability was lowered as shown by flow cytometry. In scale-down conditions, protein leakage was thus less abundant.  相似文献   

20.
Uptake of iron complexes into the Gram-negative bacterial cell requires highly specific outer membrane receptors and specific ATP-dependent (ATP-Binding-Cassette (ABC)) transport systems located in the inner membrane. The latter type of import system is characterized by a periplasmic binding protein (BP), integral membrane proteins, and membrane-associated ATP-hydrolyzing proteins. In Gram-positive bacteria lacking the periplasmic space, the binding proteins are lipoproteins tethered to the cytoplasmic membrane. To date, there is little structural information about the components of ABC transport systems involved in iron complex transport. The recently determined structure of the Escherichia coli periplasmic ferric siderophore binding protein FhuD is unique for an ABC transport system (Clarke et al. 2000). Unlike other BP's, FhuD has two domains connected by a long -helix. The ligand binds in a shallow pocket between the two domains. In vivo and in vitro analysis of single amino acid mutants of FhuD identified several residues that are important for proper functioning of the protein. In this study, the mutated residues were mapped to the protein structure to define special areas and specific amino acid residues in E. coli FhuD that are vital for correct protein function. A number of these important residues were localized in conserved regions according to a multiple sequence alignment of E. coli FhuD with other BP's that transport siderophores, heme, and vitamin B12. The alignment and structure prediction of these polypeptides indicate that they form a distinct family of periplasmic binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号