首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eun-Ho Kim  Mohammed Dwidar 《Biofouling》2014,30(10):1225-1233
This study evaluated the co-application of bacterial predation by Bdellovibrio bacteriovorus and either alum coagulation or powdered activated carbon adsorption to reduce fouling caused by Escherichia coli rich feed solutions in dead-end microfiltration tests. The flux increased when the samples were predated upon or treated with 100 ppm alum or PAC, but co-treatment with alum and predation gave the best flux results. The total membrane resistance caused by the predated sample was reduced six-fold when treated with 100 ppm PAC, from 11.8 to 1.98 × 1011 m?1, while irreversible fouling (Rp) was 2.7-fold lower. Treatment with 100 ppm alum reduced the total resistance 14.9-fold (11.8 to 0.79 × 1011 m?1) while the Rp decreased 4.25-fold. SEM imaging confirmed this, with less obvious fouling of the membrane after the combined process. This study illustrates that the combination of bacterial predation and the subsequent removal of debris using coagulation or adsorption mitigates membrane biofouling and improves membrane performance.  相似文献   

2.
Short exposures of Bacillus spores to nutrient germinants can commit spores to germinate when germinants are removed or their binding to the spores'' nutrient germinant receptors (GRs) is inhibited. Bacillus subtilis spores were exposed to germinants for various periods, followed by germinant removal to prevent further commitment. Release of spore dipicolinic acid (DPA) was then measured by differential interference contrast microscopy to monitor germination of multiple individual spores, and spores did not release DPA after 1 to 2 min of germinant exposure until ∼7 min after germinant removal. With longer germinant exposures, percentages of committed spores with times for completion of DPA release (Trelease) greater than the time of germinant removal (Tb) increased, while the time TlagTb, where Tlag represents the time when rapid DPA release began, was decreased but rapid DPA release times (ΔTrelease = TreleaseTlag) were increased; Factors affecting average Trelease values and the percentages of committed spores were germinant exposure time, germinant concentration, sporulation conditions, and spore heat activation, as previously shown for commitment of spore populations. Surprisingly, germination of spores given a 2nd short germinant exposure 30 to 45 min after a 1st exposure of the same duration was significantly higher than after the 1st exposure, but the number of spores that germinated in the 2nd germinant exposure decreased as the interval between germinant exposures increased up to 12 h. The latter results indicate that spores have some memory, albeit transient, of their previous exposure to nutrient germinants.  相似文献   

3.
This study investigated the effects of soluble organic matters on membrane fouling characteristics, using silt density index (SDI) and modified fouling index (MFI) to evaluate the fouling potential. Experimental results demonstrated that humic acid had significant effects on membrane fouling indexes. When its concentration was in the range of 0.01–0.05 mg/L, the SDI15 and MFI were 2.9–3.9 and 5.4–13.8 s/L2, respectively. According to the linear equations of MFI measurements, the fouling potential was in the order of humic acid > nucleic acid ≒ protein > glucose. Moreover, the molecular weight of dextran played an important role in membrane fouling indexes. Furthermore, a mathematical analysis of filtration experiments based on saturation curve was developed in this study. The maximum accumulated filtrate (Vmax) and the constant of filtration (kf) could be obtained to improve the precision of membrane fouling prediction.  相似文献   

4.
The sporicidal properties of hydrogen peroxide were evaluated at concentrations of 10 to 41% and at temperatures of 24 to 76 C. The organisms tested and their relative resistance at 24 C to 25.8% H2O2 were: Bacillus subtilis SA 22 > B. subtilis var. globigii > B. coagulans > B. stearothermophilus > Clostridium sp. putrefactive anaerobe 3679 > S. aureus, with „D” values of 7.3, 2, 1.8, 1.5, 0.8., and 0.2 min, respectively. Heat shocking spores prior to hydrogen peroxide treatment decreased their resistance. Wet spores were more resistant than dry spores when good mixing was achieved during hydrogen peroxide treatment. Inactivation curves followed first-order kinetics except for a lag period where the inactivation rate was very slow. Increasing the H2O2 concentration and the temperature reduced the lag period.  相似文献   

5.
Aim: To determine the minimal conditions (temperature–time), necessary to achieve set sanitation targets for selected microbial indicators during the continuous thermal treatment of pig slurry. Methods and Results: The effectiveness of thermal treatment between 55 and 96°C was studied using Escherichia coli, enterococci, sulfite‐reducing Clostridia (SRC), mesophilic culturable bacteria (MCB), F+‐specific and somatic phages. Identification of SRC and MCB was performed using 16S rRNA gene analysis. Ten minutes at 70°C or 1 h at 60°C was sufficient to reduce the vegetative bacteria by 4–5 log10, but it had little effect on somatic phages nor on spore formers, dominated by Clostridium sp. At 96°C, somatic phages were still detected, but there was a reduction of 3·1 log10 for SRC and of 1·4 log10 for MCB. At 96°C, Clostridium botulinum was identified among the thermotolerant MCB. Conclusion: Only those hygienic risks relating to mesophilic vegetative bacteria can be totally eliminated from pig slurry treated at 60°C (60 min) or 70°C (<10 min). Significance and Impact of the Study: Hygiene standards based on the removal of the indicators E. coli and enterococci can easily be met by treatment as low as 60°C (enabling, a low‐cost treatment using heat recovery). However, even at 96°C, certain pathogens may persist.  相似文献   

6.
The role of erythrocytic surface membrane proteins and membrane charge in the interactions of the erythrocytes with lipopolysaccharides (LPS) isolated from Escherichia coli O55:B5 (LPS E. coli , S-form) has been examined by two independent methods, flow cytometry and cell electrophoresis. Treatment of erythrocytes with trypsin that modifies stereochemical properties of cell surface resulted in a 16% increase in the level of the erythrocyte fluorescence measured after their incubation with fluorescently labeled LPS E. coli . Electrophoretic mobility (EM) of the trypsin-treated erythrocytes was reduced by 16%. The removal of sialic acids from the erythrocyte surface with neuraminidase had no considerable effect either on the relative EM values or fluorescence intensity after the incubation of cells with LPS. The results suggest that the major role in the incorporation of the S-form LPS into the membrane of human erythrocytes is played by stereochemical factors, whereas the cell surface charge is less significant.  相似文献   

7.
Bacillus subtilis spores were killed by CuCl2-ascorbic acid, chloride ions were essential for killing of spores, and spores with defective coats were killed more rapidly. CuCl2-ascorbic acid did not damage spore DNA, and spores killed by this reagent initiated germination. However, spores killed by CuCl2-ascorbic acid may have damage to their inner membrane.  相似文献   

8.
An anaerobic submerged membrane bioreactor (AnSMBR) treating low-strength wastewater was operated for 90 days under psychrophilic temperature conditions (20 °C). Besides biogas sparging, additional shear was created by circulating sludge to control membrane fouling. The critical flux concept was used to evaluate the effectiveness of this configuration. Biogas sparging with a gas velocity (UG) of 62 m/h together with sludge circulation (94 m/h) led to a critical flux of 7 L/(m2 h). Nevertheless, a further increase in the UG only minimally enhanced the critical flux. A low fouling rate was observed under critical flux conditions. The cake layer represented the main fouling resistance after 85 days of operation. Distinctly different volatile fatty acid (VFA) concentrations in the reactor and in the permeate were always observed. This fact suggests that a biologically active part of the cake layer contributes to degrade a part of the daily organic load. Hence, chemical oxygen demand (COD) removal efficiencies of up to 94% were observed. Nevertheless, the biogas balance indicates that even considering the dissolved methane, the methane yield were always lower than the theoretical value, which indicates that the organic compounds were not completely degraded but physically retained by the membrane in the reactor.  相似文献   

9.
Hybrid process of BAC and sMBR for treating polluted raw water   总被引:2,自引:0,他引:2  
The hybrid process of biological activated carbon (BAC) and submerged membrane bioreactor (sMBR) was evaluated for the drinking water treatment from polluted raw water, with the respective hydraulic retention time of 0.5 h. The results confirmed the synergetic effects between the BAC and the subsequent sMBR. A moderate amount of ammonium (54.5%) was decreased in the BAC; while the total removal efficiency was increased to 89.8% after the further treatment by the sMBR. In the hybrid process, adsorption of granular activated carbon (in BAC), two stages of biodegradation (in BAC and sMBR), and separation by the membrane (in sMBR) jointly contributed to the removal of organic matter. As a result, the hybrid process managed to eliminate influent DOC, UV254, CODMn, TOC, BDOC and AOC by 26.3%, 29.9%, 22.8%, 27.8%, 57.2% and 49.3%, respectively. Due to the pre-treatment effect of BAC, the membrane fouling in the downstream sMBR was substantially mitigated.  相似文献   

10.
Germination of Bacillus anthracis spores occurs when nutrients such as amino acids or purine nucleosides stimulate specific germinant receptors located in the spore inner membrane. The gerPABCDEF operon has been suggested to play a role in facilitating the interaction between germinants and their receptors in spores of Bacillus subtilis and Bacillus cereus. B. anthracis mutants containing deletions in each of the six genes belonging to the orthologue of the gerPABCDEF operon, or deletion of the entire operon, were tested for their ability to germinate. Deletion of the entire gerP operon resulted in a significant delay in germination in response to nutrient germinants. These spores eventually germinated to levels equivalent to wild-type, suggesting that an additional entry point for nutrient germinants may exist. Deletions of each individual gene resulted in a similar phenotype, with the exception of ΔgerPF, which showed no obvious defect. The removal of two additional gerPF-like orthologues was necessary to achieve the germination defect observed for the other mutants. Upon physical removal of the spore coat, the mutant lacking the full gerP operon no longer exhibited a germination defect, suggesting that the GerP proteins play a role in spore coat permeability. Additionally, each of the gerP mutants exhibited a severe defect in calcium-dipicolinic acid (Ca-DPA)–dependent germination, suggesting a role for the GerP proteins in this process. Collectively, these data implicate all GerP proteins in the early stages of spore germination.  相似文献   

11.
Syngas fermentation is a promising route for resource recovery. Acetate is an important industrial chemical product and also an attractive precursor for liquid biofuels production. This study demonstrated high fraction acetate production from syngas (H2 and CO2) in a hollow-fiber membrane biofilm reactor, in which the hydrogen utilizing efficiency reached 100 % during the operational period. The maximum concentration of acetate in batch mode was 12.5 g/L, while the acetate concentration in continuous mode with a hydraulic retention time of 9 days was 3.6?±?0.1 g/L. Since butyrate concentration was rather low and below 0.1 g/L, the acetate fraction was higher than 99 % in both batch and continuous modes. Microbial community analysis showed that the biofilm was dominated by Clostridium spp., such as Clostridium ljungdahlii and Clostridium drakei, the percentage of which was 70.5 %. This study demonstrates a potential technology for the in situ utilization of syngas and valuable chemical production.  相似文献   

12.
The reuse of grey water for non-potable water applications is a potential solution for water-deprived regions worldwide. Adequate treatment of grey water prior to reuse is important to reduce the risks of pathogen transmission and to improve the efficacy of subsequent disinfection. This study investigated the presence of common pathogens in grey water and compared the pathogen removal performance of leading contender treatment technologies. The opportunistic pathogens Pseudomonas aeruginosa and Staphylococcus aureus were detected in the grey water tested. Three configurations of constructed wetland, a membrane bioreactor (MBR), and a membrane chemical reactor (MCR) were evaluated for indicator bacteria (total coliforms, Escherichia coli, Enterococci, Clostridia, and heterotrophs) removal over a period of 2 years under conditions of low and high strength grey water influent. Total coliforms were found to be good indicators for P. aeruginosa, showing strong and significant Spearman's rank correlations in the influent grey water (rs = 0.77, P = 0.005) and treated effluents (rs = 0.81, P  0.001). The MBR provided the highest quality treated effluent and was the most robust treatment technology, remaining unaffected by an increase in influent grey water strength. Of the three constructed wetlands, the VFRB was the most reliable performer under low and high strength influent conditions, indicating aerobic unsaturated wetland to be the most suitable form of the technology for pathogen removal.  相似文献   

13.
Group 1B human pancreatic secretory phospholipase A2 (hp-sPLA2), a digestive enzyme synthesized by pancreatic acinar cells and present in pancreatic juice, do not have antibacterial activity towards Escherichia coli. Our earlier results suggest that the N-terminal first ten amino acid residues of hp-sPLA2 constitute major portion of the membrane binding domain of full-length enzyme and is responsible for the precise orientation of enzyme on the membrane surface by inserting into the lipid bilayers (Pande et al. (2006) Biochemistry, 45,12436–12447). In this study we report the antibacterial properties of a peptide (AVWQFRKMIK-CONH2; N10 peptide), which corresponds to the N-terminal first ten amino acid residues of hp-sPLA2, against E. coli. Full-length hp-sPLA2, which contains this peptide sequence as N-terminal α-helix, did not showed detectable antibacterial activity. Presence of physiological concentration of salt or preincubation of N10 peptide with soluble anionic polymer inhibits the antibacterial activity indicating the importance of electrostatic interaction in binding of peptide to bacterial membrane. Addition of peptide resulted in destabilization of outer as well as inner cytoplasmic membrane of E. coli suggesting bacterial membranes to be the main target of action. N10 peptide exhibits strong synergism with lysozyme and potentiates the antibacterial activity of lysozyme. The peptide was inactive against human erythrocyte. Our result shows for the first time that a peptide fragment of hp-sPLA2 possesses antibacterial activity towards E. coli and at subinhibitory concentration and can potentiate the antibacterial activity of membrane active enzyme. These observations suggest that N10 peptide may play an important role in the antimicrobial activity of pancreatic juice.  相似文献   

14.
AIMS: To compare the suitability of various bacterial and viral indicators to assess the removal of faecal micro-organisms by primary and secondary wastewater treatment processes. METHODS AND RESULTS: The numbers of several bacterial indicators [faecal coliforms (FC), enterococci (ENT) and sulphite-reducing clostridia (SRC)] and bacteriophages (somatic coliphages, F-specific RNA phages and bacteriophages infecting Bacteroides fragilis strain RYC2056) were determined in incoming raw sewage and effluents from various primary and secondary wastewater treatment processes in several geographical areas. Reductions in the numbers of indicators were calculated as log10 reductions. Processes based on removal and mild disinfection, showed no significant differences in the elimination of any of the indicators tested or between geographical areas. In contrast, treatment processes that include strong microbial inactivation, such as lime-aided flocculation and lagooning, showed significant differences between the log10 reductions of the various micro-organisms studied, FC showing the highest reduction and spores of SRC and phages infecting B. fragilis the lowest. CONCLUSIONS: The microbial elimination performance of treatment processes based principally on removal and mild disinfection can be evaluated with a single indicator. In contrast, processes with additional disinfecting capabilities require more than one indicator for accurate evaluation of the treatment; bacteriophages are good candidates for use as second indicators. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacteriophages provide additional information for the evaluation of microbial elimination in some treatment plants. The easy, fast and cheap methods available for phage determination are feasible both in industrialized and developing countries.  相似文献   

15.
LOCATION AND COMPOSITION OF SPORE MUCOPEPTIDE IN BACILLUS SPECIES   总被引:19,自引:1,他引:19       下载免费PDF全文
Spore integuments of Bacillus coagulans were prepared containing nearly all the hexosamine and α, ε-diaminopimelic acid (DAP) present in intact spores. Subsequent autolytic action resulted in the destruction and removal of the residual cortical structure and "cortical membrane" leaving the appearance of the inner and outer spore coats unchanged in electron micrographs. Concurrently, all the hexosamine and DAP in the preparation was released mainly as non-diffusible mucopeptide containing alanine, glutamic acid, DAP, and all the glucosamine and muramic acid. Some diffusible peptides containing alanine, glutamic acid, and DAP were also present but there was little protein or carbohydrate. Lysozyme digestion of integument preparations from heated spores of Bacillus 636, B. subtilis, B. coagulans, and B. stearothermophilus specifically removed the residual cortex and cortical membrane with the release of the mucopeptide. In B. cereus T, only the residual cortex and part of the mucopeptide were solubilized by lysozyme. The effect of several reagents and enzymes upon the appearance and removal of hexosamine from B. coagul ans spore integuments is reported. The results show that spore mucopeptide is mainly located in the residual cortex and cortical membrane and suggest that these structures consist essentially of mucopeptide. The implications of these results in relation to the "contractile cortex" theory of heat resistance in spores are discussed.  相似文献   

16.
AIMS: To evaluate the feasibility of bacteriophages as a complementary tool for water quality assessment in surface waters from different parts of the globe. METHODS AND RESULTS: Faecal coliform bacteria, enterococci, spores of sulphite-reducing clostridia, somatic coliphages, F-specific RNA bacteriophages and bacteriophages infecting Bacteroides fragilis were determined by standardized methods in raw sewage and in 392 samples of river water from 22 sampling sites in 10 rivers in Argentina, Colombia, France and Spain, which represent very different climatic and socio-economic conditions. The results showed that the indicators studied maintained the same relative densities in the raw sewage from the different areas. Classifying the river water samples according to the content of faecal coliform bacteria, it can be observed that the relative densities of the different bacterial indicators and bacteriophages changed according to the concentration of faecal coliform bacteria. There was a relative increase in the densities of all groups of bacteriophages and sulphite-reducing clostridia with respect to faecal coliforms and enterococci in the samples with low counts of faecal coliform bacteria. CONCLUSIONS: The numbers of bacterial indicators and bacteriophages were similar in the different geographical areas studied. Once released in rivers, the persistence of the different micro-organisms differed significantly. Bacteriophages and spores of sulphite-reducing clostridia persisted longer than faecal coliforms and enterococci. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacteriophages in river water samples provide additional information to that provided by bacteria about the fate of faecal micro-organisms in river water. The easy, fast and cheap methods for phage determination are feasible both in industrialized and developing countries.  相似文献   

17.
Microalgal-bacterial processes represent a sustainable and cost-effective biotechnology able to promote efficient wastewater treatment, including natural pathogen removal (disinfection), as well as being able to perform CO2 uptake and biogas upgrading. In this context, the influence of CO2 supply from a synthetic gas mixture (30% v/v CO2) on the removal of pathogens (Pseudomonas, enterococci, and Escherichia coli) and total coliforms during secondary domestic wastewater treatment by a microalgal-bacterial symbiosis in a 180-L high-rate algal pond (HRAP) was investigated. The supply of CO2 in the HRAP positively influenced the Pseudomonas aeruginosa removal, with the removal efficiency increasing from 97.4% (1.6 log) to 99.6% (2.5 log) without and with CO2 supply, respectively. Likewise, the total coliform removal efficiency rose from 88.7% (1.1 log) to 99.4% (2.8 log). On the other hand, the effect of CO2 supply on enterococci (99.7% and 2.6 log) and Escherichia coli (98.6% and 2.2 log) removal was negligible.  相似文献   

18.
Membrane bioreactor for drinking water denitrification   总被引:1,自引:0,他引:1  
The aim of this study is to evaluate the performance of a membrane bioreactor with cell recycle to be used for drinking water denitrification, when operated with a high nitrate load (up to 7.68?kgNO3 ?/m3?day) and low hydraulic retention time (down to 0.625?h). Nitrate and nitrite were always completely removed for all the operational conditions used. The effluent's nitrite concentration kept below 0.1?mg NO2 ?/l with exception of a short period, during the reactor start-up, when it accumulates. The performance of the membrane bioreactor was also evaluated using a groundwater containing 148?mg NO3 ?/l. Nitrate and nitrite concentration in the effluent were below the recommended values for drinking water when the reactor was controlled at pH 7.0. The membrane flux decreases during operation as a consequence of membrane fouling. The flux decrease was more severe during operation with synthetic medium than with contaminated groundwater due to the existence of molecular complexes in the synthetic broth. A backshock technique was used to reduce the surface fouling of the membrane. Combining this technique with the use of a reserve asymmetric structured membrane it was found that the membrane flux remains nearly unchanged.  相似文献   

19.

Background

Germination is the irreversible loss of spore-specific properties prior to outgrowth. Because germinating spores become more susceptible to killing by stressors, induction of germination has been proposed as a spore control strategy. However, this strategy is limited by superdormant spores that remain unaffected by germinants. Harsh chemicals and heat activation are effective for stimulating germination of superdormant spores but are impractical for use in a hospital setting, where Clostridium difficile spores present a challenge. Here, we tested whether osmotic activation solutes will provide a mild alternative for stimulation of superdormant C. difficile spores in the presence of germinants as previously demonstrated in several species of Bacillus. In addition, we tested the hypothesis that the limitations of superdormancy can be circumvented with a combined approach using nisin, a FDA-approved safe bacteriocin, to inhibit outgrowth of germinated spores and osmotic activation solutes to enhance outgrowth inhibition by stimulating superdormant spores.

Principal Findings

Exposure to germination solution triggered ∼1 log10 colony forming units (CFU) of spores to germinate, and heat activation increased the spores that germinated to >2.5 log10CFU. Germinating spores, in contrast to dormant spores, became susceptible to inhibition by nisin. The presence of osmotic activation solutes did not stimulate germination of superdormant C. difficile spores exposed to germination solution. But, in the absence of germination solution, osmotic activation solutes enhanced nisin inhibition of superdormant spores to >3.5 log10CFU. The synergistic effects of osmotic activation solutes and nisin were associated with loss of membrane integrity.

Conclusions

These findings suggest that the synergistic effects of osmotic activation and nisin bypass the limitations of germination as a spore control strategy, and might be a novel method to safely and effectively reduce the burden of C.difficile spores on skin and environmental surfaces.  相似文献   

20.
The microbial community of a pig slurry on a farm was monitored for 6 months using both molecular and cultural approaches. Sampling was carried out at all the different stages of effluent handling, from the rearing build-up to slurry spreading. Total DNA of each sample was extracted and analyzed by PCR-single-strand conformation polymorphism (SSCP) analysis using primers targeting the 16S rRNA genes from the archaeal and bacterial domains and also the Eubacterium-Clostridium, Bacillus-Streptococcus-Lactobacillus, and Bacteroides-Prevotella groups. A comparison of the SSCP profiles showed that there were rapid changes in the dominant bacterial community during the first 2 weeks of anaerobic storage and that the community was relatively stable thereafter. Several bacterial populations, identified as populations closely related to uncultured Clostridium and Porphyromonas and to Lactobacillus and Streptococcus cultured species commonly isolated from pig feces, remained present and dominant from the rearing build-up to the time of spreading. Enumeration of fecal indicators (enterococci and Escherichia coli) performed in parallel using cultural methods revealed the same trends. On the other hand, the archaeal community adapted slowly during pig slurry storage, and its diversity increased. A shift between two hydrogenotrophic methanogenic Methanobrevibacter populations from the storage pit to the pond was observed. Microorganisms present in pig slurry at the time of spreading could not be detected in soil after spreading by either molecular or cultural techniques, probably because of the detection limit inherent in the two techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号