首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sensory modalities are essential for navigating through an ever-changing environment. From insects to mammals, transient receptor potential (TRP) channels are known mediators for cellular sensing. Chlamydomonas reinhardtii is a motile single-celled freshwater green alga that is guided by photosensory, mechanosensory, and chemosensory cues. In this type of alga, sensory input is first detected by membrane receptors located in the cell body and then transduced to the beating cilia by membrane depolarization. Although TRP channels seem to be absent in plants, C. reinhardtii possesses genomic sequences encoding TRP proteins. Here, we describe the cloning and characterization of a C. reinhardtii version of a TRP channel sharing key features present in mammalian TRP channels associated with sensory transduction. In silico sequence-structure analysis unveiled the modular design of TRP channels, and electrophysiological experiments conducted on Human Embryonic Kidney-293T cells expressing the Cr-TRP1 clone showed that many of the core functional features of metazoan TRP channels are present in Cr-TRP1, suggesting that basic TRP channel gating characteristics evolved early in the history of eukaryotes.  相似文献   

2.
Chlamydomonas reinhardtii has long been used as a model organism in studies of cell motility and flagellar dynamics. The motility of the well-conserved ‘9+2’ axoneme in its flagella remains a subject of immense curiosity. Using high-speed videography and morphological analyses, we have characterized long-flagella mutants (lf1, lf2-1, lf2-5, lf3-2, and lf4) of C. reinhardtii for biophysical parameters such as swimming velocities, waveforms, beat frequencies, and swimming trajectories. These mutants are aberrant in proteins involved in the regulation of flagellar length and bring about a phenotypic increase in this length. Our results reveal that the flagellar beat frequency and swimming velocity are negatively correlated with the length of the flagella. When compared to the wild-type, any increase in the flagellar length reduces both the swimming velocities (by 26–57%) and beat frequencies (by 8–16%). We demonstrate that with no apparent aberrations/ultrastructural deformities in the mutant axonemes, it is this increased length that has a critical role to play in the motion dynamics of C. reinhardtii cells, and, provided there are no significant changes in their flagellar proteome, any increase in this length compromises the swimming velocity either by reduction of the beat frequency or by an alteration in the waveform of the flagella.  相似文献   

3.
Light is essential for photosynthesis but excess light is hazardous as it may lead to the formation of reactive oxygen species. Photosynthetic organisms struggle to optimize light utilization and photosynthesis while minimizing photo-oxidative damage. Hereby light to heat dissipation via specialized proteins is a potent mechanism to acclimate toward excess light. In the green alga Chlamydomonas reinhardtii the expression of an ancient light-harvesting protein LHCSR3 enables cells to dissipate harmful excess energy. Herein we summarize newest insights into the function of LHCSR3 from C. reinhardtii.  相似文献   

4.
Sensitivity of the photosynthetic thylakoid membranes to thermal stress was investigated in the psychrophilic Antarctic alga Chlamydomonas subcaudata. C. subcaudata thylakoids exhibited an elevated heat sensitivity as indicated by a temperature-induced rise in Fo fluorescence in comparison with the mesophilic species, Chlamydomonas reinhardtii. This was accompanied by a loss of structural stability of the photosystem (PS) II core complex and functional changes at the level of PSI in C. reinhardtii, but not in C. subcaudata. Lastly, C. subcaudata exhibited an increase in unsaturated fatty acid content of membrane lipids in combination with unique fatty acid species. The relationship between lipid unsaturation and the functioning of the photosynthetic apparatus under elevated temperatures is discussed.  相似文献   

5.
6.
Circadian clocks are endogenous approximately 24 h oscillators that temporally regulate many physiological and behavioural processes. In order to be beneficial for the organism, these clocks must be synchronized with the environmental cycles on a daily basis. Both light : dark and the concomitant daily temperature cycles (TCs) function as Zeitgeber (‘time giver’) and efficiently entrain circadian clocks. The temperature receptors mediating this synchronization have not been identified. Transient receptor potential (TRP) channels function as thermo-receptors in animals, and here we show that the Pyrexia (Pyx) TRP channel mediates temperature synchronization in Drosophila melanogaster. Pyx is expressed in peripheral sensory organs (chordotonal organs), which previously have been implicated in temperature synchronization. Flies deficient for Pyx function fail to synchronize their behaviour to TCs in the lower range (16–20°C), and this deficit can be partially rescued by introducing a wild-type copy of the pyx gene. Synchronization to higher TCs is not affected, demonstrating a specific role for Pyx at lower temperatures. In addition, pyx mutants speed up their clock after being exposed to TCs. Our results identify the first TRP channel involved in temperature synchronization of circadian clocks.  相似文献   

7.
Robert van Lis  Ariane Atteia 《BBA》2005,1708(1):23-34
Compelling evidence exists that the colorless algae of the genus Polytomella arose from a green Chlamydomonas-like ancestor by losing its functional photosynthetic apparatus. Due to the close relationship between the colorless and the green chlorophyte, Polytomella sp. appeared as a useful indicative framework for structural studies of Chlamydomonas reinhardtii mitochondria. However, comparative studies reported here unexpectedly revealed significant differences between the mitochondrial respiratory systems of the two algae. Two-dimensional blue native/SDS-PAGE of isolated mitochondria indicated that cytochrome-containing respiratory complexes III and IV in the two chlorophytes contrast in size, subunit composition and relative abundance. Complex IV in Polytomella is smaller than its counterpart in C. reinhardtii and occurs in two forms that differ presumably in the presence of subunit COXIII. The cytochrome c and the iron-sulfur Rieske protein of both chlorophytes revealed structural differences on the amino acid sequence level. Under comparable culture conditions, the colorless alga exhibits lower levels of cytochrome c and complex IV but a higher respiratory activity than the green alga. Cytochrome c levels were also found to be differently regulated by the growth conditions in both algae. The divergence between the respiratory systems in the two related chlorophytes can be viewed as a consequence of the loss of photosynthetic activity and/or of the adaptation to the environment via the acquisition of a more flexible, heterotrophic metabolism. Our understanding of mitochondrial function and evolution is expected to be greatly enhanced via further parallel studies of photosynthetic/non-photosynthetic algae, for which this study forms an incentive.  相似文献   

8.
Chloroplast subfractions were tested with a UV cross-linking assay for proteins that bind to the 5′ untranslated region of the chloroplast psbC mRNA of the green alga Chlamydomonas reinhardtii. These analyses revealed that RNA-binding proteins of 30–32, 46, 47, 60, and 80 kD are associated with chloroplast membranes. The buoyant density and the acyl lipid composition of these membranes are compatible with their origin being the inner chloroplast envelope membrane. However, unlike previously characterized inner envelope membranes, these membranes are associated with thylakoids. One of the membrane-associated RNA-binding proteins appears to be RB47, which has been reported to be a specific activator of psbA mRNA translation. These results suggest that translation of chloroplast mRNAs encoding thylakoid proteins occurs at either a subfraction of the chloroplast inner envelope membrane or a previously uncharacterized intra-chloroplast compartment, which is physically associated with thylakoids.  相似文献   

9.
Organismal interactions within microbial consortia and their responses to harmful intruders remain largely understudied. An important step toward the goal of understanding functional ecological interactions and their evolutionary selection is the study of increasingly complex microbial interaction systems. Here, we discovered a tripartite biosystem consisting of the fungus Aspergillus nidulans, the unicellular green alga Chlamydomonas reinhardtii, and the algicidal bacterium Streptomyces iranensis. Genetic analyses and MALDI-IMS demonstrate that the bacterium secretes the algicidal compound azalomycin F upon contact with C. reinhardtii. In co-culture, A. nidulans attracts the motile alga C. reinhardtii, which becomes embedded and surrounded by fungal mycelium and is shielded from the algicide. The filamentous fungus Sordaria macrospora was susceptible to azalomycin F and failed to protect C. reinhardtii despite chemotactically attracting the alga. Because S. macrospora was susceptible to azalomycin F, this data imply that for protection the fungus needs to be resistant. Formation of the lichen-like association between C. reinhardtii and A. nidulans increased algal growth. The protection depends on the increased amounts of membrane lipids provided by resistant fungi, thereby generating a protective shelter against the bacterial toxin. Our findings reveal a strategy whereby algae survive lethal environmental algicides through cooperation with fungi.Subject terms: Microbial ecology, Microbiome, Microbial ecology, Antibiotics, Fungal ecology  相似文献   

10.
Temperature is one of the most important environmental factors affecting the growth and survival of microorganisms and in light of current global patterns is of particular interest. Here, we highlight studies revealing how vitamin B12 (cobalamin)-producing bacteria increase the fitness of the unicellular alga Chlamydomonas reinhardtii following an increase in environmental temperature. Heat stress represses C. reinhardtii cobalamin-independent methionine synthase (METE) gene expression coinciding with a reduction in METE-mediated methionine synthase activity, chlorosis and cell death during heat stress. However, in the presence of cobalamin-producing bacteria or exogenous cobalamin amendments C. reinhardtii cobalamin-dependent methionine synthase METH-mediated methionine biosynthesis is functional at temperatures that result in C. reinhardtii death in the absence of cobalamin. Artificial microRNA silencing of C. reinhardtii METH expression leads to nearly complete loss of cobalamin-mediated enhancement of thermal tolerance. This suggests that methionine biosynthesis is an essential cellular mechanism for adaptation by C. reinhardtii to thermal stress. Increased fitness advantage of METH under environmentally stressful conditions could explain the selective pressure for retaining the METH gene in algae and the apparent independent loss of the METE gene in various algal species. Our results show that how an organism acclimates to a change in its abiotic environment depends critically on co-occurring species, the nature of that interaction, and how those species interactions evolve.  相似文献   

11.
12.
13.
We present a fast, high-throughput method for characterizing the motility of microorganisms in three dimensions based on standard imaging microscopy. Instead of tracking individual cells, we analyze the spatiotemporal fluctuations of the intensity in the sample from time-lapse images and obtain the intermediate scattering function of the system. We demonstrate our method on two different types of microorganisms: the bacterium Escherichia coli (both smooth swimming and wild type) and the biflagellate alga Chlamydomonas reinhardtii. We validate the methodology using computer simulations and particle tracking. From the intermediate scattering function, we are able to extract the swimming speed distribution, fraction of motile cells, and diffusivity for E. coli, and the swimming speed distribution, and amplitude and frequency of the oscillatory dynamics for C. reinhardtii. In both cases, the motility parameters were averaged over ∼ 104 cells and obtained in a few minutes.  相似文献   

14.
The green alga Chlamydomonas reinhardtii is a model organism for the study of photosynthesis. The chloroplast ATP synthase is responsible for the synthesis of ATP during photosynthesis. Using genetic engineering and biolistic transformation, a string of eight histidine residues has been inserted into the amino-terminal end of the β subunit of this enzyme in C. reinhardtii. The incorporation of these amino acids did not impact the function of the ATP synthase either in vivo or in vitro and the resulting strain of C. reinhardtii showed normal growth. The addition of these amino acids can be seen through altered gel mobility of the β subunit and the binding of a polyhistidine-specific dye to the subunit. The purified his-tagged CF1 has normal Mg2+-ATPase activity, which can be stimulated by alcohol and detergents and the enzyme remains active while bound to a nickel-coated surface. Potential uses for this tagged enzyme as a biochemical tool are discussed.  相似文献   

15.
Transient receptor potential (TRP) channels are six transmembrane-spanning proteins, with variable selectivity for cations, that play a relevant role in intracellular Ca2 + homeostasis. There is a large body of evidence that shows association of TRP channels with the actin cytoskeleton or even the microtubules and demonstrating the functional importance of this interaction for TRP channel function. Conversely, cation currents through TRP channels have also been found to modulate cytoskeleton rearrangements. The interplay between TRP channels and the cytoskeleton has been demonstrated to be essential for full activation of a variety of cellular functions. Furthermore, TRP channels have been reported to take part of macromolecular complexes including different signal transduction proteins. Scaffolding proteins play a relevant role in the association of TRP proteins with other signaling molecules into specific microdomains. Especially relevant are the roles of the Homer family members for the regulation of TRPC channel gating in mammals and INAD in the modulation of Drosophila TRP channels. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.  相似文献   

16.
LHCII is the most abundant membrane protein on earth. It participates in the first steps of photosynthesis by harvesting sunlight and transferring excitation energy to the core complex. Here we have analyzed the LHCII complex of the green alga Chlamydomonas reinhardtii and its association with the core of Photosystem II (PSII) to form multiprotein complexes. Several PSII supercomplexes with different antenna sizes have been purified, the largest of which contains three LHCII trimers (named S, M and N) per monomeric core. A projection map at a 13 Å resolution was obtained allowing the reconstruction of the 3D structure of the supercomplex. The position and orientation of the S trimer are the same as in plants; trimer M is rotated by 45° and the additional trimer (named here as LHCII-N), which is taking the position occupied in plants by CP24, is directly associated with the core. The analysis of supercomplexes with different antenna sizes suggests that LhcbM1, LhcbM2/7 and LhcbM3 are the major components of the trimers in the PSII supercomplex, while LhcbM5 is part of the “extra” LHCII pool not directly associated with the supercomplex. It is also shown that Chlamydomonas LHCII has a slightly lower Chlorophyll a/b ratio than the complex from plants and a blue shifted absorption spectrum. Finally the data indicate that there are at least six LHCII trimers per dimeric core in the thylakoid membranes, meaning that the antenna size of PSII of C. reinhardtii is larger than that of plants.  相似文献   

17.
Drosophila photoreceptors are sensory neurons whose primary function is the transduction of photons into an electrical signal for forward transmission to the brain. Photoreceptors are polarized cells whose apical domain is organized into finger like projections of plasma membrane, microvilli that contain the molecular machinery required for sensory transduction. The development of this apical domain requires intense polarized membrane transport during development and it is maintained by post developmental membrane turnover. Sensory transduction in these cells involves a high rate of G-protein coupled phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2] hydrolysis ending with the activation of ion channels that are members of the TRP superfamily. Defects in this lipid-signaling cascade often result in retinal degeneration, which is a consequence of the loss of apical membrane homeostasis. In this review we discuss the various membrane transport challenges of photoreceptors and their regulation by ongoing lipid signaling cascades in these cells. This article is part of a Special Issue entitled Lipids and Vesicular Transport.  相似文献   

18.
Using a monoclonal antibody to the alternative oxidase from voodoo lily, we provide evidence that the green alga Chlamydomonas reinhardtii Dang, possesses a protein that is immunologically related to the higher plant alternative oxidase. Mitochondria were isolated from a cell wall-less mutant strain (CW-15), and the presence of cyanide-resistant oxygen consumption was confirmed in these mitochondria. The voodoo lily antibody was used as a probe for immunoblotting of sodium dodecyl sulphate-polyacrylamide gel electrophoresis gels of mitochondrial proteins of C. reinhardtii. The antibody reacted with a protein from C. reinhardtii with the same molecular mass (36 kDa) as the alternative oxidase from voodoo lily and tobacco mitochondria. These results suggest that cyanide-resistant respiration in C. reinhardtii is mediated by a higher plant-type alternative oxidase.  相似文献   

19.
Endogenous circadian rhythms allow living organisms to anticipate daily variations in their natural environment. Temperature regulation and entrainment mechanisms of circadian clocks are still poorly understood. To better understand the molecular basis of these processes, we built a mathematical model based on experimental data examining temperature regulation of the circadian RNA-binding protein CHLAMY1 from the unicellular green alga Chlamydomonas reinhardtii, simulating the effect of temperature on the rates by applying the Arrhenius equation. Using numerical simulations, we demonstrate that our model is temperature-compensated and can be entrained to temperature cycles of various length and amplitude. The range of periods that allow entrainment of the model depends on the shape of the temperature cycles and is larger for sinusoidal compared to rectangular temperature curves. We show that the response to temperature of protein (de)phosphorylation rates play a key role in facilitating temperature entrainment of the oscillator in Chlamydomonas reinhardtii. We systematically investigated the response of our model to single temperature pulses to explain experimentally observed phase response curves.  相似文献   

20.
Nanoparticles have unique properties that make them attractive for use in industrial and medical technology industries but can also be harmful to living organisms, making an understanding of their molecular mechanisms of action essential. We examined the effect of three different sized poly(isobutyl‐cyanoacrylate) nanoparticles (iBCA‐NPs) on the unicellular green alga Chlamydomonas reinhardtii. We found that exposure to iBCA‐NPs immediately caused C. reinhardtii to display abnormal swimming behaviors. Furthermore, after one hour, most of the cells had stopped swimming and 10%–30% of cells were stained with trypan blue, suggesting that these cells had severely impaired plasma membranes. Observation of the cyto‐ultrastructure showed that the cell walls had been severely damaged and that many iBCA‐NPs were located in the space between the cell wall and plasma membrane, as well as inside the cytosol in some cases. A comparison of three strains of C. reinhardtii with different cell wall conditions further showed that the cell mortality ratio increased more rapidly in the absence of a cell wall. Interestingly, cell mortality over time was essentially identical regardless of iBCA‐NP size if the total surface area was the same. Furthermore, direct observation of the trails of iBCA‐NPs indicated that the first trigger was their contact with the cell wall, which is most likely accompanied by the inactivation or removal of adsorbed proteins from the cell wall surface. Cell mortality was accompanied by the overproduction of reactive oxygen species, which was detected more readily in cells grown under constant light rather than in the dark.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号