首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundIn order to meet the demands of the ever-increasing human population, it has become necessary to raise climate-resilient crops. Plant breeding, which involves crossing and selecting superior gene pools, has contributed tremendously towards achieving this goal during the past few decades. The relatively newer methods of crop improvement based on genetic engineering are relatively simple, and targets can be achieved in an expeditious manner. More recently emerged genome editing technique using CRISPR has raised strong hopes among plant scientists for precise integration of valuable traits and removal of undesirable ones.ConclusionGenome editing using Site-Specific Nucleases (SSNs) is a good alternative to the plant breeding and genetic engineering approaches as it can modify the genomes specifically and precisely at the target site in the host genome. Another added advantage of the genome editing approach is the simpler biosafety regulations that have been adopted by many countries for commercialization of the products thus generated. This review provides a critical assessment of the available methods for improving the stress tolerance in crop plants. Special emphasis has been given on genome editing approach in light of the diversity of tools, which are being discovered on an everyday basis and the practical applications of the same. This information will serve as a beginner’s guide to initiate the crop improvement programs as well as giving technical insight to the expert to plan the research strategically to tackle even multigenic traits in crop plants.  相似文献   

2.
Zelenin  A. V.  Badaeva  E. D.  Muravenko  O. V. 《Molecular Biology》2001,35(3):285-293
The success in complete sequencing of small genomes and development of new technologies that markedly speed up the cloning and sequencing processes open the way to intense development of plant genomics and complete sequencing of DNA of some species. It is assumed that success in plant genomics will result in revolutionary changes in biotechnology and plant breeding. However, the enormous size of genomes (tens of billions of base pairs), their extraordinary abundance of repetitive sequences, and allopolyploidy (the presence in a nucleus of several related but not identical genomes) force us to think that only few basic plant species will undergo complete sequencing, whereas genome investigations in other species will follow the principles of comparative genomics. By the present time, sequencing of the Arabidopsis genome (125 Mbp) is completed and that of the rice genome (about 430 Mbp) is close to its end. Studying the genomes of other plants, including economically valuable ones, already began on the basis of these works. The peculiarities of plant genomes make extraordinarily important our detailed knowledge on plant chromosomes which, in its turn, calls for expansion of research in this direction and development of new chromosome technologies, including the DNA-sparing methods of high-resolution banding.  相似文献   

3.
We describe the construction of a yeast artificial chromosome (YAC) library from the Arabidopsis thaliana genome. Randomly sheared high molecular weight source DNA was extracted from frozen, ground leaf tissue and blunt-end-ligated to the vector pYAC3. By size-fractionating the ligation products, we achieved an average clone size of 150 kb. Approximately 6% of the YACs contained inserts from the chloroplast genome. We screened clones equivalent to greater than four A. thaliana haploid nuclear genomes and isolated YACs homologous to five single-copy-sequence probes. The library should be useful chromosome walking and genome mapping experiments. In addition, the approach used for its construction should be applicable to other higher plant species.  相似文献   

4.
5.
The large genome constraint hypothesis: evolution, ecology and phenotype   总被引:7,自引:0,他引:7  
BACKGROUND AND AIMS: If large genomes are truly saturated with unnecessary 'junk' DNA, it would seem natural that there would be costs associated ith accumulation and replication of this excess DNA. Here we examine the available evidence to support this hypothesis, which we term the 'large genome constraint'. We examine the large genome constraint at three scales: evolution, ecology, and the plant phenotype. SCOPE: In evolution, we tested the hypothesis that plant lineages with large genomes are diversifying more slowly. We found that genera with large genomes are less likely to be highly specious -- suggesting a large genome constraint on speciation. In ecology, we found that species with large genomes are under-represented in extreme environments -- again suggesting a large genome constraint for the distribution and abundance of species. Ultimately, if these ecological and evolutionary constraints are real, the genome size effect must be expressed in the phenotype and confer selective disadvantages. Therefore, in phenotype, we review data on the physiological correlates of genome size, and present new analyses involving maximum photosynthetic rate and specific leaf area. Most notably, we found that species with large genomes have reduced maximum photosynthetic rates - again suggesting a large genome constraint on plant performance. Finally, we discuss whether these phenotypic correlations may help explain why species with large genomes are trimmed from the evolutionary tree and have restricted ecological distributions. CONCLUSION: Our review tentatively supports the large genome constraint hypothesis.  相似文献   

6.
Plant genome databases play an important role in the archiving and dissemination of data arising from the international genome projects. Recent developments in bioinformatics, such as new software tools, programming languages and standards, have produced better access across the Internet to the data held within them.An increasing emphasis is placed on data analysis and indeed many resources now provide tools allied to the databases, to aid in the analysis and interpretation of the data. However, a considerable wealth of information lies untapped by considering the databases as single entities and will only be exploited by linking them with a wide range of data sources. Data from research programs such as comparative mapping and germplasm studies may be used as tools, to gain additional knowledge but without additional experimentation. To date, the current plant genome databases are not yet linked comprehensively with each other or with these additional resources, although they are clearly moving toward this. Here, the current wealth of public plant genome databases is reviewed, together with an overview of initiatives underway to bind them to form a single plant genome infrastructure.  相似文献   

7.
Transposable element contributions to plant gene and genome evolution   总被引:34,自引:0,他引:34  
Transposable elements were first discovered in plants because they can have tremendous effects on genome structure and gene function. Although only a few or no elements may be active within a genome at any time in any individual, the genomic alterations they cause can have major outcomes for a species. All major element types appear to be present in all plant species, but their quantitative and qualitative contributions are enormously variable even between closely related lineages. In some large-genome plants, mobile DNAs make up the majority of the nuclear genome. They can rearrange genomes and alter individual gene structure and regulation through any of the activities they promote: transposition, insertion, excision, chromosome breakage, and ectopic recombination. Many genes may have been assembled or amplified through the action of transposable elements, and it is likely that most plant genes contain legacies of multiple transposable element insertions into promoters. Because chromosomal rearrangements can lead to speciating infertility in heterozygous progeny, transposable elements may be responsible for the rate at which such incompatibility is generated in separated populations. For these reasons, understanding plant gene and genome evolution is only possible if we comprehend the contributions of transposable elements.  相似文献   

8.
Recent comparative DNA-sequencing studies of chloroplast, mitochondrial and ribosomal genes have produced an evolutionary tree relating the diversity of green-plant lineages. By coupling this phylogenetic framework to the explosion of information on genome content, plant-genomic efforts can and should be extended beyond angiosperm crop and model systems. Including plant species representative of other crucial evolutionary nodes would produce the comparative information necessary to understand fully the organization, function and evolution of plant genomes. The simultaneous development of genomic tools for green algae, bryophytes, ‘seed-free’ vascular plants and gymnosperms should provide insights into the bases of the complex morphological, physiological, reproductive and biochemical innovations that have characterized the successful transition of green plants to land.  相似文献   

9.
Microsporidia are obligatory intracellular parasites related to fungi and since their discovery their classification and origin has been controversial due to their unique morphology. Early taxonomic studies of microsporidia were based on ultrastructural spore features, characteristics of their life cycle and transmission modes. However, taxonomy and phylogeny based solely on these characteristics can be misleading. SSU rRNA is a traditional marker used in taxonomical classifications, but the power of SSU rRNA to resolve phylogenetic relationships between microsporidia is considered weak at the species level, as it may not show enough variation to distinguish closely related species. Overall genome relatedness indices (OGRI), such as average nucleotide identity (ANI), allows fast and easy-to-implement comparative measurements between genomes to assess species boundaries in prokaryotes, with a 95% cutoff value for grouping genomes of the same species. Due to the increasing availability of complete genomes, metrics of genome relatedness have been applied for eukaryotic microbes taxonomy such as microsporidia. However, the distribution of ANI values and cutoff values for species delimitation have not yet been fully tested in microsporidia. In this study we examined the distribution of ANI values for 65 publicly available microsporidian genomes and tested whether the 95% cutoff value is a good estimation for circumscribing species based on their genetic relatedness.  相似文献   

10.
王春  王克剑 《生物工程学报》2017,33(10):1712-1722
基因组定点编辑技术是研究基因功能和生物体改造的重要工具。CRISPR-Cas(Clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins)系统是近年来发展的一种新型基因组编辑技术,该技术通过一段向导RNA和配套的核酸酶就可对特定的基因组序列进行定点编辑,具有简单高效、应用广泛的特点,受到了生物学家的广泛关注。本文着重介绍CRISPR-Cas系统在植物中的研究进展,包括CRISPR-Cas9系统在植物中的应用与完善、扩大基因组编辑范围的研究、Cas9切口酶和失活酶的拓展、特异性单碱基突变编辑系统的研究、无外源DNA污染的植物基因编辑技术的发展以及基因组编辑技术在作物育种上的应用等方面。同时也提出了还需解决的问题,并展望了基因组编辑系统在作物育种中的应用前景,为开展这一领域的研究工作提供参考。  相似文献   

11.
张太奎  苑兆和 《遗传》2018,40(1):44-56
植物古基因组学是基因组学一个新兴分支,从现存物种中重建其祖先基因组,推断在古历史中导致形成现存物种的进化或物种形成事件。高通量测序技术的不断革新使测序读长更长、更准确,加快了植物参考基因组序列的组装进程,为古基因组学研究提供了大批量可靠的现存物种的基因组序列资源。全基因组复制(whole-genome duplication, WGD)亦称古多倍化,使植物基因组快速重组,丢失大量基因,增加结构变异,对植物进化极其重要。本文综述了植物基因组测序与组装研究进展、植物古基因组学的原理、植物基因组WGD事件以及植物祖先基因组进化场景,并对未来植物古基因组学研究进行了展望。  相似文献   

12.
Climate change threatens reduced crop production and poses major challenges to food security. The breeding of climate‐resilient crop varieties is increasingly urgent. Wild plant populations evolve to cope with changes in their environment due to the forces of natural selection. This adaptation may be followed over time in populations at the same site or explored by examining differences between populations growing in different environments or across an environmental gradient. Survival in the wild has important differences to the objective of agriculture to maximize crop yields. However, understanding the nature of adaptation in wild populations at the whole genome level may suggest strategies for crop breeding to deliver agricultural production with more resilience to climate variability.  相似文献   

13.
14.
重复DNA沿染色体的分布是认识植物基因组的组织和进化的要素之一。本研究采用一种改良的基因组原位杂交程序,对基因组大小和重复DNA数量不同的6种植物进行了自身基因组原位杂交(self-genomic in situ hybridization,self-GISH)。在所有供试物种的染色体都观察到荧光标记探针DNA的不均匀分布。杂交信号图型在物种间有明显的差异,并与基因组的大小相关。小基因组拟南芥的染色体几乎只有近着丝粒区和核仁组织区被标记。基因组相对较小的水稻、高粱、甘蓝的杂交信号分散分布在染色体的全长,但在近着丝粒区或近端区以及某些异染色质臂的分布明显占优势。大基因组的玉米和大麦的所有染色体都被密集地标记,并在染色体全长显示出强标记区与弱标记或不标记区的交替排列。此外,甘蓝染色体的所有近着丝粒区和核仁组织区、大麦染色体的所有近着丝粒区和某些臂中间区还显示了增强的信号带。大麦增强的信号带带型与其N-带带型一致。水稻自身基因组原位杂交图型与水稻Cot-1DNA在水稻染色体上的荧光原位杂交图型基本一致。研究结果表明,自身基因组原位杂交信号实际上反映了基因组重复DNA序列对染色体的杂交,因而自身基因组原位杂交技术是显示植物基因组中重复DNA聚集区在染色体上的分布以及与重复DNA相关联的染色质分化的有效方法。  相似文献   

15.
水稻所在的稻属(Oryza)共有24个左右的物种。由于野生稻含有大量的优良农艺性状基因, 在水稻遗传学研究中日益受到重视。随着国际稻属基因组计划的开展, 越来越多的稻属基因组序列被测定, 稻属成为进行比较、功能和进化基因组学研究的模式系统。近期开展的一系列研究对稻属不同基因组区段以及全基因组序列的比较分析, 揭示了稻属在基因组大小、基因移动、多倍体进化、常染色质到异染色质的转化以及着丝粒区域的进化等方面的分子机制。转座子的活性以及转座子因非均等重组或非法重组而造成的删除, 对稻属基因组的扩增和收缩具有重要作用。DNA双链断裂修复介导的基因移动, 特别是非同源末端连接, 是稻属基因组非共线性基因形成的主要来源。稻属基因组从常染色质到异染色质的转换过程, 伴随着转座子的大量扩增、基因片段的区段性和串联重复以及从基因组其他位置不断捕获异染色质基因。对稻属不同物种间基因拷贝数、特异基因和重要农艺性状基因的进化等研究, 可揭示稻属不同物种间表型和适应性差异的分子基础, 将加速水稻的育种和改良。  相似文献   

16.
藻类植物的cpDNA结构复杂,普遍缺失反向重复序列IR,且存在IR的藻类植物种类的cpDNA也有IR变短退化迹象.藻类植物的cpDNA包含的基因一般比高等植物要多,编码能力更强.藻类植物cpDNA全序列的测定方法主要是Fosmid文库构建,配合使用Long-PCR技术.该文对国内外有关藻类植物叶绿体基因组结构、叶绿体编码基因、叶绿体基因组在藻类系统发育中的应用以及藻类植物叶绿体基因组的提取和序列测定方法等进行综述,为藻类植物的系统发育和叶绿体起源以及功能基因组学的研究提供理论依据.  相似文献   

17.
The success in complete sequencing of "small" genomes and development of new technologies which sharply accelerate processes of cloning and sequencing made real an intensive development of plant genomics and complete sequencing of DNA of some species. It is assumed that the success in plant genomics will result in revolutionary changes in biotechnology and plant breeding. However, the enormous size of genomes (tens of billions bp), their extraordinary enrichment in repetitive sequences, and allopolyploidy (the presence in a nucleus of several related but not identical genomes) force us to think that only few "basic" will undergo complete sequencing, whereas the genome investigations in other species will follow principles of comparative genomics. By the present time, complete sequencing of the Arabidopsis genome (125 Mbp) is completed and that of the rice genome (about 430 Mbp) is close to its end. Studying other plant genomes, including those economically valuable, already began on the basis of these investigations. Peculiarities of plant genomes make extraordinarily important the knowledge on plant chromosomes which, in its turn, requires expansion of investigations in this direction and development of new chromosome technologies, including the DNA-sparing methods of high-resolution banding.  相似文献   

18.
拟南芥CBF1与植物对低温和干旱的抗性   总被引:2,自引:0,他引:2  
刘粉霞  谭振波  朱建清  邓晓建 《遗传》2004,26(3):394-398
对冷驯化过程中基因表达差异的认识,使抗冻基因(COR)的克隆及其功能的分析成为研究冷驯化过程的主要目标。在拟南芥和其他抗冻植物中,分离了许多COR基因,这些基因对植物抗冻起着非常重要的作用。在拟南芥COR调控的研究中,发现了CBF转录因子的基因家族,其中CBF1能调控一组COR基因的表达。近年来,在冷敏植物如番茄和玉米中也发现了CBF类似基因,拟南芥CBF1基因在转基因番茄中的过量表达提高了植株的抗寒和抗旱性。这一研究结果展示了拟南芥CBF1类似基因的应用可能为冷敏植物抗寒和抗旱性的品种改良提供一条新的途径。  相似文献   

19.
Based on nearly complete genome sequences from a variety of organisms data on naturally occurring genetic variation on the scale of hundreds of loci to entire genomes have been collected in recent years. In parallel, new statistical tests have been developed to infer evidence of recent positive selection from these data and to localize the target regions of selection in the genome. These methods have now been successfully applied to Drosophila melanogaster , humans, mice and a few plant species. In genomic regions of normal recombination rates, the targets of positive selection have been mapped down to the level of individual genes.  相似文献   

20.
王磊  陈景堂  张祖新 《遗传》2007,29(9):1055-1060
随着拟南芥、水稻等模式植物基因组测序计划的完成, 比较基因组学作为一门新兴学科, 近年来发展迅速, 为植物基因组的进化、结构和功能研究开辟了新的途径。文章综述了比较基因组学在作物比较遗传作图、基因结构区域的微共线性、ESTs和蛋白质水平的比较以及基于比较基因组学的基因和QTL的克隆等方面内容与研究进展, 分析了不同水平上比较基因组学研究策略的原理、特点、可行性, 以期为利用模式生物的基因和基因组数据、采用比较基因组学策略克隆作物重要性状功能基因、阐明基因组结构与进化提供帮助。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号