首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The effects of different doses of rock phosphate (RP), sucrose, and (NH4)2SO4 on the solubilization of RP from Araxá and Catal?o (Brazil) by Aspergillus niger, Penicillium canescens, Eupenicillium ludwigii, and Penicillium islandicum were evaluated in a solid-state fermentation (SSF) system with sugarcane bagasse. The factors evaluated were combined following a 23?+?1 factorial design to determine their optimum concentrations. The fitted response surfaces showed that higher doses of RP promoted higher phosphorus (P) solubilization. The addition of sucrose did not have effects on P solubilization in most treatments due to the presence of soluble sugars in the bagasse. Except for A. niger, all the fungi required high (NH4)2SO4 doses to achieve the highest level of P solubilization. Inversely, addition of (NH4)2SO4 was inhibitory to P solubilization by A. niger. Among the fungi tested, A. niger stood out, showing the highest solubilization capacity and for not requiring sucrose or (NH4)2SO4 supplementation. An additional experiment with A. niger showed that the content of soluble P can be increased by adding higher RP doses in the medium. However, P yield decreases with increasing RP doses. In this experiment, the maximal P yield (approximately 60?%) was achieved with the lower RP dose (3?g?L?1). Our results show that SSF can be used to obtain a low cost biofertilizer rich in P combining RP, sugarcane bagasse, and A. niger. Moreover, sugarcane bagasse is a suitable substrate for SSF aiming at RP solubilization, since this residue can supply the C and N necessary for the metabolism of A. niger within a range that favors RP solubilization.  相似文献   

2.
During fungal rock phosphate (RP) solubilization, a significant quantity of fluoride (F) is released together with phosphorus (P), strongly inhibiting the process. In the present study, the effect of two F adsorbents [activated alumina (Al2O3) and biochar] on RP solubilization by Aspergillus niger was examined. Al2O3 adsorbed part of the F released but also adsorbed soluble P, which makes it inappropriate for microbial RP solubilization systems. In contrast, biochar adsorbed only F while enhancing phosphate solubilization 3-fold, leading to the accumulation of up to 160 mg of P per liter. By comparing the values of F measured in solution at the end of incubation and those from a predictive model, it was estimated that up to 19 mg of F per liter can be removed from solution by biochar when added at 3 g liter−1 to the culture medium. Thus, biochar acted as an F sink during RP solubilization and led to an F concentration in solution that was less inhibitory to the process. In the presence of biochar, A. niger produced larger amounts of citric, gluconic, and oxalic acids, whether RP was present or not. Our results show that biochar enhances RP solubilization through two interrelated processes: partial removal of the released F and increased organic acid production. Given the importance of organic acids for P solubilization and that most of the RPs contain high concentrations of F, the proposed solubilization system offers an important technological improvement for the microbial production of soluble P fertilizers from RP.  相似文献   

3.
2-phenylethanol (2-PE) is a higher alcohol widely used in industry that can be obtained by solid-state fermentation (SSF) using low-cost raw materials. This report describes the 2-PE production potential of an indigenous Pichia kudriavzevii isolated from solid-state fermented sugarcane bagasse that possesses attractive characteristics for processing waste streams such as its low-pH tolerance, high growth rate and temperature resistance. Besides, 2-PE production was optimized in batch-SSF using sugarcane bagasse supplemented with l-phenylalanine as substrate. Full factorial design allowed identifying the pH adjustment, micronutrient addition, inoculum and co-substrate load effects, and response surface methodology served to identify the maximum production based on temperature, initial moisture content (MC0) and specific airflow rate (SAFR). While the pH adjustment and micronutrient addition did not affect the 2-PE production, temperature and MC0 resulted critical for the process. After optimization, the maximum 2-PE content was 27.2 ± 0.2 mg per gram of dry substrate at 31 °C, 76 % MC0 and 0.129 L h−1 g−1 SAFR. This result was 23.8 % higher than the sub-optimal condition, and it is the highest 2-PE production via SSF reported so far. These results confirm the ability of P. kudriavzevii for producing 2-PE, and its potential for using waste streams as substrate.  相似文献   

4.

Background

The study was conducted to evaluate the in vitro thrombolytic activity, and in vivo analgesic, anti-inflammatory and antipyretic potentials of different hydrocarbon soluble extracts of Litsea glutinosa leaves for the first time widely used in the folkloric treatments in Bangladesh. This work aimed to create new insights on the fundamental mechanisms of the plant extracts involved in these activities.

Results

In thrombolytic activity assay, a significant clot disruption was observed at dose of 1 mg/mL for each of the extracts (volume 100 μL) when compared to the standard drug streptokinase. The n-hexane, ethyl acetate, chloroform, and crude methanolic extracts showed 32.23 ± 0.26, 37.67 ± 1.31, 43.13 ± 0.85, and 46.78 ± 0.9% clot lysis, respectively, whereas the positive control streptokinase showed 93.35 ± 0.35% disruption at the dose of 30,000 I.U. In hot plate method, the highest pain inhibitory activity was found at a dose of 500 mg/kg of crude extract (15.54 ± 0.37 sec) which differed significantly (P <0.01 and P <0.001) with that of the standard drug ketorolac (16.38 ± 0.27 sec). In acetic acid induced writhing test, the crude methanolic extract showed significant (P <0.01 and P <0.001) analgesic potential at doses 250 and 500 mg/kg body weight (45.98 and 56.32% inhibition, respectively), where ketorolac showed 64.36% inhibition. In anti-inflammatory activity test, the crude methanolic extract showed significant (P <0.001) potential at doses 250 and 500 mg/kg body weight (1.51 ± 0.04 and 1.47 ± 0.03 mm paw edema, respectively), where ketorolac showed 1.64 ± 0.05 mm edema after 3 h of carrageenan injection. In antipyretic activity assay, the crude extract showed notable reduction in body temperature (32.78 ± 0.46°C) at dose of 500 mg/kg-body weight, when the standard (at dose 150 mg/kg-body weight) exerted 33.32 ± 0.67°C temperature after 3 h of administration.

Conclusions

Our results yield that the crude hydroalcoholic extract has better effects than the other in all trials. In the context, it can be said that the leaves of L. glutinosa possess remarkable pharmacological effects, and justify its traditional use as analgesic, antipyretic, anti-inflammatory, and thrombolytic agent.  相似文献   

5.
Saccharification of five cellulosic wastes, i.e. rice husks, wheat bran, corn cobs, wheat straw and rice straw by three cellulytic fungi, i.e. Aspergillus glaums MN1, Aspergillus oryzae MN2 and Penicillium purpurogenum MN3, during solid-state fermentation (SSF) was laboratory studied. Rice husks, wheat bran, and corn cobs were selected as inducers of glucose production in the tested fungi. An incubation interval of 10 days was optimal for glucose production. Maximal activities of the cellulases FP-ase, CMC-ase, and p-glucosidase were detected during SSF of rice husks by P. purpurogenum; however, a-amylase activity (7.2 U/g) was comparatively reduced. Meanwhile, the productivities of FP-ase, CMC-ase, and β-glucosidase were high during SSF of rice husks by A glaucus; however, they decreased during SSF of corn cobs by P. purpurogenum. Addition of rock phosphate (RP) (75 mg P2O5) decreased the pH of SSF media. (NH4)2SO4 was found to be less inducer of cellulytic enzymes, during SSF of rice husks by A. glaucus or A. oryzae; it also induced phytase production and solubilization of RP. The organic acids associated with saccharification of the wastes studied have also been investigated. The highest concentration of levulinic acid was detected (46.15 mg/g) during SSF of corn cobs by P. purpurogenum. Likewise, oxalic acid concentration was 43.20 mg/g during SSF of rice husks by P. purpurogenum.  相似文献   

6.
Polygonatum verticillatum (L.) All. is an important medicinal herb that belongs to the family Asparagaceae. The rhizome of the species is used in Chyavanprash preparation and several other ayurvedic formulations. Numerous active constituents like saponins, alkaloids, phytohormones, flavonoids, antioxidants, lysine, serine, aspartic acid, diosgenin, β-sitosterol, etc. have been reported from this species. In this study, morphological, phytochemical, antioxidant and genetic variations of 11 distant populations of P. verticillatum were measured. Considerably (P < 0.05) higher variations were recorded among different populations of P. verticillatum using morphological, phytochemical and genetic diversity parameters. AGFW (above ground fresh weights); flavonols, FRAP (Ferric ion reducing antioxidant power) and NO (Nitric Oxide scavenging activity) were recorded maximum in Kafni population. Similarly, a significantly higher above and below ground dry weight was recorded in Mayawati and Surmoli populations respectively. Maximum phenolic content, tannins, and DPPH (2,2-diphenyl-1-picrylhydrazyl) activity were recorded in Milam population. A total of 165 individuals from 11 populations were assessed for genetic diversity using inter-simple sequence repeats (ISSR) marker. High genetic diversity (He = 0.35) was recorded in Himkhola and Surmoli populations while it was observed minimum (0.28) in the Mayawati population. Altitude showed a significant positive correlation with tannins (r = 0.674; P < 005) and DPPH (r = 0.820; P < 0.01). Phenol content exhibited a considerably positive relationship with He (r = 0.606; P < 0.05) and BGFW (r = 0.620; P < 0.05), flavonol displayed a positive correlation with Pp% (r = 0.606; P < 0.05). The population structure of P. verticillatum, exhibited that the optimal value of the K was 3 for its populations as determined by the ΔK statistic structure. Among populations, the amount of gene flow is higher (Nm = 1.717) among all sites. Hence, it can be concluded that P. verticillatum populations possess considerable variability in the collected populations. Likewise, the populations from Kafni, Satbunga and Himkhola with higher morphological, phytochemicals and genetic variability were prioritized and therefore recommended for cultivation and mass multiplication to meet the industrial demand for target species.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-01044-9.  相似文献   

7.
Greenhouse and field experiments were conducted to test the effect of a P-solubilizing isolate of Penicillium bilaji on the availability of Idaho rock phosphate (RP) in a calcareous soil. Under controlled greenhouse conditions, inoculation of soils with P. bilaji along with RP at 45 μg of P per g of soil resulted in plant dry matter production and P uptake by wheat (Triticum aestivum) and beans (Phaseolus vulgaris) that were not significantly different from the increases in dry matter production and P uptake caused by the addition of 15 μg of P per g of soil as triple superphosphate. Addition of RP alone had no effect on plant growth. Addition of vesicular-arbuscular mycorrhizal fungi was necessary for maximum effect in the sterilized soil in the greenhouse experiment. Under field conditions, a treatment consisting of RP (20 kg of P per ha of soil) plus P. bilaji plus straw resulted in wheat yields and P uptake equivalent to increases due to the addition of monoammonium phosphate added at an equivalent rate of P. RP added alone had no effect on wheat growth or P uptake. The results indicate that a biological system of RP solubilization can be used to increase the availability of RP added to calcareous soils.  相似文献   

8.
Betaine (N,N,N-trimethylglycine) is an important food component with established health benefits through its homocysteine-lowering effects, and is used to lower total homocysteine concentration in plasma of patients with homocystinuria. It is well established that hyperhomocysteinemia is an established risk factor for cardiovascular disease and stroke. However, the possible protective effect of betaine on coagulation events in vivo and in vitro has thus far not been studied. Betaine was given to mice at oral doses of either 10 mg/kg (n = 6) or 40 mg/kg (n = 6) for seven consecutive days, and control mice (n = 6) received water only. The thrombotic occlusion time in photochemically induced thrombosis in pial arterioles was significantly delayed in mice pretreated with betaine at doses of 10 mg/kg (P < 0.001) and 40 mg/kg (P < 0.01). Similar effects were observed in pial venules with 10 mg/kg (P < 0.05) and 40 mg/kg (P < 0.05) betaine. In vitro, in whole blood samples collected from untreated mice (n = 3–5), betaine (0.01–1 mg/mL) significantly reversed platelet aggregation induced by adenosine diphosphate (5 µM). The number of circulating platelets and plasma concentration of fibrinogen in vivo were not significantly affected by betaine pretreament compared with the control group. Lipid peroxidation (LPO) in mice pretreated with betaine was significantly reduced compared with the control group. Moreover, betaine (0.01–1 mg/mL) caused a dose-dependent and significant prolongation of PT (n = 5) and aPTT (n = 4–6). In conclusion, our data show that betaine protected against coagulation events in vivo and in vitro and decreased LPO in plasma.  相似文献   

9.
Broccoli (Brassica oleracea L. var. italica) is an important, nutritionally rich vegetable crop, but severely affected by environmental stresses, pests and diseases which cause massive yield and quality losses. Genetic manipulation is becoming an important method for broccoli improvement. In the present study, a reproducible and highly efficient protocol for obtaining organogenesis from hypocotyl, cotyledon, leaf and petiole explants of broccoli (Brassica oleracea L. var. italica cv. Solan green head) has been developed. Hypocotyl and cotyledon explants were used from 10 to 12 days old aseptically grown seedlings whereas leaf and petiole explants were excised from 18 to 20 days old green house grown seedlings and surface sterilized. These explants were cultured on shoot induction medium containing different concentration and combination of BAP and NAA. High efficiency shoot regeneration has been achieved in hypocotyl (83.33 %), cotyledon (90.11 %), leaf (62.96 %) and petiole (91.10 %) explants on MS medium supplemented with 3.5 mg/l BAP + 0.019 mg/l NAA 2.5 mg/l BAP + 0.5 mg/l NAA, 4.0 mg/l BAP + 0.5 mg/l NAA and 4.5 mg/l BAP + 0.019 mg/l NAA respectively. Petiole explants showed maximum shoot regeneration response as compared to other explants. MS medium supplemented with 0.10 mg/l NAA was found best for root regeneration (100 %) from in vitro developed shoots. The regenerated complete plantlets were transferred to the pots containing cocopeat and successfully acclimatized. This optimized regeneration protocol can be efficiently used for genetic transformation in broccoli. This is the first comparative report on multiple shoot induction using four different types of explants viz. hypocotyl, cotyledon, leaf and petiole.  相似文献   

10.
High concentration of glycerol was used as the sole carbon source for efficient production of Monacolin K (MK) by solid-state fermentation (SSF) of Monascus purpureus 9901 using agricultural residue (bagasse), as an inert carrier. A comparative study showed that MK production in SSF was about 5.5 times higher than that of submerged fermentation when 26 % of glycerol was used, which may be due to the formation of glycerol concentration gradients in the inert carrier and less catabolite repression in SSF. For enhancement of MK yield in SSF, the effects of different influential variables, such as glycerol concentration, nitrogen source and its concentration, initial moisture content, inoculum size and particle size of bagasse, were systematically examined. All the factors mentioned above had an effect on the MK production in SSF to some extent. The maximal yield of MK (12.9 mg/g) was achieved with 26 % glycerol, 5 % soybean meal, 51 % initial moisture content, 20 % inoculum size and 1 mm particle size of bagasse. The results in this study may expand our understanding on the application of SSF using agricultural residue as carrier for production of useful microbial metabolites, especially the efficient conversion of high concentration of glycerol to MK by Monascus purpureus.  相似文献   

11.
The aim of this study was to prepare candesartan cilexetil-loaded niosomes and mixed niosomes to enhance the aqueous solubility of the drug, thus improving its oral bioavailability. The formulations were prepared using various types and combinations of surfactants, copolymers, and charge-inducing agents. The candesartan cilexetil entrapment efficiency, particle size, and zeta potential of these niosomes varied within the range of 99.06 ± 1.74 to 36.26 ± 2.78, 157.3 ± 3.3 to 658.3 ± 12.7 nm, and −14.7 ± 2.8 to −44.5 ± 1.5 mV, respectively. The in vitro drug release from niosomes was improved after niosomal entrapment compared to pure candesartan cilexetil. The sedimentation behavior study and formulation stability tests against bile salt revealed that mixed niosomes prepared by combining Span 60 and Pluronic P85 demonstrated better stability. The differential scanning calorimetry analysis showed the conversion of crystal structure of candesartan cilexetil to the soluble amorphous form after niosomal encapsulation which induced the drug release. Consequently, oral drug delivery by Span 60/Pluronic P85-mixed niosomes seems feasible due to enhanced drug release and stability.KEY WORDS: in vitro drug release, niosomes, oral drug delivery, stability, surfactants  相似文献   

12.
Self-emulsifying pellets were prepared using microcrystalline cellulose, emulsions of caprylic/capric triglyceride, and three Cremophors (ELP, RH40, and RH60) at 1.5 and 2.3 weight ratios, and two drugs (furosemide and propranolol) of different lipophilicity. Droplet size, zeta potential (ζ) and viscosity of emulsions, and pellet size, shape, friability, tensile strength, disintegration, and drug migration in pellets were determined. Evaluation of reconstituted emulsions was based on droplet size and ζ. Factorial design and 3-way ANOVA was applied to estimate the significance of the effects of the drug, surfactant and oil/surfactant ratio. It was found that droplet size, viscosity and ζ of emulsions, and size, shape, and friability of pellets were affected by the studied factors and were significant interactions between their effects on pellet size and friability. Migration of drug towards the pellet surface was higher for the less lipophilic furosemide and higher oil content. Linear relationships were found between the emulsion viscosity and the shape parameters of the pellets (for the aspect ratio R2 = 0.796 for furosemide and R2 = 0.885 for propranolol and for the shape factor, eRR2 = 0.740 and R2 = 0.960, respectively). For all the formulations examined, an exponential relationship was found between migration (M%) and the product of viscosity (η) and solubility of drug in oil/surfactant mixture (S) (M% = 98.1e-0.016 [η•S], R2 = 0.856), which may be useful in formulation work.KEY WORDS: drug distribution, emulsion and pellet characterization, friability and tensile strength, furosemide and propranolol, self-emulsifying pellets  相似文献   

13.
P-solubilizing microorganisms are a promising alternative for a sustainable use of P against a backdrop of depletion of high-grade rock phosphates (RPs). Nevertheless, toxic elements present in RPs, such as fluorine, can negatively affect microbial solubilization. Thus, this study aimed at selecting Aspergillus niger mutants efficient at P solubilization in the presence of fluoride (F). The mutants were obtained by exposition of conidia to UV light followed by screening in a medium supplemented with Ca3(PO4)2 and F. The mutant FS1-555 showed the highest solubilization in the presence of F, releasing approximately 70% of the P contained in Ca3(PO4)2, a value 1.7 times higher than that obtained for the wild type (WT). The mutant FS1-331 showed improved ability of solubilizing fluorapatites, increasing the solubilization of Araxá, Catalão, and Patos RPs by 1.7, 1.6, and 2.5 times that of the WT, respectively. These mutants also grew better in the presence of F, indicating that mutagenesis allowed the acquisition of F tolerance. Higher production of oxalic acid by FS1-331 correlated with its improved capacity for RP solubilization. This mutant represents a significant improvement and possess a high potential for application in solubilization systems with fluoride-rich phosphate sources.  相似文献   

14.
The objective of this study was to develop a clear, aqueous rapamycin-loaded mixed nanomicellar formulations (MNFs) for the back-of-the-eye delivery. MNF of rapamycin (0.2%) was prepared with vitamin E tocopherol polyethylene glycol succinate (TPGS) (Vit E TPGS) and octoxynol-40 (Oc-40) as polymeric matrix. MNF was characterized by various parameters such as size, charge, shape, and viscosity. Proton nuclear magnetic resonance (1H NMR) was used to identify unentrapped rapamycin in MNF. Cytotoxicity was evaluated in human retinal pigment epithelial (D407) and rabbit primary corneal epithelial cells (rPCECs). In vivo posterior ocular rapamycin distribution studies were conducted in male New Zealand white rabbits. The optimized MNF has excellent rapamycin entrapment and loading efficiency. The average size of MNF was 10.98 ± 0.089 and 10.84 ± 0.11 nm for blank and rapamycin-loaded MNF, respectively. TEM analysis revealed that nanomicelles are spherical in shape. Absence of free rapamycin in the MNF was confirmed by 1H NMR studies. Neither placebo nor rapamycin-loaded MNF produced cytotoxicity on D407 and rPCECs indicating formulations are tolerable. In vivo studies demonstrated a very high rapamycin concentration in retina-choroid (362.35 ± 56.17 ng/g tissue). No drug was identified in the vitreous humor indicating the sequestration of rapamycin in lipoidal retinal tissues. In summary, a clear, aqueous MNF comprising of Vit E TPGS and Oc-40 loaded with rapamycin was successfully developed. Back-of-the-eye tissue distribution studies demonstrated a very high rapamycin levels in retina-choroid (place of drug action) with a negligible drug partitioning into vitreous humor.KEY WORDS: back-of-the-eye, drug delivery, formulation, mixed nanomicelles, posterior, rabbits, rapamycin/sirolimus, retina/choroid, sclera, topical eye drops  相似文献   

15.
Cyclophosphamide (CP) causes infertility due to ovarian toxicity. The toxicity mechanism suggests oxidative stress. We assessed whether mirtazapine (MTZ) and hesperidin (HSP) could promote ovarian protection against damage due to CP chemotherapy. Female Wistar rats aged 14 weeks were used. Animals were divided into four groups: control vehicle group (n = 8); CP group (n = 8, rats received 150 mg/kg of CP, single intraperitoneal [i.p.] injection); CP + MTZ group (n = 8, rats received same dose of CP + 30 mg/kg of MTZ, orally, daily); and HSP + CP group (n = 8, rats received same dose of CP + 100 mg/kg of HSP, orally, daily). After eight days of medication, ovaries were removed and ovarian toxicity was assessed by counting follicles and corpora lutea. Nitric oxide (NO) and malondialdehyde (MDA) levels, myeloperoxidase (MPO), glutathione peroxidase (GPx), and superoxide dismutase (SOD) activities were estimated in ovarian tissue. NO level, MDA level, and MPO activity were increased (P < 0.001), while, GPx and SOD activities were lowered significantly (P < 0.001) in CP-treated group compared with control vehicle. In addition, ovulation, number of follicles, and ovarian weight were reduced by CP treatment. On the contrary, rats pretreated with MTZ and HSP showed significant decrease in NO, MDA levels, and MPO activity, while, activities of SOD and GPx were increased (P < 0.001). Oxidative stress induced by CP in the rat ovary causes infertility in the female rats. HSP and MTZ could reverse this effect and provide protection of fertility against CP-induced toxicity.  相似文献   

16.
The pathophysiology of ischemic myocardial injury involves cellular events, reactive oxygen species, and an inflammatory reaction cascade. The zinc complex of acetylsalicylic acid (Zn(ASA)2) has been found to possess higher anti-inflammatory and lower ulcerogenic activities than acetylsalicylic acid (ASA). Herein, we studied the effects of both ASA and Zn(ASA)2 against acute myocardial ischemia. Rats were pretreated with ASA (75 mg/kg) or Zn(ASA)2 (100 mg/kg) orally for five consecutive days. Isoproterenol (85 mg/kg, subcutaneously [s.c.]) was applied to produce myocardial infarction. After 17–22 h, animals were anesthetized with sodium pentobarbital (60 mg/kg, intraperitoneally [i.p.]) and both electrical and mechanical parameters of cardiac function were evaluated in vivo. Myocardial histological and gene expression analyses were performed. In isoproterenol-treated rats, Zn(ASA)2 treatment normalized significantly impaired left-ventricular contractility index (Emax 2.6 ± 0.7 mmHg/µL vs. 4.6 ± 0.5 mmHg/µL, P < 0.05), increased stroke volume (30 ± 3 µL vs. 50 ± 6 µL, P < 0.05), decreased systemic vascular resistance (7.2 ± 0.7 mmHg/min/mL vs. 4.2 ± 0.5 mmHg/min/mL, P < 0.05) and reduced inflammatory infiltrate into the myocardial tissues. ECG revealed a restoration of elevated ST-segment (0.21 ± 0.03 mV vs. 0.09 ± 0.02 mV, P < 0.05) and prolonged QT-interval (79.2 ± 3.2 ms vs. 69.5 ± 2.5 ms, P < 0.05) by Zn(ASA)2. ASA treatment did not result in an improvement of these parameters. Additionally, Zn(ASA)2 significantly increased the mRNA-expression of superoxide dismutase 1 (+73 ± 15%), glutathione peroxidase 4 (+44 ± 12%), and transforming growth factor (TGF)-β1 (+102 ± 22%). In conclusion, our data demonstrate that oral administration of zinc and ASA in the form of bis(aspirinato)zinc(II) complex is superior to ASA in preventing electrical, mechanical, and histological changes after acute myocardial ischemia. The induction of antioxidant enzymes and the anti-inflammatory cytokine TGF-β1 may play a pivotal role in the mechanism of action of Zn(ASA)2.  相似文献   

17.

Background

The study was conducted to evaluate the in vitro antimicrobial activity, cytotoxic, and membrane stabilization activities, and in vivo antiemetic and antipyretic potentials of ethanolic extract, n-hexane and ethyl acetate soluble fractions of Spilanthes paniculata leaves for the first time widely used in the traditional treatments in Bangladesh.

Results

In antipyretic activity assay, a significant reduction (P < 0.05) was observed in the temperature in the mice tested. At dose 400 mg/kg-body weight, the n-hexane soluble fraction showed the effect (36.7 ± 0.63°C ) as like as the standard (dose 150 mg/kg-body weight) after 5 h of administration. Extracts showed significant (P < 0.001) potential when tested for the antiemetic activity compared to the standard, metoclopramide. At dose 50 mg/kg-body weight, the standard showed 67.23% inhibition, whereas n-hexane and ethyl acetate soluble fractions showed 37.53% and 24.93% inhibition of emesis respectively at dose 400 mg/kg-body weight. In antimicrobial activity assay, the n-hexane soluble fraction (400 μg/disc) showed salient activity against the tested organisms. It exerts highest activity against Salmonella typhi (16.9 mm zone of inhibition); besides, crude, and ethyl acetate extracts showed resistance to Bacillus cereus and Bacillus subtilis, and Vibrio cholera respectively. All the extracts were tested for lysis of the erythrocytes. At the concentration of 1mg/ml, ethanol extract, and n-hexane and ethyl acetate soluble fractions significantly inhibited hypotonic solution induced lysis of the human red blood cell (HRBC) (27.406 ± 3.57, 46.034 ± 3.251, and 30.72 ± 5.679% respectively); where standard drug acetylsalicylic acid (concentration 0.1 mg/ml) showed 77.276 ± 0.321% inhibition. In case of heat induced HRBC hemolysis, the plant extracts also showed significant activity (34.21 ± 4.72, 21.81 ± 3.08, and 27.62 ± 8.79% inhibition respectively). In the brine shrimp lethality bioassay, the n-hexane fraction showed potent (LC50 value 48.978 μg/ml) activity, whereas ethyl acetate fraction showed mild (LC50 value 216.77 μg/ml) cytotoxic activity.

Conclusions

Our results showed that the n-hexane extract has better effects than the other in all trials. In the context, it can be said that the leaves of S. paniculata possess remarkable pharmacological effects, and justify its folkloric use as antimicrobial, antipyretic, anti-inflammatory, and antiemetic agent. Therefore, further research may be suggested to find possible mode of action of the plant part.  相似文献   

18.
BackgroundThe periodontal pathogen Porphyromonas gingivalis is hypothesized to be important in rheumatoid arthritis (RA) aetiology by inducing production of anti-citrullinated protein antibodies (ACPA). We have shown that ACPA precede RA onset by years, and that anti-P. gingivalis antibody levels are elevated in RA patients. The aim of this study was to investigate whether anti-P. gingivalis antibodies pre-date symptom onset and ACPA production.MethodsA case–control study (251 cases, 198 controls) was performed within the Biobank of Northern Sweden. Cases had donated blood samples (n = 422) before the onset of RA symptoms by 5.2 (6.2) years (median (interquartile range)). Blood was also collected from 192 RA patients following diagnosis. Antibodies against P. gingivalis virulence factor arginine gingipainB (RgpB), and a citrullinated peptide (CPP3) derived from the P. gingivalis peptidylarginine deiminase enzyme, were analysed by ELISA.ResultsAnti-RgpB IgG levels were significantly increased in pre-symptomatic individuals (mean ± SEM; 152.7 ± 14.8 AU/ml) and in RA patients (114.4 ± 16.9 AU/ml), compared with controls (p < 0.001). Anti-CPP3 antibodies were detected in 5 % of pre-symptomatic individuals and in 8 % of RA patients, with elevated levels in both subsets (4.33 ± 0.59 and 9.29 ± 1.81 AU/ml, respectively) compared with controls (p < 0.001). Anti-CPP3 antibodies followed the ACPA response, with increasing concentrations over time, whilst anti-RgpB antibodies were elevated and stable in the pre-symptomatic individuals with a trend towards lower levels after RA diagnosis.ConclusionsAnti-P. gingivalis antibody concentrations were significantly increased in RA patients compared with controls, and were detectable years before onset of symptoms of RA, supporting an aetiological role for P. gingivalis in the development of RA.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-016-1100-4) contains supplementary material, which is available to authorized users.  相似文献   

19.
For the first-aid treatment of anaphylaxis, epinephrine (Epi) 0.3 mg intramuscular (IM) injection in the thigh is the drug of choice. Epi auto-injectors are widely recommended for anaphylaxis treatment in community settings but not necessarily carried or used as prescribed when anaphylaxis occurs. We therefore developed rapidly disintegrating sublingual tablets (RDSTs) as an alternative noninvasive dosage form. Our objective in this study was to evaluate the effect of reducing Epi particle size on its in vitro and ex vivo diffusion, with the goal of enhancing Epi sublingual absorption from Epi RDSTs. Epi particle size was reduced by top-bottom technique using a microfluidizer for one pass at 30,000 Psi. The micronized Epi crystals (Epi-MC) were characterized using Zetasizer, Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Epi RDSTs were formulated and manufactured using our previously developed method. In vitro and ex vivo diffusion of Epi 10, 20, and 40 mg RDSTs and Epi-MC 10 and 20 mg RDSTs (n = 4) were evaluated using Franz cells. Epi 10 mg solution was used as a control. Mean (±standard deviation (SD)) Epi particle size was successfully reduced from 131.8 ± 10.5 to 2.5 ± 0.4 μm. Cumulative Epi diffused and influx from 40 mg Epi RDSTs and 20 mg Epi-MC RDSTs were not significantly different from each other in vitro and ex vivo (p > 0.05). Also, Epi permeability from 20 mg Epi-MC RDSTs was significantly higher than from the rest (p < 0.05). Epi-MC RDSTs improved Epi diffusion twofold and might have the potential to reduce the Epi dose needed in RDSTs by 50%.KEY WORDS: adrenaline, anaphylaxis, diffusion, epinephrine, sublingual  相似文献   

20.
Microbial solubilization of rock phosphate (RP) is mainly achieved by the production of organic acids and medium acidification through H+ release. During RP solubilization, mineral nutrient availability is likely to be critical for determining how much carbon is channeled either for metabolite synthesis or for microbial growth, influencing organic acid release by microorganisms. Thus, the objective of this work was to study the relationships between the concentration of mineral nutrients in the growth medium and the efficiency of RP solubilization by Aspergillus niger FS1. For this, the fungus was grown in Czapek medium containing 0, 1, 2, 10, 50, and 100 % of its original concentration of mineral nutrients. Decreasing mineral availability in the growth medium led to decreases in fungal biomass and solubilized P, and increases in titratable acidity and solubilization efficiency as expressed by mg solubilized P per g fungal biomass (YP/B), indicating a shift in fungal metabolism from biomass production to organic acid release. The transfer of pre-grown biomass to media with or without added minerals confirmed that lower mineral availability increases YP/B and led to the solubilization of 76 % of P present in Patos RP. These observations open new perspectives on improving RP solubilization systems by manipulating mineral nutrient availability in the medium, with consequent gains in cost reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号