首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 261 毫秒
1.
The diatom genus Pseudo-nitzschia (Peragallo) associated with the production of domoic acid (DA), the toxin reposnsible for amnesic shellfish poisoning, is abundant in Scottish waters. A two year study examined the relationship between Pseudo-nitzschia cells in the water column and DA concentration in blue mussels (Mytilus edulis) at two sites, and king scallops (Pecten maximus) at one site. The rate of DA uptake and depuration differed greatly between the two species with M. edulis whole tissue accumulating and depurating 7 μg g−1 (now expressed as mg kg−1) per week. In contrast, it took 12 weeks for DA to depurate from P. maximus gonad tissue from a concentration of 68 μg g−1 (now mg kg−1) to <20 μg g−1 (now mg kg‐1). The DA depuration rate from P. maximus whole tissue was <5% per week during both years of the study. Correlations between the Pseudo-nitzschia cell densities and toxin concentrations were weak to moderate for M. edulis and weak for P. maximus. Seasonal diversity on a species level was observed within the Pseudo-nitzschia genus at both sites with more DA toxicity associated with summer/autumn Pseudo-nitzschia blooms when P. australis was observed in phytoplankton samples. This study reveals the marked difference in DA uptake and depuration in two shellfish species of commercial importance in Scotland. The use of these shellfish species to act as a proxy for DA in the environment still requires investigation.  相似文献   

2.
Concentrations of domoic acid (DA), the biotoxin responsible for amnesic shellfish poisoning (ASP), exceeding the regulatory limit of 20 μg g−1 have caused restricted harvesting and closures of wild king scallop fisheries. Toxin monitoring programmes have reported significant inter-animal variation in DA concentration between scallops from the same area. For the development of reliable sampling and management protocols an understanding of the magnitude and causes of inter-animal variation in toxin concentration are important. Ten samples were collected from an aquaculture site in Clew Bay, Co. Mayo off the west coast of Ireland between February 2003 and February 2004, each sample comprising 12 scallops of each of the following size groups: small (70–85 mm), medium (85–100 mm), large (100–115 mm) and very large (>115 mm). DA concentration in each hepatopancreas and in composite samples of both gonad and adductor muscle from each size group on each sampling occasion were measured. High inter-animal variability in DA concentration in hepatopancreas was recorded; CVs ranging from 12.5% to 82.5%. One negative correlation (R2 = 0.7079) between DA concentration in hepatopancreas and scallop shell length, three positive but weak correlations (R2 = 0.4536, 0.3459 and 0.4665) and six no correlations were exhibited. Negative correlations were attributed to faster DA uptake by smaller scallops, positive correlations to faster DA depuration by smaller scallops. If only scallops greater than or equal to 100 mm shell length, the minimum commercial size of this species were considered, no correlation occurred on any of the 10 sampling occasions.  相似文献   

3.
Domoic acid (DA), the toxin responsible for amnesic shellfish poisoning (ASP) can accumulate in king scallop Pecten maximus leading to extensive fishery closures. Approximately 59% of the total value of all fish and shellfish landed in the Isle of Man in 2004 comprised king scallop, hence the economy of the Manx marine sector is particularly susceptible to impacts from this biotoxin. Scallop from fishing grounds around the Isle of Man were sampled in October 2003, June 2004 and October 2004 to determine levels of inter-animal and spatial variability in DA concentration and factors that might influence toxin concentration such as scallop size and water depth. Mean DA concentrations in hepatopancreas ranged from 296.3 μg g−1 to below the detection limit, in gonad from 27.8 μg g−1 to below the limit of detection and in adductor muscle from 7.3 μg g−1 to below the limit of detection. High levels of inter-animal variability of DA concentration in hepatopancreas were recorded; CVs ranging from 16.1% to 70.0%. DA concentrations above 20 μg g−1 were recorded in gonads on all three sampling dates. Scallops from fishing grounds on the east of the Isle of Man were significantly less contaminated than those from the west and southwest. A significant positive correlation between DA concentration and shell length was recorded in some sites, but there was no relationship with water depth. The high inter-animal, spatial and seasonal variability in toxin concentration highlighted the importance of understanding field variability for the development of reliable sampling and management protocols.  相似文献   

4.
Since 1998, king scallops (Pecten maximus) obtained from Scottish offshore sites have been monitored for domoic acid (DA) and epi-domoic acid (epi-DA), the principal toxic compounds associated with amnesic shellfish poisoning (ASP). The presence of these toxins in king scallops harvested from Scottish waters at concentrations exceeding the current regulatory limit (20 μg g−1 shellfish flesh) is a recurrent event. However, little information was available to determine the effects that different storage conditions experienced during sample transportation to the monitoring laboratory may have on the toxin concentrations, which are subsequently detected. Furthermore, the stability of DA and epi-DA in the solvents (methanol:water (1:1, v/v) and citric acid buffer (0.5 M, pH 3.2)) routinely used for their extraction from shellfish has not previously been assessed. Results from this study demonstrate that when king scallop samples were stored for 2–3 days at 12 °C, a significantly higher toxin concentration was detected in the gonad than when samples were stored at 4 °C and analysed within 48 h. This implies that monitoring programmes must consider transport and storage conditions between harvest and analysis. Stability studies showed rapid decomposition of DA and epi-DA in aqueous methanol extracts while DA and epi-DA seem acceptably stable when stored refrigerated in citrate buffer.  相似文献   

5.
The study present evaluated the levels of mercury (Hg) and methylmercury (MeHg) in hair samples of people from Barreiras community, riverside inhabitants of the Tapajós River (Pará, Brazil), an area impacted by clandestine gold mining, as well as we analyzed the levels of Hg and Se (selenium) in nine fish species (carnivores and non-carnivorous) from the Tapajós River, which stand out as the main species consumed by riverside inhabitants, to evaluate a relationship between frequency of fish consumption and Hg concentration, and also to evaluate possible mechanisms of fish protection (or non-protection) to Hg exposure by Se. Furthermore we analyze the water quality to evaluate the environmental trophic state, fact responsible by creating conditions that can potentiate the effects of toxic mercury. Concentrations of Hg and MeHg were analyzed in hair samples of 141 volunteers in different age band. Of those, 84.40% of samples present values above the threshold for biological tolerance, which is 6.00 μg g−1 of total Hg in hair. Total Hg, in men there was a variation of 2.07–24.93 μg g−1, while for women the variation was 4.84–27.02 μg g−1. Consequently, the level of MeHg in men presented a variation of 1.49–19.57 μg g−1, with an average of 11.68 μg g−1, while with women the variation was from 3.73 to 22.35 μg g−1, with an average of 10.38 μg g−1. In fish species, Hg concentrations in carnivorous species had an average of 0.66 μg g−1, higher than that permitted by current legislation, ranging from 0.30 to 0.98 μg g−1, while the non-carnivorous species have values below the recommended by the legislation averaging 0.09 μg g−1, ranging between 0.02 and 0.44 μg g−1. For Se in fish, show that among carnivores, the contents of Se ranged between 0.18 and 0.54 μg g−1 with a mean of 0.34 μg g−1, while for non-carnivores these values were of the order of 0.16–0.56 μg g−1, with an average of 0.32 μg g−1. In surface water quality variables at the sampling points all showed values in accordance with the range established by current legislation. In this regard, the results provided by this study, while not conclusive, are strong indicators that despite not having been shown the relationship between the concentration of mercury in hair and feeding habits along the Tapajós River basin communities showed that a plausible correlation exists between levels of mercury and selenium in fish. This fact may serve as a subsidy to research human health, because in the Amazon, there is still a lot to examine with regards to the full understanding of the Se cycle.  相似文献   

6.
The gulfs that surround Península Valdés (PV), Golfo Nuevo and Golfo San José in Argentina, are important calving grounds for the southern right whale Eubalaena australis. However, high calf mortality events in recent years could be associated with phycotoxin exposure. The present study evaluated the transfer of domoic acid (DA) from Pseudo-nitzschia spp., potential producers of DA, to living and dead right whales via zooplanktonic vectors, while the whales are on their calving ground at PV. Phytoplankton and mesozooplankton (primary prey of the right whales at PV and potential grazers of Pseudo-nitzschia cells) were collected during the 2015 whale season and analyzed for species composition and abundance. DA was measured in plankton and fecal whale samples (collected during whale seasons 2013, 2014 and 2015) using liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS). The genus Pseudo-nitzschia was present in both gulfs with abundances ranging from 4.4 × 102 and 4.56 × 105 cell l−1. Pseudo-nitzschia australis had the highest abundance with up to 4.56 × 105 cell l−1. DA in phytoplankton was generally low, with the exception of samples collected during a P. australis bloom. No clear correlation was found between DA in phytoplankton and mesozooplankton samples. The predominance of copepods in mesozooplankton samples indicates that they were the primary vector for the transfer of DA from Pseudo-nitzschia spp. to higher trophic levels. High levels of DA were detected in four whale fecal samples (ranging from 0.30 to 710 μg g−1 dry weight of fecal sample or from 0.05 and 113.6 μg g−1 wet weight assuming a mean water content of 84%). The maximum level of DA detected in fecal samples (710 μg DA g−1 dry weight of fecal sample) is the highest reported in southern right whales to date. The current findings demonstrate for the first time that southern right whales, E. australis, are exposed to DA via copepods as vectors during their calving season in the gulfs of PV.  相似文献   

7.
The 2011 Great East Japan Earthquake and the subsequent huge tsunami greatly affected both human activity and the coastal marine ecosystem along the Pacific coast of Japan. The tsunami also reached Funka Bay in northern Japan and caused serious damage to the scallop cultures there, and this tsunami was believed to have affected the coastal environments in the bay. Therefore, we investigated the changes in the spatial abundance and distribution of the toxic dinoflagellates Alexandrium tamarense cysts before the tsunami (August 2010) and after the tsunami (May 2011, August 2011, May 2012 and August 2012) in the bay. Further, monthly sampling was conducted after the tsunami to identify seasonal changes of Alexandrium catenella/tamarense cysts and vegetative cells. Significant increases were observed in the populations of A. catenella/tamarense cysts, comparing the abundances before the tsunami (in August 2010; 70 ± 61 cysts g−1 wet sediment) to those just after it (in May 2011; 108 ± 84 cysts g−1 wet sediment), and both A. tamarense bloom (a maximum density was 1.3 × 103 cells L−1) and PSP (Paralytic Shellfish Poisoning) toxin contamination of scallops (9.4 mouse unit g−1 was recorded) occurred in the bay. Seasonal sampling also revealed that the encystment of A. tamarense and the supply of the cysts to bottom sediments did not occur in the bay from September to April. These results strongly suggested that the mixing of the bottom sediments by the tsunami caused the accumulation of the toxic A. tamarense cysts in the surface of bottom sediment through the process of redeposition in Funka Bay. Moreover, this cyst deposition may have contributed to the toxic bloom formation as a seed population in the spring of 2011.  相似文献   

8.
Cheese whey powder (CWP) solution with different CWP or sugar concentrations was fermented to ethanol in a continuous fermenter using pure culture of Kluyveromyces marxianus (DSMZ 7239). Sugar concentration of the feed CWP solution varied between 55 and 200 g l−1 while the hydraulic residence time (HRT) was kept constant at 54 h. Ethanol formation, sugar utilization and biomass formation were investigated as functions of the feed sugar concentration. Percent sugar utilization and biomass concentrations decreased and the effluent sugar concentration increased with increasing feed sugar concentrations especially for the feed sugar contents above 100 g l−1. Ethanol concentration and productivity (DP) increased with increasing feed sugar up to 100 g l−1 and then decreased with further increases in the feed sugar content. The highest ethanol concentration (3.7%, v v−1) and productivity (0.54 gE l−1 h−1) were obtained with the feed sugar content of 100 g l−1 or 125 g l−1. The ethanol yield coefficient (YP/S) was also maximum (0.49 gE gS−1) when the feed sugar was between 100 and 125 g l−1. The growth yield coefficient (YX/S) decreased steadily from 0.123 to 0.063 gX gS−1 when the feed sugar increased from 55 to 200 g l−1 due to adverse effects of high sugar contents on yeast growth. The optimal feed sugar concentration maximizing the ethanol productivity and sugar utilization was between 100 and 125 g l−1 under the specified experimental conditions.  相似文献   

9.
A toxic bloom of Pseudo-nitzschia spp. was observed in the Alabama coastal waters of the northern Gulf of Mexico (NGOM) in June 2009 that resulted in the accumulation of domoic acid (DA) in fish. The bloom initiated following a large storm event that likely caused increased groundwater discharge 16–20 days prior to peak densities. Eleven sites, located in littoral shoreline waters and inshore embayments spanning the entire Alabama NGOM coastline, were sampled during peak densities to assess Pseudo-nitzschia species composition and toxicity, and associated water-quality parameters. Small fish (0.27–11.9 g body weight) were collected at six of these sites for analysis of DA content. High Pseudo-nitzschia spp. densities (8.27 × 104–5.05 × 106 cell l−1) were detected at eight sites located in the littoral shoreline and particulate DA was detected at six of these littoral sites (48.0–540 pg ml−1). The bloom consisted primarily (>90%) of Pseudo-nitzschia subfraudulenta, a species previously characterized as forming only a minor component of Pseudo-nitzschia assemblages and not known to produce DA. Pseudo-nitzschia spp. were at low densities or not detected at the inshore sites and DA was detected at these sites. Pseudo-nitzschia spp. density varied along an estuarine gradient, with greater densities occurring in the most saline, clear, and nutrient-poor waters. Cell density was strongly and negatively correlated with silicate (Si) concentrations and the ratios of silicate to dissolved inorganic nitrogen and phosphate (Si:DIN and Si:PO4). Cell toxin quota was negatively correlated with phosphate, and strongly and positively correlated with the ratio of total nitrogen to total phosphorus (TN:TP). These relationships are consistent with previous observations that indicate Pseudo-nitzschia spp. density and toxicity are likely to be greater in high salinity, high irradiance, and nutrient-poor waters. DA was detected in 128 of 131 (98%) of the fish collected, which included seven primary and secondary consumer species. This is the first demonstration of trophic transfer of DA in this region of the NGOM, indicating that toxic blooms of Pseudo-nitzschia spp. in Alabama coastal waters have the potential to transfer DA to recreationally and commercially important fish species.  相似文献   

10.
《Aquatic Botany》2007,86(2):191-196
The effect of nutrient addition on the growth of E. najas was evaluated in a dose response experiment using sand amended with phosphorus (P) and nitrogen (N), and in enrichment trials with N and P amendments to natural sediments. Plants, water and sediment came from lagoons of the Upper Paraná River Floodplain and from Itaipu Reservoir (Brazil). Relative growth rates (RGRs) of E. najas shoots, based on dry mass (DM), varied from 0.03 to 0.060 d−1 for both nutrients. Root:shoot biomass ratios were related to sediment exchangeable P (r = −0.419; P = 0.03) and N (r = −0.54; P = 0.006), however root RGR was not related to sediment nutrient concentrations. When natural sediments were amended with N and P, neither shoot nor root RGRs differed among treatments for substrata from either the reservoir or the floodplain lagoons (P > 0.05). Comparison of nutrient concentrations measured in natural sediments collected from several sites in both the Upper Paraná River Floodplain (range 49–213 μg P g−1 DM; 36–373 μg N g−1 DM) and Itaipu Reservoir (range 43–402 μg P g−1 DM; 7.9–238 μg N g−1 DM) showed that sediment N and P from these systems usually exceeded minimum requirements necessary for E. najas growth, as measured in the dose response experiment. Together, these results indicate that E. najas, at least in early stages of development, responds to sediment nutrient amendments and relies upon bottom sediments to meet its N and P requirements and that for at least two Brazilian ecosystems, growth of this species is not limited by insufficient sediment N or P. Thus, reducing N and P in water is not enough to control E. najas growth in short time periods in these ecosystems.  相似文献   

11.
The king scallop, Pecten maximus (L.), fishery is a valuable economic resource in the UK, and is reliant on supplying premium “roe-on” processed scallops to the continental market. A considerable degree of variability is observed in domoic acid (DA) levels among individual P. maximus and their body components, which complicates the management of the fishery during amnesic shellfish poisoning (ASP) events. This study examined the impact of professional processing and three differing laboratory preparation techniques on final gonadal DA levels. DA analysis was conducted using a LC–MS/MS procedure. The results demonstrate that different methods of preparation can significantly alter gonadal toxicities in scallops from the same site, and the extent to which DA within the digestive loop, which passes through the gonad, contributes to total gonadal DA. Mean gonadal toxicity attributed to the digestive loop contents was estimated at 4.7–24.7 μg DA g−1. Despite large individual variations in toxin levels; in scallops with elevated gonadal toxicities resulting from higher digestive loop content toxicity, the effect of flushing out the contents of the digestive loop significantly reduced the DA content of the tissue and lowered the frequency of individuals harbouring levels above the 20 μg DA g−1 statutory safety limit. Removal of the digestive loop contents can potentially result in an 87% decrease in gonadal DA burden. Furthermore, the method applied by professional processors effectively removed the contents of the digestive loop and reduced gonadal DA to levels comparable with the laboratory techniques. Deliberate contamination with scallop mucus did not increase gonadal DA levels. The extent of toxin variation resulting from differing gonad preparations demonstrates the need to standardize scallop tissue preparation techniques during ASP events. Consequently, detailed protocols aimed at minimizing the contamination of edible components should be developed and adhered to by both processing facilities and monitoring bodies.  相似文献   

12.
《Aquatic Botany》2007,86(3):229-235
The effect of chromium on Pseudokirchneriella subcapitata has been assessed using different approaches: growth rate, metabolic activity microscopy analyses, and amplified fragment length polymorphism (AFLP) assessment of DNA damage. Starting from 24 h of treatment all the tested concentrations resulted in consistent algal growth inhibition. The average daily growth rate after 72 h calculated for the control (0.53 ± 0.01) was statistically higher than those estimated for cell treated with 1, 2.5, 5 and 7.5 μg g−1 potassium dichromate (0.46 ± 0.02; 0.32 ± 0.01; 0.25 ± 0.01 and −0.02 ± 0.04, respectively). A reduction of viable cell numbers, estimated with FDA approach, was also observed after 24 h treatment for all the tested chromium concentrations apart from the lowest (1 μg g−1 potassium dichromate). A recovery of esterase activity was detected after 48 and 72 h for all treatments with the except of the 7.5 μg g−1 potassium dichromate treated samples showing a very modest recovery. This data suggests that potassium dichromate is, even from the lowest tested concentration, highly toxic to P. subcapitata, and that this algal strain is a sensitive organism suitable for monitoring chromium in water. Our data also suggest that although algal counting by microscope and the FDA test gave similar indications concerning chromium effect, the FDA test was not completely reliable. In fact, we observed a decrease in the FDA stained cell numbers in control samples after 48 and 72 h of treatment, when most cells were actively proliferating. This lack of fluorescence could be explained by an uncontrolled fluorescein efflux due to the interaction of many experimental factors. The genotoxic effects of the different chromium concentrations were investigated by analyses of the DNA from control and treated algal samples, 72 h after inoculation. AFLP analysis revealed a total of 258 bands, 109 of which were polymorphics. Analysis of the AFLP matrix suggests that potassium dichromate is a powerful genotoxic agent, inducing genetic mutations also at the lowest tested concentration (0.35 μg g−1). Furthermore, we observed a correlation between the polymorphic bands with increasing chromium concentration. Finally, the absence of preferential mutation sites suggests that the chromium induced DNA changes are randomly distributed in the genome.  相似文献   

13.
《Aquatic Botany》2005,81(4):326-342
The effects of NH4+ or NO3 on growth, resource allocation and nitrogen (N) uptake kinetics of two common helophytes Phragmites australis (Cav.) Trin. ex Steudel and Glyceria maxima (Hartm.) Holmb. were studied in semi steady-state hydroponic cultures. At a steady-state nitrogen availability of 34 μM the growth rate of Phragmites was not affected by the N form (mean RGR = 35.4 mg g−1 d−1), whereas the growth rate of Glyceria was 16% higher in NH4+-N cultures than in NO3-N cultures (mean = 66.7 and 57.4 mg g−1 d−1 of NH4+ and NO3 treated plants, respectively). Phragmites and Glyceria had higher S/R ratio in NH4+ cultures than in NO3 cultures, 123.5 and 129.7%, respectively.Species differed in the nitrogen utilisation. In Glyceria, the relative tissue N content was higher than in Phragmites and was increased in NH4+ treated plants by 16%. The tissue NH4+ concentration (mean = 1.6 μmol g fresh wt−1) was not affected by N treatment, whereas NO3 contents were higher in NO3 (mean = 1.5 μmol g fresh wt−1) than in NH4+ (mean = 0.4 μmol g fresh wt−1) treated plants. In Phragmites, NH4+ (mean = 1.6 μmol g fresh wt−1) and NO3 (mean = 0.2 μmol g fresh wt−1) contents were not affected by the N regime. Species did not differ in NH4+ (mean = 56.5 μmol g−1 root dry wt h−1) and NO3 (mean = 34.5 μmol g−1 root dry wt h−1) maximum uptake rates (Vmax), and Vmax for NH4+ uptake was not affected by N treatment. The uptake rate of NO3 was low in NH4+ treated plants, and an induction phase for NO3 was observed in NH4+ treated Phragmites but not in Glyceria. Phragmites had low Km (mean = 4.5 μM) and high affinity (10.3 l g−1 root dry wt h−1) for both ions compared to Glyceria (Km = 6.3 μM, affinity = 8.0 l g−1 root dry wt h−1). The results showed different plasticity of Phragmites and Glyceria toward N source. The positive response to NH4+-N source may participates in the observed success of Glyceria at NH4+ rich sites, although other factors have to be considered. Higher plasticity of Phragmites toward low nutrient availability may favour this species at oligotrophic sites.  相似文献   

14.
The toxic effects of Aroclor 1254 (0.05, 0.5, 5 and 50 μg l?1) on scallop (Chlamys farreri) immune system in vivo were studied. The results showed that Aroclor 1254 had significant toxic effect on the parameters tested in this paper (P < 0.05). The total number of haemocytes, the proportion of granulocytes, phagocytosis in all groups as well as the lysosomal membrane stability (LMS) in 5, 50 μg l?1 and bacteriolytic activity 0.5, 5, 50 μg l?1 treatments decreased significantly, while the proportion of hyalinocytes and the production of O2- in all treatments remarkably increased during the sampling time and tended to be stable gradually after 6–15 d. The bacteriolytic activity in 0.05 μg l?1 treatments, LMS in 0.05, 0.5 μg l?1 groups and the DNA damage (comet ratios and arbitrary values) in all treatments increased at the beginning of exposure and reached their peaks on day 1, day 1, day 6 and day 3, following that they all decreased gradually and became stable after 9–15 d. When the indices reached stability, except for DNA damage was higher than controls, the others were all significantly lower than those of controls (P < 0.05). Thus, Aroclor 1254 has evident toxic effects on scallop immune system, which supports the view that a relationship exists between pollution and immunomodulation in aquatic organisms. Also it supports the speculation that the PCBs pollution is one of the important reasons of the mass mortality of the C. farreri.  相似文献   

15.
The aim of this study was to develop a bioprocess for l- and d-lactic acid production from raw sweet potato through simultaneous saccharification and fermentation by Lactobacillus paracasei and Lactobacillus coryniformis, respectively. The effects of enzyme and nitrogen source concentrations as well as of the ratio of raw material to medium were investigated. At dried material concentrations of 136.36–219.51 g L−1, yields of 90.13–91.17% (w/w) and productivities of 3.41–3.83 g L−1 h−1 were obtained with lactic acid concentrations as high as 198.32 g L−1 for l-lactic acid production. In addition, d-lactic acid was produced with yields of 90.11–84.92% (w/w) and productivities of 2.55–3.11 g L−1 h−1 with a maximum concentration of 186.40 g L−1 at the same concentrations of dried material. The simple and efficient process described in this study will benefit the tuber and root-based lactic acid industries without requiring alterations in plant equipment.  相似文献   

16.
The aim of the present study was to assess the temporal variation of the heavy metal content (Co, Cu, Fe, Mn, Ni, Pb, and Zn) in surface water and sediments in relation to agricultural practices in the Xanaes River (Córdoba, Argentina). A second objective was to analyze possible relationships between the input of heavy metals on surface water and sediment, heavy metal accumulation and physiological changes in the aquatic plant Myriophyllum aquaticum. Samples were taken from the river at two contrasting sites (between April 2010 and August 2010): (1) a pristine area (mountain site), and (2) an area with intensive agricultural activity located at 60 km down river (agricultural site). The total concentration of heavy metals in surface water was higher in samples collected at the agricultural site but in sediments only the Mn concentration was higher than at the mountain site. The Fe and Mn concentrations in surface water at the agricultural site exceeded the recommended values for Argentinean Legislation of 300 μg L−1 for Fe and 100 μg L−1 for Mn. The accumulations of Zn and Mn in M. aquaticum were higher at the agricultural site and more elevated than the Zn and Mn concentrations in sediments at the same sites and sampling times. At the agricultural site, temporal variations of Cu, Fe and Zn were relatively similar for plants and water column, but the levels of the metals in plants were displaced over time. These results suggest that the levels of pollutants in the river came in pulses from the riverbank. These results show the potential use of M. aquaticum as a suitable accumulation biomonitor at the early stages of heavy metal pollution in rivers.  相似文献   

17.
Conidiation and lytic enzyme production by Trichoderma viride at different solids concentration of pre-treated municipal wastewater sludge was examined in a 15-L fermenter. The maximum conidia concentration (5.94 × 107 CFU mL−1 at 96 h) was obtained at 30 g L−1 suspended solids. The maximum lytic enzyme activities were achieved around 12–30 h of fermentation. Bioassay against a fungal phytopathogen, Fusarium sp. showed maximum activity in the sample drawn around 96 h of fermentation at 30 g L−1 suspended solids concentration. Entomotoxicity against spruce budworm larvae showed maximum value ≈17290 SBU μL−1 at 30 g L−1 suspended solids concentration at the end of fermentation (96 h). Plant bioassay showed dual action of T. viride, i.e., disease prevention and growth promotion. The rheological analyses of fermentation sludges showed the pseudoplastic behaviour. In order to maintain required dissolved oxygen concentration ≥30%, the agitation and aeration requirements significantly increased at 35 g L−1 compared to 30 and 25 g L−1. The oxygen uptake rate and volumetric oxygen mass transfer coefficient, kLa at 35 g L−1 did not increase in comparison to 30 g L−1 due to rheological complexity of the broth during fermentation. Thus, the successful fermentation operation of the biocontrol fungus T. viride is a rational indication of its potential for mass-scale production for agriculture and forest sector as a biocontrol agent.  相似文献   

18.
Manganese (Mn) at high concentrations can have adverse effects on health, mainly because of its toxicity to the central nervous system. Health impacts of Mn are known mostly from occupational health studies, but the exact mechanisms how Mn, being bound to transferrin (TF) in the blood, enters the brain – are unknown. Mn speciation at the neural barriers can help to obtain more information about the pathways and carriers. This paper summarizes investigations on the size distribution of Mn carriers (e.g. proteins, peptides, carbonic acids) in serum before the neural barriers and in cerebrospinal fluid (CSF) behind them as a first characterization step of the Mn carriers being involved in moving Mn across the neural barriers. Further identification of Mn-species in CSF was successfully achieved by CZE–inductively coupled plasma (ICP)–dynamic reaction cell (DRC)–mass spectrometry (MS). Serum samples showed Mn mean concentrations of 1.7±0.8 μg L−1. The size distribution of Mn-carriers showed a main peak in the TF/albumin size fitting to the known physiological ligands. However, also an increasing Mn peak at 700 Da with increasing total Mn concentration was seen. Samples of CSF showed Mn mean concentrations of 2.6 μg L−1=48 nM. In CSF Mn was found to be mostly bound to low-molecular-mass (LMM)-Mn carriers in the range of 640–680 Da. This is similar to the LMM compound in serum and to Mn–citrate complexes suggested to be present in body fluids. Citrate concentration was 573 μM, thus being in huge excess compared to Mn. CSF was further analyzed by CZE–ICP–DRC–MS. Several Mn-species were monitored and mostly identified. The most abundant Mn-species was Mn–citrate at a concentration of around 0.7 μg Mn L−1.  相似文献   

19.
《Aquatic Botany》2005,81(2):157-173
The main photosynthesis and respiration parameters (dark respiration rate, light saturated production rate, saturation irradiance, photosynthetic efficiency) were measured on a total of 23 macrophytes of the Thau lagoon (2 Phanerogams, 5 Chlorophyceae, 10 Rhodophyceae and 6 Phaeophyceae). Those measurements were performed in vitro under controlled conditions, close to the natural ones, and at several seasons. Concomitantly, measurements of pigment concentrations, carbon, phosphorous and nitrogen contents in tissues were performed. Seasonal intra-specific variability of photosynthetic parameters was found very high, enlightening an important acclimatation capacity. The highest photosynthetic capacities were found for Chlorophyceae (e.g. Monostroma obscurum thalli at 17 °C, 982 μmol O2 g−1 dw h−1 and 9.1 μmol O2 g−1 dw h−1/μmol photons m−2 s−1, respectively for light saturated net production rate and photosynthetic efficiency) and Phanerogams (e.g. Nanozostera noltii leaves at 25 °C, 583 μmol O2 g−1 dw h−1 and 2.6 μmol O2 g−1 dw h−1/μmol photons m−2 s−1 respectively for light saturated net production rate and photosynthetic efficiency). As expected, species with a high surface/volume ratio were found to be more productive than coarsely branched thalli and thick blades shaped species. Contrary to Rd (ranging 6.7–794 μmol O2 g−1 dw h−1, respectively for Rytiphlaea tinctoria at 7 °C and for Dasya sessilis at 25 °C) for which a positive relationship with water temperature was found whatever the species studied, the evolution of P/I curves with temperature exhibited different responses amongst the species. The results allowed to show summer nitrogen limitation for some species (Gracilaria bursa-pastoris and Ulva spp.) and to propose temperature preferences based on the photosynthetic parameters for some others (N. noltii, Zostera marina, Chaetomorpha linum).  相似文献   

20.
Selenium (Se) is a metalloid that can occur naturally in soils from the Cretaceous shale deposits of a prehistoric inland sea in the western United States. Agricultural irrigation and runoff solubilizes Se from these shales, causing buildups of toxic levels of selenate (SeO42−) in water and soil. Our main objective was to investigate the accumulation of Se in two Brassicaceae species chosen for their potential as phytoremediators of Se contaminated soils. We tested the hypothesis that Se will accumulate in the pollen and nectar of two plant species and negatively affect floral traits and plant reproduction. Certain species of Brassicaceae can accumulate high concentrations of Se in their leaf tissues. In this study Se accumulation in plant tissues was investigated under greenhouse conditions. Se accumulator (Brassica juncea) and Se hyperaccumulator (Stanleya pinnata) plants were irrigated in sand culture with 0 μM selenate (control), 8 μM selenate, and 13 μM selenate.Nectar and pollen in S. pinnata contained up to 150 μg Se mL−1 wet weight and 12900 μg Se g−1 dry weight when irrigated with 8 μM selenate. Se levels in nectar (110 μg Se mL−1 wet weight) and pollen (1700 μg Se g−1 dry weight) were not as high in B. juncea. Floral display width, petal area and seed pod length were significantly reduced in the 13 μM selenate Se treatment in B. juncea. S. pinnata floral traits and seeds were unaffected by the Se treatments.This study provides crucial information about where some of the highest concentrations of Se are found in two phytoremediators, and may shed light on the potential risks pollinators may face when foraging upon these accumulating plants. In the field, duration of the plant's exposure, Se soil and water concentrations as well as other environmental factors may also play important roles in determining how much Se is accumulated into the leaf and floral tissues. Our greenhouse study shed light on two species’ ability to accumulate Se, as well as determined the specific plant tissues where Se concentrations are highest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号