首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lotus (Nelumbo Adans) is an aquatic perennial plant that flourished during the middle Albian stage. In this study, we characterized the digital gene expression signatures for China Antique lotus under conditions of heat shock stress. Using RNA-seq technology, we sequenced four libraries, specifically, two biological replicates for control plant samples and two for heat stress samples. As a result, 6,528,866 to 8,771,183 clean reads were mapped to the reference genome, accounting for 92–96% total clean reads. A total of 396 significantly altered genes were detected across the genome, among which 315 were upregulated and 81 were downregulated by heat shock stress. Gene ontology (GO) enrichment of differentially expressed genes revealed protein folding, cell morphogenesis and cellular component morphogenesis as the top three functional terms under heat shock stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis led to the identification of protein processing in endoplasmic reticulum, plant-pathogen interactions, spliceosome, endocytosis, and protein export as significantly enriched pathways. Among the upregulated genes, small heat shock proteins (sHsps) and genes related to cell morphogenesis were particularly abundant under heat stress. Data from the current study provide valuable clues that may help elucidate the molecular events underlying heat stress response in China Antique lotus.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
Abiotic stresses such as cold, salinity, drought, wounding, and heavy metal contamination adversely affect crop productivity throughout the world. Prosopis juliflora is a phreatophyte that can tolerate severe adverse environmental conditions such as drought, salinity, and heavy metal contamination. As a first step towards the characterization of genes that contribute to combating abiotic stress, construction and analysis of a cDNA library of P. juliflora genes is reported here. Random expressed sequence tag (EST) sequencing of 1750 clones produced 1467 high-quality reads. These clones were classified into functional categories, and BLAST comparisons revealed that 114 clones were homologous to genes implicated in stress response(s) and included heat shock proteins, metallothioneins, lipid transfer proteins, and late embryogenesis abundant proteins. Of the ESTs analyzed, 26% showed homology to previously uncharacterized genes in the databases. Fifty-two clones from this category were selected for reverse Northern analysis: 21 were shown to be upregulated and 16 downregulated. The results obtained by reverse Northern analysis were confirmed by Northern analysis. Clustering of the 1467 ESTs produced a total of 295 contigs encompassing 790 ESTs, resulting in a 54.2% redundancy. Two of the abundant genes coding for a nonspecific lipid transfer protein and late embryogenesis abundant protein were sequenced completely. Northern analysis (after polyethylene glycol stress) of the 2 genes was carried out. The implications of the analyzed genes in abiotic stress tolerance are also discussed.  相似文献   

11.
12.
13.
Some organisms are able to survive the loss of almost all their body water content, entering a latent state known as anhydrobiosis. The sleeping chironomid (Polypedilum vanderplanki) lives in the semi-arid regions of Africa, and its larvae can survive desiccation in an anhydrobiotic form during the dry season. To unveil the molecular mechanisms of this resistance to desiccation, an anhydrobiosis-related Expressed Sequence Tag (EST) database was obtained from the sequences of three cDNA libraries constructed from P. vanderplanki larvae after 0, 12, and 36 h of desiccation. The database contained 15,056 ESTs distributed into 4,807 UniGene clusters. ESTs were classified according to gene ontology categories, and putative expression patterns were deduced for all clusters on the basis of the number of clones in each library; expression patterns were confirmed by real-time PCR for selected genes. Among up-regulated genes, antioxidants, late embryogenesis abundant (LEA) proteins, and heat shock proteins (Hsps) were identified as important groups for anhydrobiosis. Genes related to trehalose metabolism and various transporters were also strongly induced by desiccation. Those results suggest that the oxidative stress response plays a central role in successful anhydrobiosis. Similarly, protein denaturation and aggregation may be prevented by marked up-regulation of Hsps and the anhydrobiosis-specific LEA proteins. A third major feature is the predicted increase in trehalose synthesis and in the expression of various transporter proteins allowing the distribution of trehalose and other solutes to all tissues.  相似文献   

14.
Leaf, bark, xylem and root tissues were used to make nine cDNA libraries from non-stressed (control) 'Royal Gala' apple trees, and from 'Royal Gala' trees exposed to either low temperature (5 degrees C for 24 h) or water deficit (45% of saturated pot mass for 2 weeks). Over 22 600 clones from the nine libraries were subjected to 5' single-pass sequencing, clustered and annotated using blastx. The number of clusters in the libraries ranged from 170 to 1430. Regarding annotation of the sequences, blastx analysis indicated that within the libraries 65-72% of the clones had a high similarity to known function genes, 6-15% had no functional assignment and 15-26% were completely novel. The expressed sequence tags were combined into three classes (control, low-temperature and water deficit) and the annotated genes in each class were placed into 1 of 10 different functional categories. The percentage of genes falling into each category was then calculated. This analysis indicated a distinct downregulation of genes involved in general metabolism and photosynthesis, while a significant increase in defense/stress-related genes, protein metabolism and energy was observed. In particular, there was a three-fold increase in the number of stress genes observed in the water deficit libraries indicating a major shift in gene expression in response to a chronic stress. The number of stress genes in response to low temperature, although elevated, was much less than the water deficit libraries perhaps reflecting the shorter (24 h) exposure to stress. Genes with greater than five clones in any specific library were identified and, based on the number of clones obtained, the fold increase or decrease in expression in the libraries was calculated and verified by semiquantitative polymerase chain reaction. Genes, of particular note, that code for the following proteins were overexpressed in the low-temperature libraries: dehydrin and metallothionein-like proteins, ubiquitin proteins, a dormancy-associated protein, a plasma membrane intrinsic protein and an RNA-binding protein. Genes that were upregulated in the water deficit libraries fell mainly into the functional categories of stress (heat shock proteins, dehydrins) and photosynthesis. With few exceptions, the overall differences in downregulated genes were nominal compared with differences in upregulated genes. The results of this apple study are similar to other global studies of plant response to stress but offer a more detailed analysis of specific tissue response (bark vs xylem vs leaf vs root) and a comparison between an acute stress (24-h exposure to low temperature) and a chronic stress (2 weeks of water deficit).  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号