首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hyun I 《Cell Stem Cell》2011,9(4):295-297
A recent study of human somatic cells reprogrammed to a pluripotent state via somatic cell nuclear transfer (SCNT) will undoubtedly renew interest in human egg procurement. Thus it is imperative that human SCNT research move forward under stringent ethical standards in locales permitting directed egg donation for stem cell research.  相似文献   

2.
Nuclear transfer-derived ES (ntES) cell lines can be established from somatic cell nuclei with a relatively high success rate. Although ntES cells have been shown to be equivalent to ES cells, there are ethical objections concerning human cells, such as the use of fresh oocyte donation from young healthy woman. In contrast, the use of induced pluripotent stem (iPS) cells for cloning poses few ethical problems and is a relatively easy technique compared with nuclear transfer. Therefore, although there are several reports proposing the use of ntES cells as a model of regenerative medicine, the use of these cells in preliminary medical research is waning. However, in theory, 5 to 10 donor cells can establish one ntES cell line and, once established, these cells will propagate indefinitely. These cells can be used to generate cloned animals from ntES cell lines using a second round of NT. Even in infertile and "unclonable" strains of mice, we can generate offspring from somatic cells by combining cloning with ntES technology. Moreover, cloned offspring can be generated potentially even from the nuclei of dead bodies or freeze-dried cells via ntES cells, such as from an extinct frozen animal. Currently, only the ntES technology is available for this purpose, because all other techniques, including iPS cell derivation, require significant numbers of living donor cells. This review describes how to improve the efficiency of cloning, the establishment of clone-derived embryonic stem cells and further applications.  相似文献   

3.
Many “rising powers” such as India, China, Argentina, Singapore, and Brazil are investing in stem cell technology, joining the traditional leaders in the field, such as the UK, Germany, USA, and Japan. Malaysia is also entering this sector because of the potential medical and economic benefits that the use of stem cell technologies could provide. Like other countries, Malaysia faces the challenge of how to encourage scientific progress and innovation in an ethical manner while at the same time ensuring a safe and accessible market for regenerative therapies. This paper reports on the research findings of semi-structured interviews with local stakeholders to investigate how they perceived and evaluated the current regulatory framework for human stem cell research in Malaysia, and what might be at stake if the state continues with its current regulatory approach.  相似文献   

4.
Embryonic stem cells are envisioned as a viable source of pluripotent cells for use in regenerative medicine applications when donor tissue is not available. However, most current harvest techniques for embryonic stem cells require the destruction of embryos, which has led to significant political and ethical limitations on their usage. Parthenogenesis, the process by which an egg can develop into an embryo in the absence of sperm, may be a potential source of embryonic stem cells that may avoid some of the political and ethical concerns surrounding embryonic stem cells. Here we provide the technical aspects of embryonic stem cell isolation and expansion from the parthenogenetic activation of oocytes. These cells were characterized for their stem-cell properties. In addition, these cells were induced to differentiate to the myogenic, osteogenic, adipogenic, and endothelial lineages, and were able to form muscle-like and bony-like tissue in vivo. Furthermore, parthenogenetic stem cells were able to integrate into injured muscle tissue. Together, these results demonstrate that parthenogenetic stem cells can be successfully isolated and utilized for various tissue engineering applications.  相似文献   

5.
This paper is based on linked qualitative studies of the donation of human embryos to stem cell research carried out in the United Kingdom, Switzerland, and China. All three studies used semi-structured interview protocols to allow an in-depth examination of donors’ and non-donors’ rationales for their donation decisions, with the aim of gaining information on contextual and other factors that play a role in donor decisions and identifying how these relate to factors that are more usually included in evaluations made by theoretical ethics. Our findings have implications for one factor that has previously been suggested as being of ethical concern: the role of gratitude. Our empirical work shows no evidence that interpersonal gratitude is an important factor, but it does support the existence of a solidarity-based desire to “give something back” to medical research. Thus, we use empirical data to expand and refine the conceptual basis of bioethically theorizing the IVF–stem cell interface.  相似文献   

6.
Since 1928, human fetal tissues and stem cells have been used worldwide to treat various conditions. Although the transplantation of the fetal midbrain substantia nigra and dopaminergic neurons in patients suffering from Parkinson's disease is particularly noteworthy, the history of other types of grafts, such as those of the fetal liver, thymus, and pancreas, should be addressed as there are many lessons to be learnt for future stem cell transplantation. This report describes previous practices and complications that led to current clinical trials of isolated fetal stem cells and embryonic stem(ES) cells. Moreover, strategies for transplantation are considered, with a particular focus on donor cells, cell processing, and the therapeutic cell niche, in addition to ethical issues associated with fetal origin. With the advent of autologous induced pluripotent stem cells and ES cells, clinical dependence on fetal transplantation is expected to gradually decline due to lasting ethical controversies, despite landmark achievements.  相似文献   

7.
The commercial provision of putative stem cell‐based medical interventions in the absence of conclusive evidence of safety and efficacy has formed the basis of an unregulated industry for more than a decade. Many clinics offering such supposed stem cell treatments include statements about the ‘ethical’ nature of somatic (often colloquially referred to as ‘adult’ stem cells) stem cells, in specific contrast to human embryonic stem cells (hESCs), which have been the subject of intensive political, legal, and religious controversy since their first derivation in 1998 1 . Christian groups—both Roman Catholic and evangelical Protestant—in many countries have explicitly promoted the medical potential and current‐day successes in the clinical application of somatic stem cells, lending indirect support to the activities of businesses marketing stem cells ahead of evidence 2 . In this article, I make a preliminary examination of how the structures and belief systems of certain churches in South Korea and the United States, both of which are home to significant stem cell marketing industries, has complemented other factors, including national biomedical funding initiatives, international economic rivalries, permissive legal structures, which have lent impetus to a problematic and often exploitative sector of biomedical commerce 3 .  相似文献   

8.
The edict for producing clinically compliant human embryonic stem cells (hESCs) necessitates adherence to global ethical standards for egg procurement and embryo donation, conformity to regulations controlling clinical-grade cell and tissue product development, and compliance with current good tissue and manufacturing practices (cGTPs and cGMPs, respectively). For example, the U.S. FDA Center for Biologics Evaluation and Research recently promulgated regulations regarding human cells and cellular-based products (HCT/Ps) intended for tissue repair or replacement. Issued under Code of Federal Regulations parts 1270 and 1271 (Code of Federal Regulations, 2006a, 2006b), the rules are broadened by requirements for donor selection and cGMPs for HCT/Ps. By adhering to regulations and in anticipation of future standards, we have generated six clinical-grade hESC lines. Here we describe their manufacture, from embryo procurement to line characterization, including sterility and pathogen testing (Figure 1). To our knowledge, the lines represent the first to have been produced in compliance with international regulatory requirements, suitable for therapeutic use.  相似文献   

9.
Over the past two decades, regenerative therapies using stem cell technologies have been developed for various neurological diseases. Although stem cell therapy is an attractive option to reverse neural tissue damage and to recover neurological deficits, it is still under development so as not to show significant treatment effects in clinical settings. In this review, we discuss the scientific and clinical basics of adult neural stem cells (aNSCs), and their current developmental status as cell therapeutics for neurological disease. Compared with other types of stem cells, aNSCs have clinical advantages, such as limited proliferation, inborn differentiation potential into functional neural cells, and no ethical issues. In spite of the merits of aNSCs, difficulties in the isolation from the normal brain, and in the in vitro expansion, have blocked preclinical and clinical study using aNSCs. However, several groups have recently developed novel techniques to isolate and expand aNSCs from normal adult brains, and showed successful applications of aNSCs to neurological diseases. With new technologies for aNSCs and their clinical strengths, previous hurdles in stem cell therapies for neurological diseases could be overcome, to realize clinically efficacious regenerative stem cell therapeutics.  相似文献   

10.
In the last few decades, stem cell-based therapies have gained attention worldwide for various diseases and disorders. Adult stem cells, particularly mesenchymal stem cells (MSCs), are preferred due to their significant regenerative potential in cellular therapies and are currently involved in hundreds of clinical trials. Although MSCs have high self-renewal as well as differentiation potential, such abilities are compromised with “advanced age” and “disease status” of the donor. Similarly, cell-based therapies require high cell number for clinical applications that often require in vitro expansion of cells. It is pertinent to note that aged individuals are the main segment of population for stem cell-based therapies, however; autologous use of stem cells for such patients (aged and diseased) does not seem to give optimal results due to their compromised potential. In vitro expansion to obtain large numbers of cells also negatively affects the regenerative potential of MSCs. It is therefore essential to improve the regenerative potential of stem cells compromised due to “in vitro expansion”, “donor age” and “donor disease status” for their successful autologous use. The current review has been organized to address the age and disease depleted function of resident adult stem cells, and the strategies to improve their potential. To combat the problem of decline in the regenerative potential of cells, this review focuses on the strategies that manipulate the cell environment such as hypoxia, heat shock, caloric restriction and preconditioning with different factors.  相似文献   

11.
Type 1 diabetes mellitus has received much attention recently as a potential target for the emerging science of stem cell medicine. In this autoimmune disease, the insulin-secreting beta-cells of the pancreas are selectively and irreversibly destroyed by autoimmune assault. Advances in islet transplantation procedures now mean that patients with the disease can be cured by transplantation of primary human islets of Langerhans. A major drawback in this therapy is the availability of donor islets, and the search for substitute transplant tissues has intensified in the last few years. This review will describe the essential requirements of a material designed as a replacement beta-cell and will look at the potential sources of such replacements. These include embryonic stem (ES) cells and multipotent adult stem/progenitor cells from a range of tissues including the pancreas, intestine, liver, bone marrow and brain. These stem cell populations will be evaluated and the different experimental approaches that have been employed to derive functional insulin-expressing cells will be discussed. The review will also look at the capability of human ES (hES) cells generated by somatic cell nuclear transfer and some adult stem cell populations such as bone marrow-derived stem cells, to offer autologous transplant material that would remove the need for immunosuppression. In patients with Type 1 diabetes, auto-reactive T-cells are programmed to recognise the insulin-producing beta-cells. As a result, for therapeutic replacement tissues, it may be more sensible to derive cells that behave like beta-cells but are immunologically distinct. Thus, the potential of cells derived from non-beta-cell origin to avoid the autoimmune response will also be discussed. Finally, the review will summarise the future prospects for stem cell therapies for diabetes and will highlight some of the problems that may be faced by researchers working in this area, such as malignancy, irreproducible differentiation strategies, immune-system rejection and social and ethical concerns over the use of hES cells.  相似文献   

12.
13.
Therapeutic use of stem cells Here the hematopoetic system of blood‐ and immune cell renewal is reviewed. Curing of chronic leucemias and malignant lymphomas is the most successful stem cell based therapy up to date. However, mismatches of histocompatibility‐complexes (HLA‐types) between receiver and donor set narrow limits to such therapies. Whether other diseases such as Parkinson could be cured by infusion of stem cells is still in question.  相似文献   

14.
Heart failure secondary to ischemic heart disease, hypertension, and myocardial infarction is a common cause of death in developed countries. Although pharmacological therapies are very effective, poor prognosis and shorter life expectancy of heart disease patients clearly indicate the need for alternative interventions to complement the present therapies. Since the progression of heart disease is associated with the loss of myocardial cells, the concept of donor cell transplantation into host myocardium is emerging as an attractive strategy to repopulate the damaged tissue. To this end, a number of donor cell types have been tested for their ability to increase the systolic function of diseased hearts in both experimental and clinical settings. Although initial clinical trials with bone marrow stem cells are encouraging, long-term consequences of such interventions are yet to be rigorously examined. While additional laboratory studies are required to address several issues in this field, there is also a clear need for further characterization of drug interactions with donor cells in these interventions. Here, we provide a brief summary of current pharmacological and cell-based therapies for heart disease. Further, we discuss the potential of various donor cell types in myocardial repair, mechanisms underlying functional improvement in cell-based therapies, as well as potential interactions between pharmacological and cell-based therapies.  相似文献   

15.
Despite advances in medical and surgical care, current clinical therapies for spinal cord injury (SCI) are limited. During the last two decades, the search for new therapies has been revolutionized by the discovery of stem cells, inspiring scientists and clinicians to search for stem cell‐based reparative approaches for many disorders, including neurotrauma. Cell‐based therapies using embryonic and adult stem cells in animal models of these disorders have provided positive outcome results. However, the availability of clinically suitable cell sources for human application has been hindered by both technical and ethical issues. The recent discovery of induced pluripotent stem (iPS) cells holds the potential to revolutionize the field of regenerative medicine by offering the option of autologous transplantation, thus eliminating the issue of host rejection. Herein, we will provide the rationale for the use of iPS cells in SCI therapies. In this review, we will evaluate the recent advancements in the field of iPS cells including their capacity for differentiation toward neural lineages that may allow iPS cells transplantation in cell‐based therapy for spinal cord repair. J. Cell. Physiol. 222: 515–521, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Applications of regenerative medicine technology may offer new therapies for patients with injuries, end-stage organ failure, or other clinical problems. Currently, patients suffering from diseased and injured organs can be treated with transplanted organs. However, there is a shortage of donor organs that is worsening yearly as the population ages and new cases of organ failure increase. Scientists in the field of regenerative medicine and tissue engineering are now applying the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. The stem cell field is a rapidly advancing aspect of regenerative medicine as well, and new discoveries here create new options for this type of therapy. For example, therapeutic cloning, in which the nucleus from a donor cell is transferred into an enucleated oocyte in order to extract pluripotent embryonic stem cells from the resultant embryo, provides another source of cells for cell-based tissue engineering applications. While stem cells are still in the research phase, some therapies arising from tissue engineering endeavors have already entered the clinical setting, indicating that regenerative medicine holds promise for the future.  相似文献   

17.
Increasing understanding of stem cell biology, the ability to reprogramme differentiated cells to a pluripotent state and evidence of multipotency in certain adult somatic stem cells has opened the door to exciting therapeutic advances as well as a great deal of regulatory and ethical issues. Benefits will come from the possibility of modelling human diseases and develop individualised therapies, and from their use in transplantation and bioengineering. The use of autologous stem cells is highly desirable, as it avoids the problem of tissue rejection, and also reduces ethical and regulatory issues. Identification of the most appropriate cell sources for different potential applications, development of appropriate clinical grade methodologies and large scale well controlled clinical trials will be essential to assess safety and value of cell based therapies, which have been generating much hope, but are by and large not yet close to becoming standard clinical practice. We briefly discuss stem cells in the context of tissue repair and regenerative medicine, with a focus on individualised clinical approaches, and give examples of sources of autologous cells with potential for clinical intervention.  相似文献   

18.
The tumour microenvironment (TME) plays a pivotal role in tumour fate determination. The TME acts together with the genetic material of tumour cells to determine their initiation, metastasis and drug resistance. Stromal cells in the TME promote the growth and metastasis of tumour cells by secreting soluble molecules or exosomes. The abnormal microenvironment reduces immune surveillance and tumour killing. The TME causes low anti‐tumour drug penetration and reactivity and high drug resistance. Tumour angiogenesis and microenvironmental hypoxia limit the drug concentration within the TME and enhance the stemness of tumour cells. Therefore, modifying the TME to effectively attack tumour cells could represent a comprehensive and effective anti‐tumour strategy. Normal cells, such as stem cells and immune cells, can penetrate and disrupt the abnormal TME. Reconstruction of the TME with healthy cells is an exciting new direction for tumour treatment. We will elaborate on the mechanism of the TME to support tumours and the current cell therapies for targeting tumours and the TME—such as immune cell therapies, haematopoietic stem cell (HSC) transplantation therapies, mesenchymal stem cell (MSC) transfer and embryonic stem cell‐based microenvironment therapies—to provide novel ideas for producing breakthroughs in tumour therapy strategies.  相似文献   

19.
丘祥兴  沈铭贤  胡庆澧 《生命科学》2012,(11):1308-1317
干细胞具有"分化"和"脱分化"的特点和潜能,干细胞研究有着良好的医学前景,许多人类严重疾病的治疗有了新的希望。伴随着干细胞研究的开展和深入,出现了诸多伦理问题的争论。拟就干细胞研究的希望和现实、伦理争论的主要观点及干细胞研究伦理准则的构建,作一简要介绍,并就加强干细胞管理提出建议。  相似文献   

20.
Induced Stem Cells and Tissue Engineering Not only ethical reservations and restrictive laws direct medically oriented stem cell research towards adult stem cells, facilitated by new methods to reprogram differentiated cells back to proliferating progenitors. This allows new therapies with autologous, immunologically tolerant cells and tissues. In bioreactors autologous tissues are grown to replace, for instance, burned skin, cartilaginous elements, and heart valves. Even almost complete eyes, however in an embryonic state, can develop from stem cells in culture by self organization. Finally the German laws related to stem cell research are reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号