首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To assess the long-term effect of increased CO2 and temperature on plants possessing the C3 photosynthetic pathway, Chenopodium album plants were grown at one of three treatment conditions: (1) 23 °C mean day temperature and a mean ambient partial pressure of CO2 equal to 350 bar; (2) 34 °C and 350 bar CO2; and (3) 34 °C and 750 bar CO2. No effect of the growth treatments was observed on the CO2 reponse of photosynthesis, the temperature response of photosynthesis, the content of Ribulose-1,5-bisphosphate carboxylase (Rubisco), or the activity of whole chain electron transport when measurements were made under identical conditions. This indicated a lack of photosynthetic acclimation in C. album to the range of temperature and CO2 used in the growth treatments. Plants from every treatment exhibited similar interactions between temperature and CO2 on photosynthetic activity. At low CO2 (< 300 bar), an increase in temperature from 25 to 35 °C was inhibitory for photosynthesis, while at elevated CO2 (> 400 bar), the same increase in temperature enhanced photosynthesis by up to 40%. In turn, the stimulation of photosynthesis by CO2 enrichment increased as temperature increased. Rubisco capacity was the primary limitation on photosynthetic activity at low CO2 (195 bar). As a consequence, the temperature response of A was relatively flat, reflecting a low temperature response of Rubisco at CO2 levels below its km for CO2. At elevated CO2 (750 bar), the temperature response of electron transport appeared to control the temperature dependency of photosynthesis above 18 °C. These results indicate that increasing CO2 and temperature could substantially enhance the carbon gain potential in tropical and subtropical habitats, unless feedbacks at the whole plant or ecosystem level limit the long-term response of photosynthesis to an increase in CO2 and temperature.Abbreviations A net CO2 assimilation rate - C a ambient partial pressure of CO2 - C i intercellular partial pressure of CO2 - Rubisco Ribulose-1,5-bisphosphate carboxylase - VPD vapor pressure difference between leaf and air  相似文献   

2.
CO2 fixation was studied in a lichen, Xanthoria parietina, kept in continuous light, and with cyclic changes in light intensity, dark period or temperature. The diurnal and seasonal courses of CO2 exchange were followed. The rate of net photosynthesis was observed to fall from morning to evening, and this decline was more pronounced in winter than in summer. The maximal net photosynthetic rate, 223 ng CO2g-1dws-1, occured in winter and the minimum, 94 ng CO2g-1dws-1, late in spring. The light compensation point in summer was four times as high as in winter. In continuous light (180 or 90 mol photons m-2s-1, 15°C) net photosynthesis decreased noticeably during one week, falling below the level maintained in a 12 h light: 12 h dark cycle. Photosynthetic activity did not decrease, however, in lichens held in continuous light (90 mol photons m-2s-1) with cyclic changes of temperature (12 h 20 °C: 12 h 5 °C). Active photosynthesis was also maintained in light of cyclically changing intensity (12 h: 12 h, 15 °C) when night-time light was at least 75% lower than illumination by day. A dark period of 4 hours in a 24-h light:dark cycle was sufficient to keep CO2 fixation at the control level. It seems that plants need an unproductive period during the day to survive and this can be induced by fluctuations in light and/or temperature.  相似文献   

3.
S. C. Wong 《Oecologia》1979,44(1):68-74
Summary Cotton and maize plants were grown under full sunlight in glass houses containing normal ambient partial pressure of CO2 (330±20 bar) and enriched partial pressure of CO2 (640 ±15 bar) with four levels of nitrogen nutrient. In 40 day old cotton plants grown in high CO2, there was a 2-fold increase in day weight and a 1.6-fold increase in leaf area compared with plants grown in ambient CO2. In 30 day old maize plants there was only 20% increase in dry weight in plants grown in 640 bar CO2 compared with plants grown in 330 bar and no significant increase in leaf area. In both species, at both CO2 treatments, dry weight and leaf area decreased in similar proportion with decreased nitrogen nutrient.The increase of leaf area in cotton plants at high CO2 caused a reduction of total nitrogen on a dry weight basis. In cotton assimilation rate increased 1.5 fold when plants were grown with high nitrogen and high CO2. The increase was less at lower levels of nitrate nutrient. There was a 1.2 fold increase in assimilation rate in maize grown at high CO2 with high nitrate nutrient.Cotton and maize grown in high CO2 had a lower assimilation rate in ambient CO2 compared to plants grown in normal ambient air. This difference was due to the reduction in RuBP carboxylase activity. Water use efficiency was doubled in both cotton and maize plants grown at high CO2 in all nutrient treatments. However, this increase in water use efficiency was due primarily to reduced transpiration in some treatments and to increased assimilation in others. These data show that plant responses to elevated atmospheric partial pressure of CO2 depend on complex of partially compensatory processes which are not readily predictable.  相似文献   

4.
Summary In the leaves (but not corms) of the submerged aquatic Isoetes storkii malic acid concentration fluctuated from 22 eg g FW-1 in the evening to 171 eg g FW-1 in the morning. Associated with this was a change in titratable acidity of 152 eg g FW-1 between morning and evening. 14C carbon was fixed in both the light and the dark, though the amount of carbon fixed in the light was more than that fixed in the dark. Autoradiographs show 88% of 14CO2 fixed in the dark is recovered after 1 h, in malic acid and the remainder in one other unidentified product, whereas these two products contain less than 15% of the 14C fixed after 1 h exposure to 14CO2 in the light. It is suggested that CAM metabolism in this aquatic species may be related to the low availability of CO2 for photosynthesis during the day in its aquatic environment and that this metabolic pathway may prove common in the genus Isoetes.  相似文献   

5.
Onion (Allium cepa L.) plants were examined to determine the photosynthetic role of CO2 that accumulates within their leaf cavities. Leaf cavity CO2 concentrations ranged from 2250 L L–1 near the leaf base to below atmospheric (<350 L L–1) near the leaf tip at midday. There was a daily fluctuation in the leaf cavity CO2 concentrations with minimum values near midday and maximum values at night. Conductance to CO2 from the leaf cavity ranged from 24 to 202 mol m–2 s–1 and was even lower for membranes of bulb scales. The capacity for onion leaves to recycle leaf cavity CO2 was poor, only 0.2 to 2.2% of leaf photosynthesis based either on measured CO2 concentrations and conductance values or as measured directly by 14CO2 labeling experiments. The photosynthetic responses to CO2 and O2 were measured to determine whether onion leaves exhibited a typical C3-type response. A linear increase in CO2 uptake was observed in intact leaves up to 315 L L–1 of external CO2 and, at this external CO2 concentration, uptake was inhibited 35.4±0.9% by 210 mL L–1 O2 compared to 20 mL L–1 O2. Scanning electron micrographs of the leaf cavity wall revealed degenerated tissue covered by a membrane. Onion leaf cavity membranes apparently are highly impermeable to CO2 and greatly restrict the refixation of leaf cavity CO2 by photosynthetic tissue.Abbreviations Ca external CO2 concentration - Ci intercellular CO2 concentration - CO2 compensation concentration - PPFR photosynthetic photon fluence rate  相似文献   

6.
Dry weight and Relative Growth Rate of Lemna gibba were significantly increased by CO2 enrichment up to 6000 l CO2 l–1. This high CO2 optimum for growth is probably due to the presence of nonfunctional stomata. The response to high CO2 was less or absent following four days growth in 2% O2. The Leaf Area Ratio decreased in response to CO2 enrichment as a result of an increase in dry weight per frond. Photosynthetic rate was increased by CO2 enrichment up to 1500 l CO2 l–1 during measurement, showing only small increases with further CO2 enrichment up to 5000 l CO2 l–1 at a photon flux density of 210 mol m–2 s–1 and small decreases at 2000 mol m–1 s–1. The actual rate of photosynthesis of those plants cultivated at high CO2 levels, however, was less than the air grown plants. The response of photosynthesis to O2 indicated that the enhancement of growth and photosynthesis by CO2 enrichment was a result of decreased photorespiration. Plants cultivated in low O2 produced abnormal morphological features and after a short time showed a reduction in growth.  相似文献   

7.
Konjak (Amorphophallus konjac K. Koch) was grown under normal (350 bar) or enriched (700 bar) CO2 partial pressure in glasshouses kept at 33/26 °C. Doubling the CO2 partial pressure resulted in twice the yield of corm because the net CO2 assimilation rate doubled and, due to the simple source-sink relationship, the increased production was partitioned to the corm. The response to CO2 of assimilation by konjak is discussed in relation to its original habitat in the tropics.  相似文献   

8.
Physiological responses to elevated CO2 at the leaf and canopy-level were studied in an intact pine (Pinus taeda) forest ecosystem exposed to elevated CO2 using a free-air CO2 enrichment (FACE) technique. Normalized canopy water-use of trees exposed to elevated CO2 over an 8-day exposure period was similar to that of trees exposed to current ambient CO2 under sunny conditions. During a portion of the exposure period when sky conditions were cloudy, CO2-exposed trees showed minor (7%) but significant reductions in relative sap flux density compared to trees under ambient CO2 conditions. Short-term (minutes) direct stomatal responses to elevated CO2 were also relatively weak (5% reduction in stomatal aperture in response to high CO2 concentrations). We observed no evidence of adjustment in stomatal conductance in foliage grown under elevated CO2 for nearly 80 days compared to foliage grown under current ambient CO2, so intrinsic leaf water-use efficiency at elevated CO2 was enhanced primarily by direct responses of photosynthesis to CO2. We did not detect statistical differences in parameters from photosynthetic responses to intercellular CO2 (A net-C i curves) for Pinus taeda foliage grown under elevated CO2 (550 mol mol–1) for 50–80 days compared to those for foliage grown under current ambient CO2 from similar-sized reference trees nearby. In both cases, leaf net photosynthetic rate at 550 mol mol–1 CO2 was enhanced by approximately 65% compared to the rate at ambient CO2 (350 mol mol–1). A similar level of enhancement under elevated CO2 was observed for daily photosynthesis under field conditions on a sunny day. While enhancement of photosynthesis by elevated CO2 during the study period appears to be primarily attributable to direct photosynthetic responses to CO2 in the pine forest, longer-term CO2 responses and feedbacks remain to be evaluated.  相似文献   

9.
Study on the effect of elevated CO2 concentration on leaf structure of Brassica juncea L. cv. Bio-141 (95) under moisture stress revealed, that CO2 elevated to 600 mol mol–1 increased the length of epidermal cel and length of palisade parenchyma cells, and induced larger chloroplasts and more oval shaped starch granules in comparison with plants grown at ambient CO2 concentration. This increase in structural sink size helped in check feedback inhibition by excessive photoassimilate which was subsequently used to compensate the adverse moisture stress effect in B. juncea leaves.  相似文献   

10.
One cultivar each of spring wheat (Triticum aestivum L. cv. Arkas), oat (Avena sativa L. cv. Lorenz), and barley (Hordeum vulgare L. cv. Aramir) was chosen in order to study the relative contributions of individual bracts to the gas exchange of whole ears. The distribution and frequency of the stomata on the bracts were examined. Gas exchange was measured at normal atmospheric CO2 (330 bar) and at high CO2 (2000 bar) on intact ears and on ears from which glumes or lemmas and pleae (wheat and oat) or awns (barley) had been removed.The relative contribution to the gas exchange of the whole organ is highest for the awns of barley ears. In wheat, the contribution of the glumes is slightly higher than that of the inner bracts before anthesis. Two weeks after anthesis the inner bracts contribute more than the glumes. This tendency of increasing importance of the inner bracts is also found in oat ears, but the relative amount of CO2 uptake by the glumes is higher than in wheat. These changes during ontogeny result from the better supply of light to the inner bracts caused by opening of the ears' structures during grain filling, which in part compensates for the decreasing photosynthetic capacity.The ratio of the photosynthesis rate at high CO2 to that at normal CO2 is lower for the glumes of oat and for the awns of barley than for the other bracts.Abbreviations A330, A2000 net photosynthesis rate, A330 at normal atmospheric CO2 (330 bar), A2000 at high CO2 (2000 bar) - PPFD photosynthetic photon flux density - pc intercellular partial pressure of CO2  相似文献   

11.
Relative importance of short-term environmental interaction and preconditioning to CO2 exchange response was examined in Fragaria ananasa (strawberry, cv. Quinault). Tests included an orthogonal comparison of 15 to 60-min and 6 to 7-h exposures to different levels of temperature (16 to 32°C), photosynthetically active radiation (PAR, 200 to 800 E m2 s-1), and CO2 (300 to 600 l/l) on successive days of study. Plants were otherwise maintained at 21°C, 300 E m2 s-1 PAR and 300–360 l/l CO2 as standard conditions. Treatment was restricted to the mean interval of 14 h daily illumination and the first 3–4 days of each test week over a 12-week cultivation period. CO2 exchange rates were followed with each step-change in environmental level including ascending/descending temperature/PAR within a test period, initial response at standard conditions on successive days of testing, and measurement at reduced O2. Response generally supported prior concepts of leaf biochemical modeling in identifying CO2 fixation as the major site of environmental influence, while overall patterns of whole plant CO2 exchange suggested additional effects for combined environmental factors and preconditioning. These included a positive interaction between temperature and CO2 concentration on photosynthesis at high irradiance and a greater contribution by dark respiration at lower PAR than previously indicated. The further importance of estimating whole plant CO2 exchange from repetitive tests and measurements was evidenced by a high correlation of response to prior treatment both during the daily test period and on consecutive days of testing.Abbreviations C3 plant a plant in which the product of CO2 fixation is a 3-carbon acid (3-phosphoglyceric acid) - IRGA intra-red gas analyzer - PAR photosynthetically active radiation - RH relative humidity - RuBisCO ribulose-1,5-bisphosphate carboxylase/oxygenase Reference to a company and/or product named by the Department is only for purposes of information and does not imply approval or recommendation of the product to the exclusion of others which may also be suitable.  相似文献   

12.
Isolated embryos ofKarwinskia humboldtiana were cultured in vitro. The growth of embryos and development to plantlets on woody plant medium supplemented with indole-3-acetic acid 6.10-2 mol l–1, gibberellic acid (GA3) 3.10-2 mol l–1, and 6-benzylaminopurine (BA) 2 mol l–1 was obtained. Multiplication of shoots and rooting of excised shoots has been achieved. Callus formation on modified Murashige-Skoog medium supplemented with 1-naphthaleneacetic acid 10 mol l–1, GA3 14 mol l–1, and kinetin 5 mol l–1 on hypocotyls, or on root cultures on medium supplemented with 2.4-dichlorophenoxyacetic acid 10 mol l–1 and BA 10 mol l–1 was induced.Abbreviations BA 6-benzylaminopurine - 2,4-d 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid - IAA indole-3-acetic acid - NAA 1-naphthaleneacetic acid - TEM transmission electron microscopy  相似文献   

13.
14.
Fernández  M.D.  Pieters  A.  Azkue  M.  Rengifo  E.  Tezara  W.  Woodward  F.I.  Herrera  A. 《Photosynthetica》2000,37(4):587-599
We studied the responses of leaf gas exchange and growth to an increase in atmospheric CO2 concentration in four tropical deciduous species differing in carbon fixation metabolism: Alternanthera crucis, C3-C4; Ipomoea carnea, C3; Jatropha gossypifolia, C3; and Talinum triangulare, inducible-CAM. In the first stage, plants were grown in one open-top chamber at a CO2 concentration of 560±40 mol mol-1 (EC), one ambient CO2 concentration chamber (AC), and one unenclosed plot (U). In the second stage, plants were grown in five EC chambers (CO2 concentration = 680±30 mol mol-1), five AC chambers, and five unenclosed plots. During the first weeks under EC in the first stage, plants of all the species had a very marked increase in their maximal net photosynthetic rates (P max) of 3.5 times on average; this stimulatory effect was maintained for 11-15 weeks, rates dampening afterward to values still higher than controls for 37 weeks. After a suspension of CO2 enrichment for 6 weeks, an increase in P max of EC plants over the controls was found in plants of all the species until week 82 of the experiment. Stomatal conductance (g) showed no response to EC. Carboxylation efficiency decreased in all the species under EC  相似文献   

15.
Elevated CO2 increases belowground respiration in California grasslands   总被引:1,自引:0,他引:1  
This study was designed to identify potential effects of elevated CO2 on belowground respiration (the sum of root and heterotrophic respiration) in field and microcosm ecosystems and on the annual carbon budget. We made three sets of respiration measurements in two CO2 treatments, i.e., (1) monthly in the sandstone grassland and in microcosms from November 1993 to June 1994; (2) at the annual peak of live biomass (March and April) in the serpentine and sandstone grasslands in 1993 and 1994; and (3) at peak biomass in the microcosms with monocultures of seven species in 1993. To help understand ecosystem carbon cycling, we also made supplementary measurements of belowground respiration monthly in sandstone and serpentine grasslands located within 500 m of the CO2 experiment site. The seasonal average respiration rate in the sandstone grassland was 2.12 mol m-2 s-1 in elevated CO2, which was 42% higher than the 1.49 mol m-2 s-1 measured in ambient CO2 (P=0.007). Studies of seven individual species in the microcosms indicated that respiration was positively correlated with plant biomass and increased, on average, by 70% with CO2. Monthly measurements revealed a strong seasonality in belowground respiration, being low (0–0.5 mol CO2 m-2 s-1 in the two grasslands adjacent to the CO2 site) in the summer dry season and high (2–4 mol CO2 m-2 s-1 in the sandstone grassland and 2–7 mol CO2 m-2 s-1 in the microcosms) during the growing season from the onset of fall rains in November to early spring in April and May. Estimated annual carbon effluxes from the soil were 323 and 440 g C m-2 year-1 for the sandstone grasslands in ambient and elevated CO2. That CO2-stimulated increase in annual soil carbon efflux is more than twice as big as the increase in aboveground net primary productivity (NPPa) and approximately 60% of NPPa in this grassland in the current CO2 environment. The results of this study suggest that below-ground respiration can dissipate most of the increase in photosynthesis stimulated by elevated CO2.CIWDPB Publication # 1271  相似文献   

16.
Rates of CO2 fixation during the light period and the rates of CO2 release during the night period were measured using mature leaves from 39- to 49-d-old spinach (Spinacia oleracea L., US Hybrid 424; grown in 9 h light, 15 h darkness, daily) and mature leaves from 21-d-old barley (Hordeum vulgare L., cv. Apex; grown in 14 h light, 10 h darkness, daily). At certain times during the light and dark periods leaves were harvested for assay of their contents of soluble carbohydrates, starch, malate and the various amino acids. Evaluation of the results of these measurements shows that in spinach and barley leaves 46% and 26%, respectively, of the carbon assimilated during the light period is deposited in the leaves for export during the night period. Taking into account the carbon consumption in the source leaves by dark respiration, it is evaluated that rates of assimilate export during the light period from spinach and barley leaves [38 and 42 atom C · (mg Chl)–1 · h–1] are reduced in the dark period to 16 atom C · (mg Chl)–1 · h–1 in both species. The calculated C/N ratios of the photoassimilates exported during the dark period were 0.029 and 0.015 for spinach and barley leaves, respectively.This work was supported by the Deutsche Forschungsgemeinschaft. We thank Dr. Dieter Heineke for stimulating discussions and Mrs. Petra Hoferichter and Mrs. Marita Feldkämper for their technical assistance.  相似文献   

17.
Peñuelas  J.  Estiarte  M.  Kimball  B.A. 《Photosynthetica》2000,37(4):615-619
We compared flavonoids in green, mature, and senescing flag leaves of wheat grown under ambient (AC - 370 mol mol-1) and elevated (EC - 550 mol mol-1) concentrations of CO2 in a FACE (Free Air CO2 Enrichment) system. The concentrations of flag leaf flavonoids (e.g., isoorientin and tricin) decreased to one third in mature leaves, and the majoritary isoorientin almost disappeared in senescing leaves. Flavonoid concentrations increased in green well-developed flag leaves under EC (46 % isoorientin and 55 % tricin), whereas the differences disappeared in mature and senescing flag leaves. Predictions of changes in litter phenolic concentrations and their effects on decomposition rates under EC based on changes in green leaves need to be revised.  相似文献   

18.
The potentials for sequential reduction of inorganic electron acceptors and production of methane have been examined in sixteen rice soils obtained from China, the Philippines, and Italy. Methane, CO2, Fe(II), NO 3 - , SO 4 2 , pH, Eh, H2 and acetate were monitored during anaerobic incubation at 30 °C for 120 days. Based on the accumulation patterns of CO2 and CH4, the reduction process was divided into three distinct phases: (1) an initial reduction phase during which most of the inorganic electron acceptors were depleted and CO2 production was at its maximum, (2) a methanogenic phase during which CH4 production was initiated and reached its highest rate, and (3) a steady state phase with constant production rates of CH4 and CO2. The reduction phases lasted for 19 to 75 days with maximum CO2 production of 2.3 to 10.9 mol d-1 g-1 dry soil. Methane production started after 2 to 87 days and became constant after about 38--68 days (one soil >120 days). The maximum CH4 production rates ranged between 0.01 and 3.08 mol d-1 g-1. During steady state the constant CH4 and CO2 production rates varied from 0.07 to 0.30 mol d-1 g-1 and 0.02 and 0.28 mol d-1 g-1, respectively. Within the 120 d of anaerobic incubation only 6--17% of the total soil organic carbon was released into the gas phase. The gaseous carbon released consisted of 61--100% CO2, <0.1--35% CH4, and <5% nonmethane hydrocarbons. Associated with the reduction of available Fe(III) most of the CO2 was produced during the reduction phase. The electron transfer was balanced between total CO2 produced and both CH4 formed and Fe(III), sulfate and nitrate reduced. Maximum CH4 production rate (r = 0.891) and total CH4 produced (r = 0.775) correlated best with the ratio of soil nitrogen to electron acceptors. Total nitrogen content was a better indicator for available organic substrates than the total organic carbon content. The redox potential was not a good predictor of potential CH4 production. These observations indicate that the availability of degradable organic substrates mainly controls the CH4 production in the absence of inorganic electron acceptors.  相似文献   

19.
Perennial ryegrass swards were grown in large containers on a soil and were exposed during two years to elevated (700 L L-1) or ambient atmospheric CO2 concentration at outdoor temperature and to a 3 °C increase in air temperature in elevated CO2. The nitrogen nutrition of the grass sward was studied at two sub-optimal (160 and 530 kg N ha-1 y-1) and one non-limiting (1000 kg N ha-1 y-1) N fertilizer supplies. At cutting date, elevated CO2 reduced by 25 to 33%, on average, the leaf N concentration per unit mass. Due to an increase in the leaf blade weight per unit area in elevated CO2, this decline did not translate for all cuts in a lower N concentration per unit leaf blade area. With the non-limiting N fertilizer supply, the leaf N concentration (% N) declined with the shoot dry-matter (DM) according to highly significant power models in ambient (% N=4.9 DM-0.38) and in elevated (%N=5.3 DM-0.52) CO2. The difference between both regressions was significant and indicated a lower critical leaf N concentration in elevated than in ambient CO2 for high, but not for low values of shoot biomass. With the sub-optimal N fertilizer supplies, the nitrogen nutrition index of the grass sward, calculated as the ratio of the actual to the critical leaf N concentration, was significantly lowered in elevated CO2. This indicated a lower inorganic N availability for the grass plants in elevated CO2, which was also apparent from the significant declines in the annual nitrogen yield of the grass sward and in the nitrate leaching during winter. For most cuts, the harvested fraction of the plant dry-matter decreased in elevated CO2 due, on average, to a 45–52% increase in the root phytomass. In the same way, a smaller share of the plant total nitrogen was harvested by cutting, due, on average, to a 25–41% increase in the N content of roots. The annual means of the DM and N harvest indices were highly correlated to the annual means of the nitrogen nutrition index. Changes in the harvest index and in the nitrogen nutrition index between ambient and elevated CO2 were also positively correlated. The possible implication of changes in the soil introgen cycle and of a limitation in the shoot growth potential of the grass in elevated. CO2 is discussed.Abbreviations 350 outdoor climate - 700 outdoor climate +350 L L-1[CO2] - 700+ outdoor climate +350 L L-1 (CO2) and +3 °C - N-- low N fertilizer supply - N+ high N fertilizer supply - N++ non-limiting N fertilizer supply - DM dry-matter  相似文献   

20.
Bert G. Drake 《Oecologia》1984,63(2):263-270
Summary Photosynthetic responses to incident photon flux density (400–700 nm; PPFD) was studied in a grass community consisting of Spartina patens and Distichlis spicata and a mixed community having the two grasses and a sedge, Scirpus Olneyi. Net community CO2 exchange and incident PPFD were monitored from dawn to dusk in a large open gas exchange system, and a hyperbolic light response model was fit to the data for each day. Light response curves from five growing seasons were evaluated for seasonal trends in the compensation value, initial slope, and maximum net CO2 exchange rate calculated from the model at PPFD=1670 mol m-2s-1.All response curves were curvilinear. Data from approximately 30% of the 113 days studied fit saturation curves which occurred primarily in spring and fall. Approximately 5% of all curves constructed required a different response curve for the morning and afternoon. These occurred during mid-summer and were interpreted to be evidence of water stress.The compensation flux density was very high early in the growing season, but rapidly decreased and during the months June, July and August, it averaged near 100 and 120 mol m-2s-1 in the mixed and grass communities. The initial slope and maximum net CO2 exchange rate increased from early May to maxima in July and declined thereafter. Mid-summer mean values for the mixed and grass communities respectively were 34.3±10.3 mmol mol-1 and 39.1±9.1 mmol mol-1 for the initial slope and 20.3±4.2 mol m-2s-1 and 23.0±3.8 mol m-2s-1 for maximum net CO2 exchange. Daytime respiration accounted for approximately 20% of maximum gross photosynthesis in both communities.Photosynthetic efficiency, CO2 assimilated per unit total incident solar radiation, was approximately 4.1% and 4.7% at dawn or dusk and 2.3% and 2.6% at midday for the mixed and grass community. Gross photosynthesis, maximum photosynthesis plus midday respiration, accounted for 2.7% and 3.0% of total incident solar radiation in the mixed and grass communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号