首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mammalian torpor saves enormous amounts of energy, but a widely assumed cost of torpor is immobility and therefore vulnerability to predators. Contrary to this assumption, some small marsupial mammals in the wild move while torpid at low body temperatures to basking sites, thereby minimizing energy expenditure during arousal. Hence, we quantified how mammalian locomotor performance is affected by body temperature. The three small marsupial species tested, known to use torpor and basking in the wild, could move while torpid at body temperatures as low as 14.8-17.9°C. Speed was a sigmoid function of body temperature, but body temperature effects on running speed were greater than those in an ectothermic lizard used for comparison. We provide the first quantitative data of movement at low body temperature in mammals, which have survival implications for wild heterothermic mammals, as directional movement at low body temperature permits both basking and predator avoidance.  相似文献   

2.
A growing number of mammal species are recognized as heterothermic, capable of maintaining a high‐core body temperature or entering a state of metabolic suppression known as torpor. Small mammals can achieve large energetic savings when torpid, but they are also subject to ecological costs. Studying torpor use in an ecological and physiological context can help elucidate relative costs and benefits of torpor to different groups within a population. We measured skin temperatures of 46 adult Rafinesque's big‐eared bats (Corynorhinus rafinesquii) to evaluate thermoregulatory strategies of a heterothermic small mammal during the reproductive season. We compared daily average and minimum skin temperatures as well as the frequency, duration, and depth of torpor bouts of sex and reproductive classes of bats inhabiting day‐roosts with different thermal characteristics. We evaluated roosts with microclimates colder (caves) and warmer (buildings) than ambient air temperatures, as well as roosts with intermediate conditions (trees and rock crevices). Using Akaike's information criterion (AIC), we found that different statistical models best predicted various characteristics of torpor bouts. While the type of day‐roost best predicted the average number of torpor bouts that bats used each day, current weather variables best predicted daily average and minimum skin temperatures of bats, and reproductive condition best predicted average torpor bout depth and the average amount of time spent torpid each day by bats. Finding that different models best explain varying aspects of heterothermy illustrates the importance of torpor to both reproductive and nonreproductive small mammals and emphasizes the multifaceted nature of heterothermy and the need to collect data on numerous heterothermic response variables within an ecophysiological context.  相似文献   

3.
Pulmonary surfactant, a complex mixture of lipids and proteins, lowers the surface tension in terminal air spaces and is crucial for lung function. Within an animal species, surfactant composition can be influenced by development, disease, respiratory rate, and/or body temperature. Here, we analyzed the composition of surfactant in three heterothermic mammals (dunnart, bat, squirrel), displaying different torpor patterns, to determine: 1) whether increases in surfactant cholesterol (Chol) and phospholipid (PL) saturation occur during long-term torpor in squirrels, as in bats and dunnarts; 2) whether surfactant proteins change during torpor; and 3) whether PL molecular species (molsp) composition is altered. In addition, we analyzed the molsp composition of a further nine mammals (including placental/marsupial and hetero-/homeothermic contrasts) to determine whether phylogeny or thermal behavior determines molsp composition in mammals. We discovered that like bats and dunnarts, surfactant Chol increases during torpor in squirrels. However, changes in PL saturation during torpor may not be universal. Torpor was accompanied by a decrease in surfactant protein A in dunnarts and squirrels, but not in bats, whereas surfactant protein B did not change in any species. Phosphatidylcholine (PC)16:0/16:0 is highly variable between mammals and is not the major PL in the wombat, dunnart, shrew, or Tasmanian devil. An inverse relationship exists between PC16:0/16:0 and two of the major fluidizing components, PC16:0/16:1 and PC16:0/14:0. The PL molsp profile of an animal species is not determined by phylogeny or thermal behavior. We conclude that there is no single PL molsp composition that functions optimally in all mammals; rather, surfactant from each animal is unique and tailored to the biology of that animal.  相似文献   

4.
Maximum-likelihood models of codon and amino acid substitution were used to analyze the lung-specific surfactant protein C (SP-C) from terrestrial, semi-aquatic, and diving mammals to identify lineages and amino acid sites under positive selection. Site models used the nonsynonymous/synonymous rate ratio (ω) as an indicator of selection pressure. Mechanistic models used physicochemical distances between amino acid substitutions to specify nonsynonymous substitution rates. Site models strongly identified positive selection at different sites in the polar N-terminal extramembrane domain of SP-C in the three diving lineages: site 2 in the cetaceans (whales and dolphins), sites 7, 9, and 10 in the pinnipeds (seals and sea lions), and sites 2, 9, and 10 in the sirenians (dugongs and manatees). The only semi-aquatic contrast to indicate positive selection at site 10 was that including the polar bear, which had the largest body mass of the semi-aquatic species. Analysis of the biophysical properties that were influential in determining the amino acid substitutions showed that isoelectric point, chemical composition of the side chain, polarity, and hydrophobicity were the crucial determinants. Amino acid substitutions at these sites may lead to stronger binding of the N-terminal domain to the surfactant phospholipid film and to increased adsorption of the protein to the air-liquid interface. Both properties are advantageous for the repeated collapse and reinflation of the lung upon diving and resurfacing and may reflect adaptations to the high hydrostatic pressures experienced during diving. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Reviewing Editor: Dr. Richard Kliman  相似文献   

5.
Bats face high energetic requirements, as powered flight is costly and they have a disadvantageous surface-to-volume-ratio. To deal with those requirements energy saving mechanisms, such as heterothermy (torpor), have evolved. Torpor during pregnancy, however, reduces rates of foetal development and consequently prolongs pregnancy. Therefore, heterothermy has a great effect on reproduction, as an unhindered parturition can only be assured by high body temperatures. Regardless of these adverse affects of torpor the energetic requirements of bats during reproduction urge for energy savings and bats are known to enter torpor during pregnancy. The species in the current study differ in their torpor patterns and thus their heterothermic strategy. However, we hypothesized, that species-specific heterothermic behaviour should be revoked at the end of pregnancy. We analyzed skin temperatures of Myotis bechsteinii, Myotis nattereri and Plecotus auritus during pregnancy and found no differences in torpor depth between species during the last phase of pregnancy. Furthermore, we could show that individuals entered torpor frequently during pregnancy and only minimized torpor during the last stage of pregnancy. This suggests that close to the end of pregnancy, heterothermy is restricted but not species-specific and the required energy is allocated otherwise.  相似文献   

6.
Heterothermic mammals increase the proportion of polyunsaturated fatty acids (PUFA) in their body fats prior to entering torpor. Because PUFA have low melting points, it is thought that they play an important role in maintaining the fluidity of depot fats and membrane phospholipids at low body temperatures. However, PUFA are more prone to autoxidation when exposed to reactive oxygen species (ROS) during torpor and during the periodic arousals that characterize hibernation. A lack of PUFA or an excess of PUFA may constrain the use of torpor by heterothermic mammals. We performed a mixed model meta-analysis of 17 controlled-feeding studies to test the effect of dietary PUFA on the depth and expression of torpor by daily heterotherms and hibernators. We also reviewed the literature on the PUFA content of the diet and depot fats of heterothermic mammals to address two principal topics: (1) Do low dietary levels of PUFA reduce the expression of torpor under laboratory conditions and, if so, are free-ranging animals constrained by a lack of PUFA? (2) Do high dietary levels of PUFA result in a reduction in the use, depth, and duration of torpor and, if so, do free-ranging animals seek to optimize rather than maximize PUFA intake? Low-PUFA diets consistently increase the lower setpoint for body temperature and minimum metabolic rate for both hibernators and daily heterotherms. Above the lower setpoint, low-PUFA diets usually increase body temperature and metabolic rate and decrease the duration of torpor bouts and this effect is similar for hibernators and daily heterotherms. Free-ranging rodent hibernators have dietary PUFA intakes that are far higher than those of the low-PUFA diets offered in controlled-feeding experiments, so these hibernators may never experience the constraints associated with a lack of PUFA. Diets of free-ranging insectivorous bats and echidnas have PUFA levels that are less than half as high as those offered in experimental low-PUFA diets, yet they exhibit deep and extended bouts of torpor. We argue that alternate mechanisms exist for maintaining the fluidity of body fats and that high-PUFA intake may not be a prerequisite for deep and extended bouts of torpor. Four studies indicate that animals that were fed high-PUFA diets are reluctant to enter torpor and show shallower and shorter torpor bouts. Although authors attribute this response to autoxidation, these animals did not have a higher PUFA content in their depot fats than animals where PUFA was shown to enhance torpor. We suggest that these contradictory results indicate inter-specific or inter-individual variation in the ability to control ROS and limit autoxidation of PUFA. High dietary levels of PUFA will constrain the expression of torpor only when the oxidative challenge exceeds the capacity of the antioxidant defence system. Studies of diet selection indicate that insectivorous species with low dietary PUFA levels seek to maximize PUFA intake. However, herbivorous species that have access to plants and plant parts of high-PUFA content do not appear to maximize PUFA intake. These data suggest that animals attempt to optimize rather than maximize PUFA intake. The effect of PUFA should be viewed in the light of a cost-benefit trade-off, where the benefit of high-PUFA intake is an easier access to low body temperatures and the cost is increased risk of autoxidation.  相似文献   

7.
Yuan L  Zhao X  Lin B  Rossiter SJ  He L  Zuo X  He G  Jones G  Geiser F  Zhang S 《PloS one》2011,6(11):e27189
Heterothermy (hibernation and daily torpor) is a key strategy that animals use to survive in harsh conditions and is widely employed by bats, which are found in diverse habitats and climates. Bats comprise more than 20% of all mammals and although heterothermy occurs in divergent lineages of bats, suggesting it might be an ancestral condition, its evolutionary history is complicated by complex phylogeographic patterns. Here, we use Leptin, which regulates lipid metabolism and is crucial for thermogenesis of hibernators, as molecular marker and combine physiological, molecular and biochemical analyses to explore the possible evolutionary history of heterothermy in bat. The two tropical fruit bats examined here were homeothermic; in contrast, the two tropical insectivorous bats were clearly heterothermic. Molecular evolutionary analyses of the Leptin gene revealed positive selection in the ancestors of all bats, which was maintained or further enhanced the lineages comprising mostly heterothermic species. In contrast, we found evidence of relaxed selection in homeothermic species. Biochemical assays of bat Leptin on the activity on adipocyte degradation revealed that Leptin in heterothermic bats was more lipolytic than in homeothermic bats. This shows that evolutionary sequence changes in this protein are indeed functional and support the interpretation of our physiological results and the molecular evolutionary analyses. Our combined data strongly support the hypothesis that heterothermy is the ancestral state of bats and that this involved adaptive changes in Leptin. Subsequent loss of heterothermy in some tropical lineages of bats likely was associated with range and dietary shifts.  相似文献   

8.
Mammals that hibernate experience extreme metabolic states and body temperatures as they transition between euthermia, a state resembling typical warm blooded mammals, and prolonged torpor, a state of suspended animation where the brain receives as low as 10% of normal cerebral blood flow. Transitions into and out of torpor are more physiologically challenging than the extreme metabolic suppression and cold body temperatures of torpor per se. Mammals that hibernate show unprecedented capacities to tolerate cerebral ischemia, a decrease in blood flow to the brain caused by stroke, cardiac arrest or brain trauma. While cerebral ischemia often leads to death or disability in humans and most other mammals, hibernating mammals suffer no ill effects when blood flow to the brain is dramatically decreased during torpor or experimentally induced during euthermia. These animals, as adults, also display rapid and pronounced synaptic flexibility where synapses retract during torpor and rapidly re-emerge upon arousal. A variety of coordinated adaptations contribute to tolerance of cerebral ischemia in these animals. In this review we discuss adaptations in heterothermic mammals that may suggest novel therapeutic targets and strategies to protect the human brain against cerebral ischemic damage and neurodegenerative disease.  相似文献   

9.
We investigated normothermic thermoregulation and heterothermic responses to restricted food in the speckled mousebird Colius striatus, in the context of the widely accepted distinction between normothermia, rest-phase hypothermia, and torpor. Normothermic thermoregulation differed from typical endothermic patterns in that rest-phase body temperature (Tb) was not maintained with respect to a constant setpoint. Instead, Tb decreased during the course of the rest-phase, with the highest cooling rates observed at moderate ambient temperatures (Ta). Restricted food was associated with significant reductions in rest-phase Tb and metabolic rate. The lowest Tb recorded in a bird which was able to arouse spontaneously, was 18.2 degrees C. However, we were unable to clearly discern between normothermic, hypothermic and torpor Tb ranges. Furthermore, heterothermic responses did not accord with the patterns typically observed in birds and mammals. Metabolic suppression normally associated with entry into torpor and the defence of a torpor Tb setpoint was largely absent. The mousebirds significantly reduced their energy expenditure when heterothermic at moderate TaS only. We suggest that the observed patterns of thermoregulation in C. striatus, as well those previously reported in Colius colius, are associated with plesiomorphic clustering behaviour in the Coliiformes, and the tandem evolution of behavioural and metabolic thermoregulation.  相似文献   

10.
The Afrotropical pouched mouse Saccostomus campestris displays sexual disparity in the use of daily torpor; males reluctantly enter torpor. We tested the hypothesis that males may compensate for a limited heterothermic capacity with lower basal and resting metabolic rates relative to females. We also investigated the association between gonadal activity (testosterone) and the propensity for daily torpor. Body temperature and oxygen consumption were measured at various ambient temperatures and were compared between sexes under ad libitum and restricted-diet treatments. Whereas no significant sex differences were observed in body temperature and oxygen consumption under ad libitum treatment, there were pronounced differences in heterothermic responses under food restriction. Females employed torpor more frequently and also had lower minimum torpor body temperatures (ca. 25 degrees C) than males (ca. 29 degrees C). Testosterone inhibited torpor in males, whereas the majority of saline-treated animals employed torpor under both ad libitum and restricted-diet treatments. This study demonstrated that the limited capacity of male S. campestris to enter torpor is a consequence of reproductive activity and that opportunistic breeding and the absence of seasonal testes regression compromises the capacity to conserve energy through daily torpor.  相似文献   

11.
Understanding thermal biology in heterothermic endotherms requires that we accurately quantify temporal patterns of torpor use and activity. In many studies this is done using open-flow respirometry or implanted temperature sensitive transmitters. Here we report a method to quantify torpor and activity in cavity living endotherms that does not require surgery or confinement in metabolic chambers. We used temperature dataloggers affixed inside nests to record nest temperatures (Tnest) as a proxy for body temperature. We constructed nests so that animals were in direct contact with dataloggers while at rest. Passive infrared motion detectors were used to determine when animals were active in their cages outside nests. We confirmed that the approach accurately quantifies torpor patterns using open-flow respirometry. This method may prove useful in studies addressing temporal patterns of torpor use under semi-natural conditions because it results in little disruption to animals.  相似文献   

12.
Summary This study examines the relationship between warm-up rate, body mass, metabolic rate, thermal conductance and normothermic body temperature in heterothermic mammals during arousal from torpor. Predictions based on the assumption that the energetic cost of arousal has been minimised are tested using data for 35 species. The observation that across-species warm-up rate correlates negatively with body mass is confirmed using a comparative technique which removes confounding effects due to the non-independence of species data due to shared common ancestry. Mean warm-up rate during arousal correlates negatively with basal metabolic rate and positively with the temperature difference through which the animal warms, having controlled for other factors. These results suggest that selection has operated to minimise the overall energetic, cost of warm-up. In contrast, peak warm-up rate during arousal correlates positively with peak metabolic rate during arousal, and negatively with thermal conductance, when body mass has been taken into account. These results suggest that peak warm-up rate is more sensitive to the fundamental processes of heat generation and loss. Although heterothermic marsupials have lower normothermic body temperatures and basal metabolic rates, marsupials and heterothermic eutherian mammals do not differ systematically in warm-up rate. Pre-flight warm-up rates in one group of endothermic insects, the bees, are significantly higher than predictions based on rates of arousal of a mammal of the same body mass.Abbreviations BMR basal metabolic rate - ICM independent comparisons method - MWR mean warm-up rate - PMR peak metabolic rate - PWR peak·warm-up rate - Tbactivity body temperature during activity - Tbtorpor body temperature during torpor - T arousal increase in body temperature during arousal  相似文献   

13.
Many birds and mammals drastically reduce their energy expenditure during times of cold exposure, food shortage, or drought, by temporarily abandoning euthermia, i.e. the maintenance of high body temperatures. Traditionally, two different types of heterothermy, i.e. hypometabolic states associated with low body temperature (torpor), have been distinguished: daily torpor, which lasts less than 24 h and is accompanied by continued foraging, versus hibernation, with torpor bouts lasting consecutive days to several weeks in animals that usually do not forage but rely on energy stores, either food caches or body energy reserves. This classification of torpor types has been challenged, suggesting that these phenotypes may merely represent extremes in a continuum of traits. Here, we investigate whether variables of torpor in 214 species (43 birds and 171 mammals) form a continuum or a bimodal distribution. We use Gaussian‐mixture cluster analysis as well as phylogenetically informed regressions to quantitatively assess the distinction between hibernation and daily torpor and to evaluate the impact of body mass and geographical distribution of species on torpor traits. Cluster analysis clearly confirmed the classical distinction between daily torpor and hibernation. Overall, heterothermic endotherms tend to be small; hibernators are significantly heavier than daily heterotherms and also are distributed at higher average latitudes (~35°) than daily heterotherms (~25°). Variables of torpor for an average 30 g heterotherm differed significantly between daily heterotherms and hibernators. Average maximum torpor bout duration was >30‐fold longer, and mean torpor bout duration >25‐fold longer in hibernators. Mean minimum body temperature differed by ~13°C, and the mean minimum torpor metabolic rate was ~35% of the basal metabolic rate (BMR) in daily heterotherms but only 6% of BMR in hibernators. Consequently, our analysis strongly supports the view that hibernators and daily heterotherms are functionally distinct groups that probably have been subject to disruptive selection. Arguably, the primary physiological difference between daily torpor and hibernation, which leads to a variety of derived further distinct characteristics, is the temporal control of entry into and arousal from torpor, which is governed by the circadian clock in daily heterotherms, but apparently not in hibernators.  相似文献   

14.
Many forest-dwelling bats spend their diurnal inactivity period in tree cavities. During this time bats can save energy through heterothermy. A heterothermic response (torpor) is characterized by a lowered body temperature, reduced metabolic rate, and reduction of other physiological processes, and can be influenced by the microclimatic conditions of roost cavities. The thermal and physical characteristics of roosts used by the sympatric, ecologically, and morphologically similar bat species Myotis bechsteinii, M. nattereri, and Plecotus auritus were compared. These three species differ in their heterothermic behavior, with the lowest skin temperatures observed for P. auritus. Therefore, we hypothesized that roosts occupied by the three species should differ in roost characteristics and microclimatic conditions, whereby P. auritus should select colder and thermally less stable roosts. The results showed that horizontal depth of the cavity, diameter of the roost tree, and microclimatic conditions within roosts differed among species. Roosts of P. auritus had the lowest horizontal depth, lowest thermal stability, and lowest mean minimum roost temperatures. Height of the roost, diameter of the roost tree, and vertical depth were also shown to influence microclimatic conditions. With increasing diameter of the tree and increasing horizontal depth, mean minimum roost temperature increased and thermal stability improved. Furthermore, with ascending height above ground insulation and mean roost temperatures increased. Our results imply that species such as P. auritus, which use pronounced torpor as a primary energy saving strategy, prefer colder cavities that support their heterothermic strategy.  相似文献   

15.
16.
Many small mammals are heterothermic endotherms capable of maintaining an elevated core body temperature or reducing their thermoregulatory set point to enter a state of torpor. Torpor can confer substantial energy savings, but also incurs ecological costs, such as hindering allocation of energy towards reproduction. We placed temperature-sensitive radio transmitters on 44 adult Rafinesque’s big-eared bats (Corynorhinus rafinesquii) and deployed microclimate dataloggers inside 34 day roosts to compare the use of torpor by different sex and reproductive classes of bats during the summer. We collected 324 bat-days of skin-temperature data from 36 females and 4 males. Reproductive females employed fewer torpor bouts per day than non-reproductive females and males (P < 0.0001), and pregnant and lactating females had higher average (P < 0.0001) and minimum (P < 0.0001) skin temperatures than non-reproductive females. Pregnant females spent less time torpid (P < 0.0001) than non-reproductive females, but lactating females used relatively deep, long torpor bouts. Microclimates varied inside tree species with different configurations of entrances to the roost cavity (P < 0.0001). Bats spent more time torpid when roosting in water tupelo (Nyssa aquatica) trees possessing only a basal entrance to the cavity (P = 0.001). Of the tree species used as roosts, water tupelo cavities exhibited the least variable daytime and nighttime temperatures. These data demonstrate that use of summer torpor is not uniform among sex and reproductive classes in Rafinesque’s big-eared bat, and variation in microclimate among tree roosts due to species and structural characteristics facilitates the use of different thermoregulatory strategies in these bats.  相似文献   

17.
Mammalian hibernation is characterized by profound reductions in body temperature (T b) and metabolic, heart and respiratory rates. These reductions are characteristic of torpor, which is temporally confined to winter. Hibernators including ground squirrels are heterothermic in winter, cycling between multiday periods of torpor with low T b and brief periods of rewarming. In contrast, ground squirrels remain homeothermic during summer, like non-hibernating mammals. The transition between the homeothermic and heterothermic phases of the circannual rhythm of hibernation is often overlooked in hibernation studies. Here, we examined the use of torpor throughout the fall transition in laboratory-housed 13-lined ground squirrels by recording core body temperature with an implanted data logger. As is typical of laboratory-based hibernation studies, animals were kept in standard housing prior to being moved into a cold, dark room to simulate natural hibernation conditions. Significantly, the vast majority of both male and female ground squirrels expressed torpor in the fall while still housed conventionally and prior to cold exposure. The expression of torpor was not predicted by body weight or age, rather it appears to be preprogrammed in a time-dependent manner that is independent of, yet enhanced by, environmental cues. The timing and duration of these torpor bouts occurring prior to cold exposure were also remarkably sporadic. Thus, it is not possible to know with certainty which animals are torpor-naive before cold exposure in the absence of continuous measurement of body temperature. We conclude that fall animals encompass variable points in the transition between summer and winter phases of the circannual cycle of hibernation, thereby confounding studies in which they are used as non-hibernating controls. Conversely, these fall transition animals offer unique opportunities to define the molecular changes that accompany and enable hibernation.  相似文献   

18.
In mammals, it is usually assumed that selection cannot be strong enough to act on nucleotide mutations that do not cause a change at the protein level (i.e. 'silent' or 'synonymous' mutations). Here we report the results of a molecular evolutionary analysis of BRCA1. We find a repeatable pronounced peak in the ratio of nonsynonymous to synonymous substitutions between codons 200-300. Unusually, this peak is caused by a plummet in the silent-site rate of evolution. The most parsimonious interpretation of these data is that purifying selection is acting on silent sites.  相似文献   

19.
According to the concept of the “minimal boundary curve for endothermy”, mammals and birds with a basal metabolic rate (BMR) that falls below the curve are obligate heterotherms and must enter torpor. We examined the reliability of the boundary curve (on a double log plot transformed to a line) for predicting torpor as a function of body mass and BMR for birds and several groups of mammals. The boundary line correctly predicted heterothermy in 87.5% of marsupials (n = 64), 94% of bats (n = 85) and 82.3% of rodents (n = 157). Our analysis shows that the boundary line is not a reliable predictor for use of torpor. A discriminate analysis using body mass and BMR had a similar predictive power as the boundary line. However, there are sufficient exceptions to both methods of analysis to suggest that the relationship between body mass, BMR and heterothermy is not a causal one. Some homeothermic birds (e.g. silvereyes) and rodents (e.g. hopping mice) fall below the boundary line, and there are many examples of heterothermic species that fall above the boundary line. For marsupials and bats, but not for rodents, there was a highly significant phylogenetic pattern for heterothermy, suggesting that taxonomic affiliation is the biggest determinant of heterothermy for these mammalian groups. For rodents, heterothermic species had lower BMRs than homeothermic species. Low BMR and use of torpor both contribute to reducing energy expenditure and both physiological traits appear to be a response to the same selective pressure of fluctuating food supply, increasing fitness in endothermic species that are constrained by limited energy availability. Both the minimal boundary line and discriminate analysis were of little value for predicting the use of daily torpor or hibernation in heterotherms, presumably as both daily torpor and hibernation are precisely controlled processes, not an inability to thermoregulate.  相似文献   

20.
Recent years have seen a rapid increase in the number of Afrotropical endotherms known to avoid mismatches between energy supply and demand by using daily torpor and/or hibernation. Among mammals, heterothermy has been reported in 40 species in six orders, namely Macroscelidea, Afrosoricida, Rodentia, Eulipotyphla, Primates and Chiroptera. These species span a range in body mass of 7-770?g, with minimum heterothermic body temperatures ranging from 1-27°C and bout length varying from 1?h to 70 days. Daily torpor is the most common form of heterothermy, with true hibernation being observed in only seven species, Graphiurus murinus, Graphiurus ocularis, Atelerix frontalis, Cheirogaleus medius, Cheirogaleus major, Microcebus murinus and Microcebus griseorufus. The traditional distinction between daily torpor and hibernation is blurred in some species, with free-ranging individuals exhibiting bouts of > 24?h and body temperatures < 16 °C, but none of the classical behaviours associated with hibernation. Several species bask in the sun during rewarming. Among birds, heterothermy has been reported in 16 species in seven orders, and is more pronounced in phylogenetically older taxa. Both in mammals and birds, patterns of heterothermy can vary dramatically among species occurring at a particular site, and even among individuals of a single species. For instance, patterns of heterothermy among cheirogalid primates in western Madagascar vary from daily torpor to uninterrupted hibernation for up to seven months. Other examples of variation among closely-related species involve small owls, elephant shrews and vespertilionid bats. There may also be variation in terms of the ecological correlates of torpor within a species, as is the case in the Freckled Nightjar Caprimulgus tristigma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号