首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biogas production by co-digestion of cattle manure with crude glycerin obtained from biodiesel production was studied after pre-treatment of the cattle manure or mixtures of cattle manure with different amounts of added glycerin with ultrasound. Batch experiments with 1750 mL of medium containing 1760 g of screened cattle manure or mixtures of cattle manure (screened or ground) and 70-140 mL or crude glycerin were incubated under mesophilic and thermophilic condition in stirred tank reactors. Under mesophilic conditions, the addition of 4% glycerin to screened manure increased biogas production by up to 400%. Application of sonication (20 kHz, 0.1 kW, and 4 min) to a mixture of manure + 4% glycerin increased production of biogas by up to 800% compared to untreated manure. The best results were obtained under thermophilic conditions using sonicated mixtures of ground cattle manure with 6% added glycerin (348 L methane/kg COD removed were obtained).  相似文献   

2.
Li Y  Yan XL  Fan JP  Zhu JH  Zhou WB 《Bioresource technology》2011,102(11):6458-6463
The objective of this work was to examine the feasibility of biogas production from the anaerobic co-digestion of herbal-extraction residues with swine manure. Batch and semi-continuous experiments were carried out under mesophilic anaerobic conditions. Batch experiments revealed that the highest specific biogas yield was 294 mL CH4 g−1 volatile solids added, obtained at 50% of herbal-extraction residues and 3.50 g volatile solids g−1 mixed liquor suspended solids. Specific methane yield from swine manure alone was 207 mL CH4 g−1 volatile solid added d−1 at 3.50 g volatile solids g−1 mixed liquor suspended solids. Furthermore, specific methane yields were 162, 180 and 220 mL CH4 g−1 volatile solids added d−1 for the reactors co-digesting mixtures with 10%, 25% and 50% herbal-extraction residues, respectively. These results suggested that biogas production could be enhanced efficiently by the anaerobic co-digestion of herbal-extraction residues with swine manure.  相似文献   

3.
This work examines the methane production potential for the anaerobic co-digestion of swine manure (SM) with winery wastewater (WW). Batch and semi-continuous experiments were carried out under mesophilic conditions. Batch experiments revealed that the highest specific methane yield was 348 mL CH4 g−1 COD added, obtained at 85.4% of WW and 0.7 g COD g−1 VS. Specific methane yield from SM alone was 27 mL CH4 g−1 COD added d−1. Furthermore, specific methane yields were 49, 87 and 107 mL CH4 g−1 COD added d−1 for the reactors co-digesting mixtures with 10% WW, 25% WW and 40% WW, respectively. Co-digestion with 40% WW improved the removal efficiencies up to 52% (TCOD), 132% (SCOD) and 61% (VSS) compared to SM alone. These results suggest that methane can be produced very efficiently by the co-digestion of swine manure with winery wastewater.  相似文献   

4.
Anaerobic biodegradation of linear alkylbenzene sulfonates (LAS) was studied in upflow anaerobic sludge blanket (UASB) reactors operated under mesophilic (37 degrees C) and thermophilic (55 degrees C) conditions. LAS C12 concentration in the influents was 10 mg.L(-1), and the hydraulic retention time in the reactors was 2 days. Adsorption of LAS C12 was assessed in an autoclaved control reactor and ceased after 115 days. The reactors were operated for a minimum of 267 days; 40-80% removal of LAS C12 was observed. A temperature reduction from 55 degrees C to 32 degrees C for 30 h resulted in process imbalance as indicated by increase of volatile fatty acids (VFA). The imbalance was much more intense in the LAS amended reactor compared with an unamended reactor. At the same time, the process imbalance resulted in discontinued LAS removal. This finding indicates that process stability is a key factor in anaerobic biological removal of LAS. After a recovery period, the removal of LAS resumed, providing evidence of biological anaerobic LAS degradation. The removal remained constant until termination of experiments in the reactor. Biodegradation of LAS in the mesophilic reactor was at the same level as in the thermophilic reactor under stable conditions.  相似文献   

5.
Anaerobic co-digestion of swine manure with energy crop residues   总被引:2,自引:0,他引:2  
Anaerobic co-digestion involves the treatment of different substrates with the aim of improving the production of biogas and the stability of the process. In this research, co-digestion of swine manure (SM) and energy crop residues (ECRs) was studied. The mixtures evaluated contained SM combined with maize (Mz), rapeseed (Rs) or sunflower (Sf) residues. Batch and semi-continuous experiments were performed to determine methane (CH4) yields and the behavior of reactors while co-digesting agricultural wastes. Three different proportions of ECRs were tested in batch experiments for co-digestion with SM: 25, 50, and 75% volatile solids (VS). On the basis of the results obtained from batch tests, a mixture with a 50% ECR content was selected for the second stage of the study. Mesophilic reactors with a 3 L working volume were used for semi-continuous experiments. The hydraulic retention time (HRT) was set at 30 days and the reactors were kept under these operational conditions over four HRTs. The addition of ECR to the co-digestion system resulted in a major increase in the amount of biogas produced daily. The highest biogas yield was obtained when co-digesting Rs (3.5 L/day), although no improvement was observed in specific gas production from the addition of the co-substrate.  相似文献   

6.
Thermophilic anaerobic digestion offers an attractive alternative for the treatment of medium- and high-strength wastewaters. However, literature reports reveal that thermophilic wastewater treatment systems are often more sensitive to environmental changes than the well-defined high-rate reactors at the mesophilic temperature range. Also, in many cases a poorer effluent quality is experienced while the carry over of suspended solids in the effluent is relatively high. In this paper recent achievements are discussed regarding the process stability of thermophilic anaerobic wastewater treatment systems. Laboratory experiments reveal a relatively low sensitivity to temperature changes if high-rate reactors with immobilized biomass are used. Other results show that if a staged process is applied, thermophilic reactors can be operated for prolonged periods of time under extreme loading conditions (80–100 kg chemical oxygen demand.m-3.day-1), while the concentrations of volatile fatty acids in the effluent remain at a low level.  相似文献   

7.
Mesophilic and thermophilic biotreatment of BTEX-polluted air in reactors   总被引:4,自引:0,他引:4  
This study compares the removal of a mixture of benzene, toluene, ethylbenzene, and all three xylene isomers (BTEX) in mesophilic and thermophilic (50 degrees C) bioreactors. In the mesophilic reactor fungi became dominant after long-term operation, while bacteria dominated in the thermophilic unit. Microbial acclimation was achieved by exposing the biofilters to initial BTEX loads of 2-15 g m(-3) h(-1), at an empty bed residence time of 96 s. After adaptation, the elimination capacities ranged from 3 to 188 g m(-3) h(-1), depending on the inlet load, for the mesophilic biofilter with removal efficiencies reaching 96%. On the other hand, in the thermophilic reactor the average removal efficiency was 83% with a maximum elimination capacity of 218 g m(-3) h(-1). There was a clear positive relationship between temperature gradients as well as CO(2) production and elimination capacities across the biofilters. The gas phase was sampled at different depths along the reactors observing that the percentage pollutant removal in each section was strongly dependant on the load applied. The fate of individual alkylbenzene compounds was checked, showing the unusually high biodegradation rate of benzene at high loads under thermophilic conditions (100%) compared to its very low removal in the mesophilic reactor at such load (<10%). Such difference was less pronounced for the other pollutants. After 210 days of operation, the dry biomass content for the mesophilic and thermophilic reactors were 0.300 and 0.114 g g(-1) (support), respectively, reaching higher removals under thermophilic conditions with a lower biomass accumulation, that is, lower pressure drop.  相似文献   

8.
Digestion of cattle manure collected from a livestock farm together with bedding material (straw) has been studied under mesophilic and thermophilic conditions in batch reactors. The digestion was carried out for a prolonged period with the aim of evaluating the changes undergone by the organic matter. The mesophilic digestion carried out revealed a greater capacity to produce gas and transform organic matter, while a higher conversion rate, but a lower gas yield, was obtained under thermophilic conditions. Degradation of the organic matter was evaluated by means of thermal analysis and 1H NMR. Stabilisation through anaerobic digestion (either mesophilic or thermophilic) resulted in an increase in the quality of the organic matter, as characterised by an enrichment in thermostable compounds, and an accumulation of long chain aliphatic materials. The experiments performed demonstrated the transformation of organic matter into complex materials under anaerobic conditions with an accumulation of aliphatic components under both types of conditions tested. Degradation through mesophilic digestion, in comparison to the thermophilic process, resulted in a greater destruction of straw particles.  相似文献   

9.
Microbial communities involved in biogas production from wheat straw as the sole substrate were investigated. Anaerobic digestion was carried out within an up-flow anaerobic solid-state (UASS) reactor connected to an anaerobic filter (AF) by liquor recirculation. Two lab-scale reactor systems were operated simultaneously at 37 °C and 55 °C. The UASS reactors were fed at a fixed organic loading rate of 2.5 g L−1 d−1, based on volatile solids. Molecular genetic analyses of the bacterial and archaeal communities within the UASS reactors (digestate and effluent liquor) and the AFs (biofilm carrier and effluent liquor) were conducted under steady-state conditions. The thermophilic UASS reactor had a considerably higher biogas and methane yield in comparison to the mesophilic UASS, while the mesophilic AF was slightly more productive than the thermophilic AF. When the thermophilic and mesophilic community structures were compared, the thermophilic system was characterized by a higher Firmicutes to Bacteroidetes ratio, as revealed by 16S rRNA gene (rrs) sequence analysis. The composition of the archaeal communities was phase-separated under thermophilic conditions, but rather stage-specific under mesophilic conditions. Family- and order-specific real-time PCR of methanogenic Archaea supported the taxonomic distribution obtained by rrs sequence analysis. The higher anaerobic digestion efficiency of the thermophilic compared to the mesophilic UASS reactor was accompanied by a high abundance of Firmicutes and Methanosarcina sp. in the thermophilic UASS biofilm.  相似文献   

10.
Reduction of porcine parvovirus, bovine enterovirus and faecal enterococci were measured in biogas reactors continuously run on manure and manure supplemented with household waste at 35°C and 55°C and in batch test run at 70°C. The aim of the experiments was to study the sanitation effect of anaerobic digestion and to evaluate the use of faecal enterococci as an indicator of sanitation. Parallel studies on the reduction of virus and faecal enterococci were done in physiological saline solution. Heat ínactivation was found to be an important factor in thermophilic biogas plants and the overall dominant factor at 70°C. However, other environmental factors with a substantial virucidal and bactericidal effect were involved in inactivation. The death rates for faecal enterococci were generally higher than for porcine parvovirus and lower than for bovine enterovirus. For faecal enterococci, a logarithmic reduction of 4 (corresponding to the recommended minimum guaranteed retention time) was obtained after 300 hours at 35°C and after 1–2 hours at 55°C. In continuously-fed reactors, a high reduction rate was initially seen for the virus tested, followed by a reduction in the rate. For porcine parvovirus, a minimum guaranteed retention time of 11–12 hours is necessary at 55°C in the initial phase (0–4 hours) and 54 hours hereafter (4–48 h). Correspondingly, for bovine enterovirus a MGRT of 23 hours was necessary at 35°C and < 0.5 hours at 55°C. The data indicate that faecal enterococci measurements give a good indication of inactivation of enterovirus and other more heat sensitive virus, especially under thermophilic conditions. Parvovirus is very suitable for comparative investigations on inactivation in the temperature range of 50–80°C, due to the extreme thermal resistance of this virus. However, in stipulating sanitation demands for biogas reactors it seems more reasonable to use less resistant virus, such as a reovirus or picornavirus, which better represents the pathogenic animal virus.Abbreviations BEV bovine enterovirus - CFU colony forming unit - FE faecal enterococci - HRT hydraulic retention time - MGRT minimum guaranteed retention time - ND not detected - PPV porcine parvovirus - TCID50 tissue cell infective dose 50 % - VFA volatile fatty acids - VS volatile solids  相似文献   

11.
Lin Y  Wang D  Li Q  Xiao M 《Bioresource technology》2011,102(4):3673-3678
This paper presented results from anaerobic co-digestion of pulp and paper sludge (PPS) and monosodium glutamate waste liquor (MGWL). A bench-scale anaerobic digester, 10 L in volume was developed, to operate under mesophilic (37 ± 2 °C) batch condition. Under versatile and reliable anaerobic conduct, high efficiency for bioconversion of PPS and MGWL were obtained in the system. The accumulative methane yield attained to 200 mL g−1 VSadded and the peak value of methane daily production was 0.5 m3/(m3 d). No inhibitions of volatile fatty acids (VFAs) and ammonia on anaerobic co-digestion were found. pH 6.0-8.0 and alkalinity 1000-4000 mg CaCO3/L were got without adjustment. This work showed that there was a good potential to the use of PPS and MGWL to anaerobic co-digestion for methane production.  相似文献   

12.
Anaerobic co-digestion of fruit and vegetable waste (FVW) and abattoir wastewater (AW) was investigated using anaerobic sequencing batch reactors (ASBRs). The effects of hydraulic retention time (HRT) and temperature variations on digesters performances were examined. At both 20 and 10 days biogas production for co-digestion was greater thanks to the improved balance of nutrients. The high specific gas productions for the different digestion processes were 0.56, 0.61 and 0.85 l g−1 total volatile solids (TVS) removal for digesters treating AW, FVW and AW + FVW, respectively. At an HRT of 20 days, biogas production rates from thermophilic digesters were higher on average than from mesophilic AW, FVW and AW + FVW digestion by 28.5, 44.5 and 25%, respectively. However, at 10 days of HRT results showed a decrease of biogas production rate for AW and AW + FVW digestion processes due to the high amount of free ammonia at high organic loading rate (OLR).  相似文献   

13.
The main objectives of this work were to investigate the evolution of some principal physico-chemical properties (temperature, carbon dioxide, oxygen, ammonia, pH, electrical conductivity, organic matter) and microbial population (mesophilic and thermophilic bacteria and fungi) during composting poultry manure with wheat straw in a reactor system, and to evaluate the optimum mixture ratio for organic substrate production. The experiments were carried out in four small laboratory reactors (1 l) and one large reactor (32 l) under adiabatic conditions over 14 days. During the process the highest temperature was 64.6°C, pH varied between 7.40 and 8.85, electrical conductivity varied between 3.50 and 4.31 dS m−1 and the highest value of organic matter (dry weight) degradation was 47.6%. Mesophilic bacteria and fungi predominated in the beginning, and started the degradation with generation of metabolic heat. By increasing the temperature in reactors, the number of thermophilic microorganisms also increased, which resulted in faster degradation of substrate. The application of a closed reactor showed a rapid degradation of manure/straw mixture as well as a good control of the emissions of air polluting gases into atmosphere. The results showed that the ratio of manure to straw 5.25:1 (dry weight) was better for composting process than the other mixture ratios.  相似文献   

14.
In this study, productivity and physicochemical and microbiological (454 sequencing) parameters, as well as environmental criteria, were investigated in anaerobic reactors to contribute to the ongoing debate about the optimal temperature range for treating animal manure, and expand the general knowledge on the relation between microbiological and physicochemical process indicators. For this purpose, two reactor sizes were used (10 m3 and 16 l), in which two temperature conditions (35°C and 50°C) were tested. In addition, the effect of the hydraulic retention time was evaluated (16 versus 20 days).Thermophilic anaerobic digestion showed higher organic matter degradation (especially fiber), higher pH and higher methane (CH4) yield, as well as better percentage of ultimate CH4 yield retrieved and lower residual CH4 emission, when compared with mesophilic conditions. In addition, lower microbial diversity was found in the thermophilic reactors, especially for Bacteria, where a clear intensification towards Clostridia class members was evident.Independent of temperature, some similarities were found in digestates when comparing with animal manure, including low volatile fatty acids concentrations and a high fraction of Euryarchaeota in the total microbial community, in which members of Methanosarcinales dominated for both temperature conditions; these indicators could be considered a sign of process stability.  相似文献   

15.
Kim HW  Nam JY  Shin HS 《Bioresource technology》2011,102(15):7272-7279
Assessing contemporary anaerobic biotechnologies requires proofs on reliable performance in terms of renewable bioenergy recovery such as methane (CH4) production rate, CH4 yield while removing volatile solid (VS) effectively. This study, therefore, aims to evaluate temperature-phased anaerobic sequencing batch reactor (TPASBR) system that is a promising approach for the sustainable treatment of organic fraction of municipal solid wastes (OFMSW). TPASBR system is compared with a conventional system, mesophilic two-stage anaerobic sequencing batch reactor system, which differs in operating temperature of 1st-stage. Results demonstrate that TPASBR system can obtain 44% VS removal from co-substrate of sewage sludge and food waste while producing 1.2 m3CH4/m3system/d (0.2 m3CH4/kgVSadded) at organic loading rate of 6.1 gVS/L/d through the synergy of sequencing-batch operation, co-digestion, and temperature-phasing. Consequently, the rapid and balanced anaerobic metabolism at thermophilic stage makes TPASBR system to afford high organic loading rate showing superior performance on OFMSW stabilization.  相似文献   

16.
Five different mesophilic systems were evaluated in this study for the anaerobic treatment of food waste. Systems A and B were one stage methane with unsonicated and sonicated feeds, respectively, while, systems C and D were two-stage hydrogen and methane with unsonicated and sonicated feeds, respectively. System E comprised a novel sonicated biological hydrogen reactor (SBHR) followed by methane reactor. The results showed that sonication inside the reactor in the first stage (system E) showed superior results compared to all other systems. Overall VSS removal efficiencies of 67%, 59%, 51%, 44%, and 36% were achieved in systems E, D, C, B, and A, respectively. Volumetric hydrogen production rates of 4.8, 3.3, and 2.6 L H2/Lreactor d were achieved in the SBHR, CSTR with and without sonicated feed, respectively, while, methane production rates of 1.6, 2.1, 2.3, 2.6, and 3.2 L CH4/Lreactor d were achieved in systems A-E, respectively.  相似文献   

17.
In order to improve the gas evolution rate during anaerobic digestion of coffee waste by two-phase methane fermentation with slurry-state liquefaction, the liquefaction and gasification processes were separately investigated. In the liquefaction process (including the acidification process), treatment at a pH above 6 had no major effects on the liquefaction and acidification rates. However, the VFA production rates were 880 and 320 mg/l·d during mesophilic (37°C) and thermophilic (53°C) liquefaction, respectively. Mesophilic conditions were superior to thermophilic conditions in the liquefaction. With respect to the gasification process, a high TOC volumetric loading rate of 21 g/l·d was achieved during thermophilic gasification. However, the mesophilic gasification did not yield stable data, even at a low TOC volumetric loading rate of 2 g/l·d. The gas yield was 1.7 l/g TOC consumed during thermophilic gasification. The thermophilic liquefaction and thermophilic gasification reactors were connected in series and a two-phase experiment was conducted with the reactors at various volumetric ratios. The maximum gas evolution rate of 1.43 l/l·d was achieved with a combination of a gasification reactor with a 0.45l working volume and liquefaction reactor with a 2l working volume. This rate was 1.7 times higher than the rate obtained in a previous study.  相似文献   

18.
Benzene, toluene, ethylbenzene and xylene (BTEX) substrate interactions for a mesophilic (25°C) and thermophilic (50°C) toluene-acclimatized composted pine bark biofilter were investigated. Toluene, benzene, ethylbenzene, o-xylene, m-xylene and p-xylene removal efficiencies, both individually and in paired mixtures with toluene (1:1 ratio), were determined at a total loading rate of 18.1 g m–3 h–1 and retention time ranges of 0.5–3.0 min and 0.6–3.8 min for mesophilic and thermophilic biofilters, respectively. Overall, toluene degradation rates under mesophilic conditions were superior to degradation rates of individual BEX compounds. With the exception of p-xylene, higher removal efficiencies were achieved for individual BEX compounds compared to toluene under thermophilic conditions. Overall BEX compound degradation under mesophilic conditions was ranked as ethylbenzene >benzene >o-xylene >m-xylene >p-xylene. Under thermophilic conditions overall BEX compound degradation was ranked as benzene >o-xylene >ethylbenzene >m-xylene >p-xylene. With the exception of o-xylene, the presence of toluene in paired mixtures with BEX compounds resulted in enhanced removal efficiencies of BEX compounds, under both mesophilic and thermophilic conditions. A substrate interaction index was calculated to compare removal efficiencies at a retention time of 0.8 min (50 s). A reduction in toluene removal efficiencies (negative interaction) in the presence of individual BEX compounds was observed under mesophilic conditions, while enhanced toluene removal efficiency was achieved in the presence of other BEX compounds, with the exception of p-xylene under thermophilic conditions.  相似文献   

19.
《Biomass》1986,9(3):173-185
Thermophilic (55°C) and mesophilic (35°C and 22°C) anaerobic digestions in laboratory scale (4 litre) fixed-film reactors fed with screened dairy manure were successfully operated over a range of hydraulic retention times, from 1 to 20 days. Maximum methane production rates of 1·82, 1·68 and 1·28 litres CH4 litre−1 day−1 occurred at 1, 1·5 and 1 days HRT for the respective 55°C, 35°C and 22°C reactors. Both thermophilic and mesophilic digestions achieved maximum biodegradation efficiency at 10 days HRT. The thermophilic fixed-film reactor performed better than completely-mixed reactors in terms of methane production at HRTs shorter than 2 days. From the results, mesophilic fixed-film reactor operated at 35°C provided optimum methane production and net energy output between 1 and 5 days HRT.  相似文献   

20.
Methanogenesis was studied using stirred, bench-top fermentors of 3-1 working volume fed on a semi-continuous basis with waste obtained from cattle fed a high grain, finishing diet. Digestion was carried out at 40 and 60°C. CH4 production was 11.8, 18.3, 61.9 and 84.5% higher in the thermophilic than the mesophilic digestor at the 3, 6, 9 and 12 g volatile solids (VS) l–1 reactor volume loading rates, respectively. When compared on an energetic basis CH4 production was 7.4, 18.3, 72.9 and 107.3 kJ day higher in the thermophilic than the mesophilic digestor. CH4 production decreased more rapidly with each increase in VS loading rate and decrease in retention time (RT) in the mesophilic than the thermophilic digestor. When expressed as l g–1 VS fed or as kJ kJ–1 fed, the amount of CH4 was 49% less at the highest compared to the lowest loading rate in the mesophilic digestor. In the thermophilic digestor the decrease was only 16%. Propionate accumulated in the mesophilic digestor at the two highest loading rates, reaching concentrations of about 50 mM, but were only about 13 mM in the thermophilic digestor. Isobutyrate, isovalerate plus 2-methylbutyrate, and valerate also accumulated at the higher loading rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号