首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Toxic cyanobacterial blooms directly threaten both human safety and the ecosystem of surface waters. The widespread occurrence of these organisms, coupled with the tumor-promoting properties of the microcystin toxins that they produce, demands action to mitigate their potential impacts and, thus, a robust understanding of their ecological dynamics. In the present work, the abundance of toxic Microcystis spp. and microcystin (MC)-degrading bacteria in Dianchi Lake, located in Yunnan Province, China, was studied using quantitative PCR. Samples were taken at monthly intervals from June 2010 to December 2011 at three sampling stations within this freshwater lake. Results revealed that variation in the abundance of both total Microcystis spp. and toxic Microcystis spp. exhibited similar trends during the period of the algal bloom, including the reinvasion, pelagic growth, sedimentation, and overwintering periods, and that the proportion of toxic Microcystis was highest during the bloom and lowest in winter. Importantly, we observed that peaks in mlrA gene copy numbers of MC-degrading bacteria occurred in the months following observed peaks in MC concentrations. To understand this phenomenon, we added MCs to the MC-degrading bacteria (designated strains HW and SW in this study) and found that MCs significantly enhanced mlrA gene copy numbers over the number for the control by a factor of 5.2 for the microcystin-RR treatment and a factor of 3.7 for the microcystin-LR treatment. These results indicate that toxic Microcystis and MC-degrading bacteria exert both direct and indirect effects on each other and that MC-degrading bacteria also mediate a shift from toxic to nontoxic populations of Microcystis.  相似文献   

2.
Iron (Fe) is an essential micronutrient for algal growth and can be a potential limiting nutrient in aquatic system, especially regions that exhibits nitrogen (N) limitation. Using short-term nutrient addition bioassays, we evaluated the potential role that iron might play in modifying the response of Microcystis spp. to the anthropogenic phosphorus (P) and N enrichment in hypereutrophic Lake Taihu, the third largest freshwater lake in China. Three nutrient enrichment experiments involving additions of N (as NO3 ?) and P (as PO4 3?) with and without Fe were conducted during 2009?C2010 in Meiliang Bay, a region characterized by summer cyanobacterial (Microcystis spp.) blooms, and East Taihu, a region largely free of cyanobacterial blooms and dominated by macrophytes. In Meiliang Bay, Fe addition alone did not significantly increase Microcystis spp. biomass. However, Fe addition occasionally increased the stimulatory effect of N and P additions on Microcystis spp., indicating that Fe was not a primary limiting nutrient for Microcystis spp. growth. Occasionally Fe was co-limiting with N and P in this region. In East Taihu, the addition of Fe alone significantly stimulated Microcystis spp. growth, while addition of N and/or P had no effects on growth, indicating that Fe was a primary limiting nutrient in East Taihu. The combined addition of Fe and N resulted in a growth response similar to Fe alone, while combined addition of Fe and P yielded greater biomass increases than the addition of Fe alone. This indicated that in East Taihu, N was not limiting and Fe and P supplies facilitated Microcystis spp. growth. These results reflect differential availabilities and limitations of N, P, and Fe in distinct regions of Taihu. The potential role of Fe in eutrophication dynamics of large, regionally complex lakes like Taihu requires further attention.  相似文献   

3.
Temporal variations in carbon isotope ratio of phytoplanktonand dissolved inorganic carbon (DIC) in Lake Suwa were reported.In summer, blooming of Microcystis spp. resulted in low concentrationsof DIC and high pH, and HCO3 was the prominent speciesof DIC. Chlorophyll-specific rates of photosynthesis were relativelyconstant irrespective of the algal biomass during summer. Carboxylationin photosynthesis of Microcystis spp. was mainly catalyzed byribulose bisphosphate carboxylase (RuBPCase). Carbon isotopediscrimination between 13C of phytoplankton and DIC was considerablysmall in early summer and appeared to be negatively correlatedto DIC concentration. We concluded that carbon fixation by phytoplanktonin Lake Suwa is controlled not by the switch of photosyntheticpathways, but by low DIC concentration and high pH, suggestingthat photosynthesis of Microcystis spp. in Lake Suwa is governedby uptake kinetics other than the carboxylation step.  相似文献   

4.
Microcystis spp., which occur as colonies of different sizes under natural conditions, have expanded in temperate and tropical freshwater ecosystems and caused seriously environmental and ecological problems. In the current study, a Bayesian network (BN) framework was developed to access the probability of microcystins (MCs) risk in large shallow eutrophic lakes in China, namely, Taihu Lake, Chaohu Lake, and Dianchi Lake. By means of a knowledge-supported way, physicochemical factors, Microcystis morphospecies, and MCs were integrated into different network structures. The sensitive analysis illustrated that Microcystis aeruginosa biomass was overall the best predictor of MCs risk, and its high biomass relied on the combined condition that water temperature exceeded 24 °C and total phosphorus was above 0.2 mg/L. Simulated scenarios suggested that the probability of hazardous MCs (≥1.0 μg/L) was higher under interactive effect of temperature increase and nutrients (nitrogen and phosphorus) imbalance than that of warming alone. Likewise, data-driven model development using a naïve Bayes classifier and equal frequency discretization resulted in a substantial technical performance (CCI = 0.83, K = 0.60), but the performance significantly decreased when model excluded species-specific biomasses from input variables (CCI = 0.76, K = 0.40). The BN framework provided a useful screening tool to evaluate cyanotoxin in three studied lakes in China, and it can also be used in other lakes suffering from cyanobacterial blooms dominated by Microcystis.  相似文献   

5.
In Lake Tega, Japan, the shift of dominant algal species was caused as a result of discharging water from the adjacent river into the lake. The transition from cyanobacteria (mainly the genus Microcystis) to diatoms (mainly the genus Cyclotella) resulted in a disappearance of algal blooms. Although some environmental conditions such as flow rate, nutrient concentration, and transparency were changed by the project, the decisive factor for the transition has not been clarified yet. For the effective control of algal blooms by water discharge, this study aimed to elucidate the effects of daily renewal rate and nitrogen concentration on the interspecific competition between Microcystis aeruginosa and Cyclotella sp. Monoculture experiments were conducted to obtain growth characteristics for each species and mixed culture experiments were performed to examine their competitive abilities under various daily renewal rates of the culture medium (15 and 30 %) and nitrate concentrations (71.4, 178, and 357 μM). In addition to prepared medium, Lake Tega water was also used for mixed culture experiments. The results showed that the increase in a daily renewal rate contributed to the dominance of Cyclotella sp., while a nitrate concentration had little influence on the competition. We conclude that algal blooms composed of the genus Microcystis would be controlled by maintaining a daily renewal rate up to 30 % or more, which corresponded to the dilution rate of 0.36 day?1, under a nitrate concentration of ≤357 μM. The study would include essential information for the management of lakes suffering from frequent occurrences of algal blooms.  相似文献   

6.
Dolichospermum (formerly Anabaena) and Microcystis cause harmful cyanobacterial blooms in freshwater ecosystems worldwide. Input reduction of both nitrogen (N) and phosphorus (P) are commonly recognized as basic ways of controlling blooms, but little is known about the roles of nutrients and their using strategy among cyanobacteria in triggering the succession of diazotrophic to non-diazotrophic cyanobacteria. In this study, we investigated in situ responses of cyanobactria to ambient P status during the transition from Dolichospermum flos-aquae to Microcystis spp. in Lake Taihu and Lake Chaohu. While dominant in phytoplankton community, D. flos-aquae experienced P deficiency as evidenced by qualitative detection of extracellular phosphatase via enzyme labeled fluorescence (ELF). The percentage of ELF-labelled D. flos-aquae cells was 33% when it dominated the phytoplankton community, and was 78% when it co-dominated with Microcystis spp., indicating an increase in P deficiency. Meanwhile, no ELF-labelled Microcystis cells were observed while polyphosphate body (PPB) were present, suggesting that Microcystis spp. were not P deficient. Additionally, the percentages of Microcystis cells containing PPB showed an inverted “U-shaped” relationship with concentrations on soluble reactive phosphorus (SRP). To validate the field observation, a laboratory study of the monocultures of the dominant cyanobacteria was conducted. Extracellular alkaline phosphatase activity (APA) and PPB accumulation were regulated by P availability in monocultures of D. flos-aquae. Interestingly, no cell bound extracellular phosphatase was found on Microcystis aeruginasa even in the culture without P supply. Consistently, the expressions of phosphatase encoding gene phoX showed no differences among the treatments. The way in which PPB accumulation occurred in Microcystis spp. in response to P availability in the cultures was similar to that observed in the field, demonstrating a strategy of energy conservation over P accumulation. The competitive advantage of Microcystis spp. was displayed at low P concentrations: where it could rapidly uptake and store inorganic P, which also increased the P deficiency of the coexisting phytoplankton species. Responses of P-transport gene pstS confirmed this hypothesis. The physiological and molecular mechanisms mentioned above enable Microcystis to survive and proliferate in environment with low available P supply more efficiently. In conclusion, different cyanobacterial species have distinct ways of responding to P availability, suggesting that the control of cyanobacterial blooms by targeted nutrient reduction is largely dependent upon the dominant species. P reduction is more effective in controlling diazotrophic cyanobacteria than non-diazotrophic cyanobacteria.  相似文献   

7.
Cyanobacteria blooms (especially Microcystis spp.) are thought to alter dominance of large-sized daphnids into small-sized metazoan zooplankton. However, several field investigations show different phenomena. Laboratory experiments were conducted based on the hypothesis that different Microcystis spp. concentrations would influence competitive outcomes using two algal combinations of different concentrations and four species of cladocerans. In the algal combination of 50 mg l−1 colonial Microcystis spp. + 1 mg l−1 Scenedesmus obliquus (fresh weight), Daphnia carinata was absent during the experiment in competition with other cladocerans. Decreasing colonial Microcystis spp. concentration (10 mg l−1) resulted in a shift from dominance by small-sized cladocerans to dominance by D. carinata. No significant effects of different concentrations of colonial Microcystis spp. on competitive outcomes were shown among three small-sized cladocerans. These results support the idea that cyanobacteria concentration affects the dominance status of large-bodied daphnid.  相似文献   

8.
Lake St. Clair is the smallest lake in the Laurentian Great Lakes system. MODIS satellite imagery suggests that high algal biomass events have occurred annually along the southern shore during late summer. In this study, we evaluated these events and tested the hypothesis that summer bloom material derived from Lake St. Clair may enter Lake Erie via the Detroit River and represent an overlooked source of potentially toxic Microcystis biomass to the western basin of Lake Erie. We conducted a seasonally and spatially resolved study carried out in the summer of 2013. Our goals were to: 1) track the development of the 2013 summer south-east shore bloom 2) conduct a spatial survey to characterize the extent of toxicity, taxonomic diversity of the total phytoplankton population and the phylogenetic diversity of potential MC-producing cyanobacteria (Microcystis, Planktothrix and Anabaena) during a high biomass event, and 3) compare the strains of potential MC-producers in Lake St. Clair with strains from Lake Erie and Lake Ontario. Our results demonstrated a clear predominance of cyanobacteria during a late August bloom event, primarily dominated by Microcystis, which we traced along the Lake St. Clair coastline downstream to the Detroit River''s outflow at Lake Erie. Microcystin levels exceeded the Province of Ontario Drinking Water Quality Standard (1.5 µg L−1) for safe drinking water at most sites, reaching up to five times this level in some areas. Microcystis was the predominant microcystin producer, and all toxic Microcystis strains found in Lake St. Clair were genetically similar to toxic Microcystis strains found in lakes Erie and Ontario. These findings suggest extensive genetic connectivity among the three systems.  相似文献   

9.
太湖水华期间有毒和无毒微囊藻种群丰度的动态变化   总被引:1,自引:0,他引:1  
李大命  叶琳琳  于洋  张民  阳振  孔繁翔 《生态学报》2012,32(22):7109-7116
采用荧光定量PCR技术分析太湖3个湖区(梅梁湾、贡湖湾和湖心)水体中有毒和无毒微囊藻基因型丰度及有毒微囊藻比例的季节变化(2010年4-9月),并与环境因子进行统计分析。结果表明,有毒微囊藻基因型丰度及所占比例存在季节和空间差异:从4-8月,有毒微囊藻基因型丰度及其比例呈逐渐增加趋势,到9月开始下降;梅梁湾水体中有毒微囊藻基因型丰度及其比例高于贡湖湾和湖心。梅梁湾、贡湖湾和湖心有毒微囊藻在微囊藻种群中的比例变化范围分别为(26.2±0.8)%-(64.3±2.2)%、(4.4±0.2)%-(22.1±1.8)%和(10.4±0.4)%-(20.6±1.5)%。相关分析结果表明,有毒微囊藻丰度、总微囊藻丰度和叶绿素a浓度呈极显著正相关(P<0.01),均与温度呈显著正相关(P<0.05);有毒微囊藻比例与磷浓度呈显著正相关(P<0.05),与温度呈极显著正相关(P<0.01)。研究结果表明,温度和磷浓度是决定太湖有毒微囊藻种群丰度及其比例的关键因子。  相似文献   

10.
Cyanobacterial harmful algal blooms are prevalent around the world, influencing aquatic organisms and altering the physico-chemical properties in freshwater systems. However, the response of bacterial communities to toxic cyanobacterial blooms and associated microcystins (MC) remain poorly understood even though global concentrations of MC have increased dramatically in the past few decades. To address this issue, the dynamics of bacterial community composition (BCC) in the water column and how BCC is influenced by both harmful cyanobacterial blooms and environmental factors were investigated on a monthly basis from August 2013 to July 2014 in Lake Taihu, China. Non-metric multidimensional scaling (NMDS) revealed that seasonal variation in BCC was significant, and that the succession of BCC greatly depends on changes in environmental conditions. Redundancy analysis (RDA) results showed that the overall variation of BCC was explained mainly by dissolved oxygen (DO), nitrate nitrogen (NO3-N), and Microcystis. The alpha biodiversity of the bacterial community was different among months with the highest diversity in February and the lowest diversity in October. Furthermore, significant negative relationships were found between alpha biodiversity indices and Microcystis abundance as well as with intracellular MC concentrations, indicating that Microcystis and associated MC may influence the bacterial community structure by reducing its biodiversity. This study shows that potential associations exist between toxic cyanobacterial blooms and bacterial communities but more investigations are needed to obtain a mechanistic understanding of their complex relationships.  相似文献   

11.
An enclosure experiment was conducted in July–September 2001 in subtropical eutrophic Lake Donghu (China) to test a hypothesis that a moderate cyanobacterial biomass would have a positive effect on small-sized cladocerans. Eight enclosures (12.5 m3) were arranged with different nutrient concentrations using the lake water, tap water, and sediment from Lake Donghu. Microcystis blooms appeared in enclosures with higher nutrient concentrations and the average fresh weight biomass of Microcystis spp. ranged from 4.6 to 30.4 mg l?1 during the bloom period. Three cladocerans (Moina micrura, Diaphanosoma brachyurum, and Ceriodaphnia cornuta) and two cyclopoids (Mesocyclops dissimilis and Thermocyclops taihokuensis) dominated the crustacean plankton community during the experimental period. The C. cornuta biomass constituted the greatest percentage (55.9–90.0%) of cladoceran biomass in the Microcystis bloom treatments. When the Microcystis biomass increased, the average biomass of C. cornuta increased and the biomass of M. micrura and D. brachyurum decreased, whereas the cyclopoid biomass did not change significantly. The total biomass of cladoceran and crustacean plankton were significantly positively correlated with the Microcystis biomass. Our results indicate that a moderate biomass of Microcystis spp. can favor crustacean plankton to some extent and, furthermore, may impact food web structures in a eutrophic lake.  相似文献   

12.
The reoccurrence of significant cyanobacterial blooms in Lake Erie during the last 13 years has raised questions concerning the long-term persistence of microcystin-producing cyanobacteria and the presence of natural sediment reservoirs for potentially toxic cyanobacteria in this large lake system. To address these questions, we analyzed phytoplankton and sediment samples which were collected and preserved in the 1970s as well as samples collected in 2004 from locations within Lake Erie. The identification of microcystin-producing cyanobacteria in Lake Erie was examined via PCR amplification of the mcyA gene fragment. Based on the high % sequence similarity, the mcyA sequences from all 1970s phytoplankton and sediment samples were determined to belong to Microcystis spp., in spite of reports suggesting that Lake Erie was dominated by filamentous cyanobacteria in the 1970s. In sediment samples from 2004, signature genes for Microcystis were distributed and preserved not only in the surface sediments but also up to 10–12 cm in depth. Based on cell quantities determined by a quantitative polymerase chain reaction (qPCR) method, 0.18% of eubacteria in the sediments were Microcystis cells, of which 4.8% were potential microcystin producers. In combination with experiments showing that Microcystis cells can be cultured from Lake Erie surface sediments, this paper demonstrates the potential for these sediments to act as a reservoir for pelagic Microcystis populations and that the composition of the population of microcystin-producing cyanobacteria in Lake Erie has not changed remarkably since the 1970s.  相似文献   

13.
Blue-green algal blooms formed by Microcystis and Oscillatoria often occur in shallow eutrophic lakes, such as Lake Taihu (China) and Lake Kasumigaura (Japan). Growth characteristics and competitions between Microcystis aeruginosa and Oscillatoria mougeotii were investigated using lake simulator systems (microcosms) at various temperatures. Oscillatoria was the superior competitor, which suppressed Microcystis, when temperature was <20°C, whereas the opposite phenomenon occurred at 30°C. Oscillatoria had a long exponential phase (20 day) and a low growth rate of 0.22 day−1 and 0.20 day−1 at 15°C and 20°C, respectively, whereas Microcystis had a shorter exponential phase (2–3 days) at 30°C and a higher growth rate (0.86 day−1). Interactions between the algae were stronger and more complex in the lake simulator system than flask systems. Algal growth in the lake simulator system was susceptible to light attenuation and pH change, and algae biomasses were lower than those in flasks. The outcome of competition between Microcystis and Oscillatoria at different temperatures agrees with field observations of algal communities in Lake Taihu, indicating that temperature is a significant factor affecting competition between Microcystis and Oscillatoria in shallow, eutrophic lakes.  相似文献   

14.
Wang S S  Liu Y D  Zou Y D  Li D H 《农业工程》2006,26(8):2443-2448
The carbonic anhydrase (CA) activities were determined in three cyanobacterial species, namely Microcystis aeruginosa Kütz., Microcystis viridis (A.Br.) Lemm, and Microcystis wesenbergii (Kom.) Kom, which were dominant in a lake (Dianchi Lake) subject to major blooms. In more detailed experiments on M. aeruginosa, the effects of inorganic carbon, pH, temperature, nitrogen/phosphorus ratio, glucose, and light intensity on CA activity were also investigated. Because of the relatively alkaline pH value of the culture media for the optimum growth of algal cells, bicarbonate ions were the main form of exogenous inorganic carbon. The results showed that the CA activity of M. aeruginosa was influenced dramatically by the concentration of bicarbonate. Consequently, it was suggested that bicarbonate ions were the main form of exogenous inorganic carbon that M. aeruginosa could utilize. Cultures grown in the dark exhibited CA activity six times higher than that of cells cultured mixotrophically with the addition of glucose. Features of eutrophic water bodies promoted an increase in CA activity, and the resulting higher CA activity would accelerate the utilization of inorganic carbon and favor the growth and blooming of Microcystis spp. in eutrophic lakes. Although the experiments were carried out under controlled experimental conditions, they could provide some basic data that would prove useful for the control of cyanobacterial blooms in nature.  相似文献   

15.
Lake Taihu, the third largest freshwater lake in China, suffers from harmful cyanobacteria blooms caused by Microcystis spp., which do not fix nitrogen (N). Reduced N (i.e., NH4+, urea and other labile organic N compounds) is an important factor affecting the growth of Microcystis. As the world use of urea as fertilizer has escalated during the past decades, an understanding of how urea cycling relates to blooms of Microcystis is critical to predicting, controlling and alleviating the problem. In this study, the cycling rates of urea-N in Lake Taihu ranged from non-detectable to 1.37 μmol N L−1 h−1 for regeneration, and from 0.042 μmol N L−1 h−1 to 2.27 μmol N L−1 h−1 for potential urea-N removal. The fate of urea-N differed between light and dark incubations. Increased 15NH4+ accumulated and higher quantities of the removed urea-15N remained in the 15NH4+ form were detected in the dark than in the light. A follow-up incubation experiment with 15N-urea confirmed that Microcystis can grow on urea but its effects on urea dynamics were minor, indicating that Microcystis was not the major factor causing the observed fates of urea under different light conditions in Lake Taihu. Bacterial community composition and predicted functional gene data suggested that heterotrophic bacteria metabolized urea, even though Microcystis spp. was the dominant bloom organism.  相似文献   

16.
Lake Taihu has been severely eutrophied during the last few decades and dense cyanobacterial blooms have led to a decrease in phytoplankton diversity. The cyanobacterial blooms in Lake Taihu were mainly composed of unicellular colony-forming Microcystis and filamentous heterocystous Dolichospermum (formerly known as planktonic species of Anabaena). In contrast to that of Microcystis spp., the fundamental knowledge about diversity, abundance and dynamics of Dolichospermum populations in Lake Taihu is lacking. The present study was conducted to understand genotypic distribution, dynamics and succession of Dolichospermum populations in Lake Taihu. By sequencing 688 internal transcribed spacer (ITS) regions between the 16S and 23S rRNA genes of Dolichospermum, we were able to confirm that all the sequences were Dolichospermum rather than Aphanizomenon. 118 different genotypes were identified from the obtained sequences, and two genotypes (W-type and L-type) were found to dominate in the lake, representing 36.6% and 26.2% of the total sequences, respectively. These two dominant genotypes of Dolichospermum displayed the significant seasonal pattern. Stepwise regressions analysis revealed that water temperature was associated with the two dominant genotypes. The combined results implied the possible existence of ecotypes in bloom-forming cyanobacteria, probably triggered by water temperature in the lake.  相似文献   

17.
Non-diazotrophic Microcystis and filamentous N2-fixing Aphanizomenon and Dolichospermum (formerly Anabaena) co-occur or successively dominate freshwaters globally. Previous studies indicate that dual nitrogen (N) and phosphorus (P) reduction is needed to control cyanobacterial blooms; however, N limitation may cause replacement of non-N2-fixing by N2-fixing taxa. To evaluate potentially counterproductive scenarios, the effects of temperature, nutrients, and zooplankton on the spatio-temporal variations of cyanobacteria were investigated in three large, shallow eutrophic lakes in China. The results illustrate that the community composition of cyanobacteria is primarily driven by physical factors and the zooplankton community, and their interactions. Niche differentiation between Microcystis and two N2-fixing taxa in Lake Taihu and Lake Chaohu was observed, whereas small temperature fluctuations in Lake Dianchi supported co-dominance. Through structural equation modelling, predictor variables were aggregated into ‘composites’ representing their combined effects on species-specific biomass. The model results showed that Microcystis biomass was affected by water temperature and P concentrations across the studied lakes. The biomass of two filamentous taxa, by contrast, exhibited lake-specific responses. Understanding of driving forces of the succession and competition among bloom-forming cyanobacteria will help to guide lake restoration in the context of climate warming and N:P stoichiometry imbalances.  相似文献   

18.
Microautoradiography was used to screen natural phytoplankton populations from Lake Kinneret for their ability to take up radioactive organic substrates (glucose, acetic acid, amino acids, and glycollic acid. Several of the important Chlorophyta (Pediastrum spp.,Actinastrum hantzschii, Kirchncriella spp.,Coelastrum spp.,Scenedesmus spp., andTetraëdron spp.) and Cyanophyta (Microcystis spp.,Merismopedia sp.,Chroococcus spp., andAnabaena spp.) showed consistent organic uptake. However, the principal bloom former, the dinoflagellatePeridinium cinctum fawestii and most of the pelagic algae observed, never assimilated any of the above substrates. Autoradiographic surveys permit rapid screening of algal populations for species which are capable of taking up organic matter and can indicate potential facultative heterotrophs.  相似文献   

19.
In this study, we analyse the spatial distribution of cyanobacterial summer blooms in a large subtropical reservoir located in the Uruguay River, from 2007 to 2011; these extraordinary algal growth events are mainly represented by scum-forming and nitrogen-fixing eco-strategists of the Dolichospermum and Microcystis genera. The use of the eco-strategists approach, based on ecophysiological work and field observations, allowed us to explain the differences in the distribution pattern and temporal dynamics of both cyanobacterial complexes. Spatial differences were produced due to much higher and fluctuating cyanobacterial abundances at the right margin of the reservoir and at the littoral areas closer to the dam. Satellite imagery (LANDSAT 5 TM) clearly depicted the stronger algal development in the reservoir arms and in the section closer to the dam. The Microcystis spp. complex achieved higher density than the Dolichospermum spp. complex. We hypothesise that the hydrological cycle explains the inter-annual fluctuations of the intensity and frequency of cyanobacterial blooms, and that spatial differences in cyanobacterial presence between the reservoir arms, its margins and the main channel is mainly a response to morphometrical and hydrological characteristics.  相似文献   

20.
Cyanobacterial mass occurrences in freshwater lakes are generally formed by Anabaena, Microcystis, and Planktothrix, which may produce cyclic heptapeptide hepatotoxins, microcystins. Thus far, identification of the most potent microcystin producer in a lake has not been possible due to a lack of quantitative methods. The aim of this study was to identify the microcystin-producing genera and to determine the copy numbers of microcystin synthetase gene E (mcyE) in Lake Tuusulanjärvi and Lake Hiidenvesi in Finland by quantitative real-time PCR. The microcystin concentrations and cyanobacterial cell densities of these lakes were also determined. The microcystin concentrations correlated positively with the sum of Microcystis and Anabaena mcyE copy numbers from both Lake Tuusulanjärvi and Lake Hiidenvesi, indicating that mcyE gene copy numbers can be used as surrogates for hepatotoxic Microcystis and Anabaena. The main microcystin producer in Lake Tuusulanjärvi was Microcystis spp., since average Microcystis mcyE copy numbers were >30 times more abundant than those of Anabaena. Lake Hiidenvesi seemed to contain both nontoxic and toxic Anabaena as well as toxic Microcystis strains. Identifying the most potent microcystin producer in a lake could be valuable for designing lake restoration strategies, among other uses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号