首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The purpose of this study was to examine the role of phospholipase D1 (PLD1) in basic fibroblast growth factor (bFGF)-induced neurotrophin-3 (NT-3) expression and neurite outgrowth in H19-7 rat hippocampal neuronal progenitor cells. Overexpression of PLD1 increased bFGF-induced NT-3 expression, and dominant-negative-PLD1 or PLD1 siRNA abolished bFGF-induced NT-3 expression and neurite outgrowth. Treatment with bFGF activated the RhoA/Rho-associated kinase (ROCK)/c-jun N-terminal kinase (JNK) pathway, and bFGF-induced NT-3 expression was blocked by a dominant-negative RhoA as well as by a specific Rho-kinase inhibitor (Y27632) and a SAPK/JNK inhibitor (SP600125). Furthermore, bFGF-induced JNK activation was also blocked by Y27632. These results indicate that the RhoA/ROCK/JNK pathway acts as an upstream signaling pathway in bFGF-induced NT-3 expression. Also, phosphatidic acid, the product of PLD, increased NT-3 expression. We found that PLD regulated the RhoA/ROCK/JNK pathway, which then led to Elk-1 transactivation. When Elk-1 activity was blocked by Elk-1 siRNA, bFGF-induced NT-3 expression and neurite outgrowth decreased. NT-3 overexpression increased neurite outgrowth, indicating that NT-3 is important for neurite outgrowth. Taken together, these results suggest that PLD1 is an important regulator of bFGF-induced NT-3 expression and neurite outgrowth, which are mediated by the RhoA/ROCK/JNK pathway via Elk-1 in H19-7 cells.  相似文献   

3.
4.
The receptor for granulocyte colony-stimulating factor (G-CSF) can mediate differentiation and proliferation of hemopoietic cells. A proliferative signal is associated with activation of the ERK mitogen-activated protein kinase (MAPK) pathway. To determine whether other MAPK pathways are activated by G-CSF signalling, we have investigated activation of JNK/SAPK in cells proliferating in response to G-CSF. Here we show that G-CSF and interleukin-3 activate JNK/SAPK in two hemopoietic cell lines. The region of the G-CSF receptor required for G-CSF-induced JNK/SAPK activation is located within the C-terminal 68 amino acids of the cytoplasmic domain, which contains Tyr 763. Mutation of Tyr 763 to Phe completely blocks JNK/SAPK activation. However, the C-terminal 68 amino acids are not required for ERK2 activation. We show that activation of JNK/SAPK, like that of ERK2, is dependent on Ras but that higher levels of Ras-GTP are associated with activation of JNK/SAPK than with activation of ERK2. Two separate functional regions of the G-CSF receptor contribute to activation of Ras. The Y763F mutation reduces G-CSF-induced Ras activation from 30 to 35% Ras-GTP to 10 to 13% Ras-GTP. Low levels of Ras activation (10 to 13% Ras-GTP), which are sufficient for ERK2 activation, require only the 100 membrane-proximal amino acids. High levels of Ras-GTP provided by expression of oncogenic Ras are not sufficient to activate JNK/SAPK. An additional signal, also mediated by Tyr 763, is required for activation of JNK/SAPK.  相似文献   

5.
6.
The enzyme chondroitin polymerizing factor (ChPF) is primarily involved in extension of the chondroitin sulfate backbone required for the synthesis of sulfated glycosaminoglycan (sGAG). Transforming growth factor beta (TGF‐β) upregulates sGAG synthesis in nucleus pulposus cells; however, the mechanisms mediating this induction are incompletely understood. Our study demonstrated that ChPF expression was negatively correlated with the grade of degenerative intervertebral disc disease. Treatment of nucleus pulposus cells with TGF‐β induced ChPF expression and enhanced Smad2/3, RhoA/ROCK activation, and the JNK, p38, and ERK1/2 MAPK signaling pathways. Selective inhibitors of Smad2/3, RhoA or ROCK1/2, and knockdown of Smad3 and ROCK1 attenuated ChPF expression and sGAG synthesis induced by TGF‐β. In addition, we showed that RhoA/ROCK1 signaling upregulated ChPF via activation of the JNK pathway but not the p38 and ERK1/2 signaling pathways. Moreover, inhibitors of JNK, p38 and ERK1/2 activity also blocked ChPF expression and sGAG synthesis induced by TGF‐β in a Smad3‐independent manner. Collectively, our data suggest that TGF‐β stimulated the expression of ChPF and sGAG synthesis in nucleus pulposus cells through Smad3, RhoA/ROCK1 and the three MAPK signaling pathways. J. Cell. Biochem. 119: 566–579, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

7.
8.
ABSTRACT: BACKGROUND: The behaviour of tumour cells depends on factors such as genetics and the tumour microenvironment. The latter plays a crucial role in normal mammary gland development and also in breast cancer initiation and progression. Breast cancer tissues tend to be highly desmoplastic and dense matrix as a pre-existing condition poses one of the highest risk factors for cancer development. However, matrix influence on tumour cell gene expression and behaviour such as cell migration is not fully elucidated. RESULTS: We generated high-density (HD) matrices that mimicked tumour collagen content of 20 mg/cm3 that were ~14-fold stiffer than low-density (LD) matrix of 1 mg/cm3. Live-cell imaging showed breast cancer cells utilizing cytoplasmic streaming and cell body contractility for migration within HD matrix. Cell migration was blocked in the presence of both the ROCK inhibitor, Y-27632, and the MMP inhibitor, GM6001, but not by the drugs individually. This suggests roles for ROCK1 and MMP in cell migration are complicated by compensatory mechanisms. ROCK1 expression and protein activity, were significantly upregulated in HD matrix but these were blocked by treatment with a histone deacetylase (HDAC) inhibitor, MS-275. In HD matrix, the inhibition of ROCK1 by MS-275 was indirect and relied upon protein synthesis and Notch1. Inhibition of Notch1 using pooled siRNA or DAPT abrogated the inhibition of ROCK1 by MS-275. CONCLUSION: Increased matrix density elevates ROCK1 activity, which aids in cell migration via cell contractility. The upregulation of ROCK1 is epigenetically regulated in an indirect manner involving the repression of Notch1. This is demonstrated from inhibition of HDACs by MS- 275, which caused an upregulation of Notch1 levels leading to blockade of ROCK1 expression.  相似文献   

9.
The goal of the present work is to establish a correlation between the degree of histone post‐translational modifications and the effects caused by treatment of HT29 colon cancer cells with class I‐selective (MS‐275 and MC1855), class II‐selective (MC1568), and non‐selective (suberoylanilide hydroxamic acid (SAHA) histone deacetylase inhibitors (HDACi). This correlation could afford a mean to better understand the mechanism of action of new, more potent, and selective HDACi directly on the cells. To this end, LC coupled to MS was applied in studies of time and concentration‐dependent treatment with HDACi in HT29 cells. The results were correlated to their potency of histone deacetylase inhibition and to their effects on the cell cycle. The results indicate that the four tested inhibitors show a different pattern of time‐ and concentration‐dependent modification after treatment of HT29 cells. At the selected concentrations, they cause different histone hyperacetylation and different cell cycle effects. In particular, SAHA (non‐selective HDACi) affected hyperacetylation of all histones and caused massive cell death. MC1855 (class I‐selective HDACi, hydroxamate) proved to be more potent and less toxic (cell arrest in G2/M phase) than SAHA. MS‐275 (class I‐selective HDACi, benzamide) exhibited a higher degree of hyperacetylation of H4 and a lower degree of H2A, H2B, and H3 acetylation, causing a cell arrest in G0/G1 phase. On the contrary, MC1568 (class II‐selective HDACi) produced only a modest hyperacetylation of H4, was ineffective on the other histones, and showed no effect on cell cycle in HT29 cells.  相似文献   

10.
11.
Aberrant activity of Rho small G-proteins and their regulators plays an important role in tumorigenesis. Rho guanine nucleotide exchange factor 10-Like (ARHGEF10L) is a member of the RhoGEF family that promotes the active GTP-bound state of Rho GTPases. This study used the Illumina GoldenGate microassay, Sequenom MassARRAY and TaqMan to analyze possible correlations between tag single nucleotide polymorphisms (tag SNPs) in the ARHGEF10L locus and various tumor risks. The genotyping analyses demonstrated a strong association of rs2244444 and rs12732894 with liver cancer. Western blotting and immunohistochemistry also revealed increased expression of ARHGEF10L in hepatocellular carcinoma tissues. Furthermore, increased cell proliferation, cell migration and RhoA activity; increased expression of Rho-associated coiled-coil kinase-1 (ROCK1), phospho- Ezrin/Radixin/Moesin (ERM), vimentin, N-cadherin and Slug, and decreased E-cadherin expression were detected in hepatocellular carcinoma cell Bel-7402 and HepG2 cells with transfection of ARHGEF10L-expressing plasmids. Opposite results were obtained in the two cell lines with transfection of anti-ARHGEF10L siRNA. Tumor-bearing mice were generated with Bel-7402 cells transfected with lentivirus vectors packaging short hairpin ARHGEF10L RNA. The xenograft tumors with the inhibited ARHGEF10L expression showed decreased tumor growth and expression of vimentin, N-cadherin and Slug. Additionally, decreased phospho-ERM expression was detected in Bel-7402 and HepG2 cells with transfection of anti-ROCK1 siRNA and increased expression of ROCK1 was detected in hepatocellular carcinoma tissues. E-cadherin, vimentin, N-cadherin and Slug are markers of the epithelial-to-mesenchymal transition (EMT). ROCK1, phospho-ERM and EMT have been reported to promote tumor cell proliferation, metastasis and angiogenesis. Our study suggests that increased expression of ARHGEF10L stimulates hepatocellular tumorigenesis by activating the RhoA-ROCK1- phospho ERM pathway and EMT.  相似文献   

12.
13.
14.
15.
4-1BB is a member of the TNFR superfamily expressed on activated CD4+ and CD8+ T cells. 4-1BB can costimulate IL-2 production by resting primary T cells independently of CD28 ligation. In this study, we report signaling events following 4-1BB receptor aggregation using an Ak-restricted costimulation-dependent T cell hybridoma, C8.A3. Aggregation of 4-1BB on the surface of C8.A3 cells induces TNFR-associated factor 2 recruitment, which in turn recruits and activates apoptosis signal-regulating kinase-1, leading to downstream activation of c-Jun N-terminal/stress-activated protein kinases (JNK/SAPK). 4-1BB ligation also enhances anti-CD3-induced JNK/SAPK activation in primary T cells. Overexpression of a catalytically inactive form of apoptosis signal-regulating kinase-1 in C8.A3 T cells interferes with activation of the SAPK cascade and with IL-2 secretion, consistent with a critical role for JNK/SAPK activation in 4-1BB-dependent IL-2 production. Given the ability of both CD28 and 4-1BB to induce JNK/SAPK activation, we asked whether hyperosmotic shock, another inducer of this cascade, could function to provide a costimulatory signal to T cells. Osmotic shock of resting primary T cells in conjunction with anti-CD3 treatment was found to costimulate IL-2 production by the T cells, consistent with a pivotal role for JNK/SAPK in T cell costimulation.  相似文献   

16.
Prospects: histone deacetylase inhibitors   总被引:14,自引:0,他引:14  
  相似文献   

17.
18.
The role of p27kip1 in Chronic Myeloid Leukemia (CML) has been well studied in relation to its function as a cell cycle inhibitor. However, its cytoplasmic function especially in CML remains to be seen. We studied the localization of p27kip1 and its function during the progression of CML from chronic to blast phase. Our investigations revealed an increased localization of p27kip1 in the cytoplasm of CD34+ cells in the blast phase compared to chronic phase. Cytoplasmic p27kip1 was found to modulate RhoA activity in CD34+ stem and progenitor cells. Further, RhoA activity was shown to be dependent on cytoplasmic p27kip1 which in turn was dependent on p210Bcr-Abl kinase activity. Interestingly, RhoA activity was observed to affect cell survival in the presence of imatinib through the SAPK/JNK pathway. Accordingly, inhibition of SAPK/JNK pathway using SP600125 increased apoptosis of K562 cells in presence of imatinib. Our results, for the first time, thus reveal a crucial link between cytoplasmic p27kip1, RhoA activity and SAPK/JNK signalling. To this effect we observed a correlation between increased cytoplasmic p27kip1, increased RhoA protein levels, decreased RhoA-GTP levels and increased SAPK/JNK phosphorylation in blast phase CD34+ cells compared to chronic phase CD34+ cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号