共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants, being sessile organisms, are more exposed to the hazards of constantly changing environmental conditions globally. During the lifetime of a plant, the root system encounters various challenges such as obstacles, pathogens, high salinity, water logging, nutrient scarcity etc. The developmental plasticity of the root system provides brilliant adaptability to plants to counter the changes exerted by both external as well as internal cues and achieve an optimized growth status. Phytohormones are one of the major intrinsic factors regulating all aspects of plant growth and development both independently as well as through complex signal integrations at multiple levels. We have previously shown that glucose (Glc) and brassinosteroid (BR) signalings interact extensively to regulate lateral root (LR) development in Arabidopsis.1 Auxin efflux as well as influx and downstream signaling components are also involved in Glc-BR regulation of LR emergence. Here, we provide evidence for involvement of ethylene signaling machinery downstream to Glc and BR in regulation of LR emergence. 相似文献
2.
Plant growth and development is determined by intracellular and intercellular auxin gradients that are controlled at first hand by auxin efflux catalysts of the ABCB/PGP and PIN families. ABCB transport activity was shown to be counter-actively regulated by protein phosphorylation by the AGC protein kinase, PINOID (PID), that is coordinated by interaction with the immunophilin-like FKBP42, TWISTED DWARF1 (TWD1). In contrast, PID was shown to determine PIN polarity, however, the direct impact of PID on PIN activity has yet not been tested. Co-expression in yeast indicates that PID had no effect on PIN1,2 alone but specifically inhibits interactive ABCB1-PIN1/PIN2 auxin efflux in an action that is dependent on its kinase activity. PIN1-PID co-transfection in N. benthamiana revealed that PID blocks PIN1-mediated auxin efflux without changing PIN1 location. In summary, these data provide evidence that PID phosphorylation does not only determine PIN polarity but also has a direct impact on transport activity of the activity of the binary PIN-ABCB1 complex. 相似文献
3.
Some characteristics of the rice (Oryza sativa L.) root were found in the experiment of unilaterally irradiating the roots which were planted in water: (i) All the seminal roots, adventitious roots and their branched roots bent away from light, and their curvatures ranged from 25° to 60°. The curvature of adventitious root of the higher node was often larger than that of the lower node, and even larger than that of the seminal root, (ii) The negative phototropic bending of the rice root was mainly due to the larger growth increment of root-tip cells of the irradiated side compared with that of the shaded side, (iii) Root cap was the site of light perception. If root cap was shaded while the root was irradiated the root showed no negative phototropism, and the root lost the characteristic of negative phototropism when root cap was divested. Rice root could resume the characteristic of negative phototropism when the new root cap grew up, if the original cells of root cap were well protected while root cap was divested, (iv) The growth increment and curvature of rice root were both influenced by light intensity. Within the range of 0–100 μmol · m2 -s−1, the increasing of light intensity resulted in the decreasing of the growth increment and the increasing of the curvature of rice root, (v) The growth increment and the curvature reached the maximum at 30°C with the temperature treatment of 10–40°C. (vi) Blue-violet light could prominently induce the negative phototropism of rice root, while red light had no such effect. (vii) The auxin (IAA) in the solution, as a very prominent influencing factor, inhibited the growth, the negative phototropism and the gravitropism of rice root when the concentration of IAA increased. The response of negative phototropism of rice root disappeared when the concentration of IAA was above 10 mg · L−1 相似文献
4.
Negative phototropism of rice root and its influencing factors 总被引:8,自引:0,他引:8
Some characteristics of the rice (Oryza sativa L.) root were found in the experiment of unilaterally irradiating the roots which were planted in water: (i) All the seminal roots, adventitious roots and their branched roots bent away from light, and their curvatures ranged from 25℃ to 60℃. The curvature of adventitious root of the higher node was often larger than that of the lower node, and even larger than that of the seminal root. (ii) The negative phototropic bending of the rice root was mainly due to the larger growth increment of root-tip cells of the irradiated side compared with that of the shaded side, (iii) Root cap was the site of light perception. If root cap was shaded while the root was irradiated the root showed no negative phototropism, and the root lost the characteristic of negative phototropism when root cap was divested. Rice root could resume the characteristic of negative phototropism when the new root cap grew up, if the original cells of root cap were well protected while root ca 相似文献
5.
Aerial parts of plants curve towards the light (i.e. positive phototropism), and roots typically grow away from the light (i.e. negative phototropism). In addition, Arabidopsis roots exhibit positive phototropism relative to red light (RL), and this response is mediated by phytochromes A and B (phyA and phyB). Upon light stimulation, phyA and phyB interact with the phytochrome kinase substrate (PKS1) in the cytoplasm. In this study, we investigated the role of PKS1, along with phyA and phyB, in the positive phototropic responses to RL in roots. Using a high-resolution feedback system, we studied the phenotypic responses of roots of phyA, phyB, pks1, phyA pks1 and phyB pks1 null mutants as well as the PKS1-overexpressing line in response to RL. PKS1 emerged as an intermediary in the signalling pathways and appears to promote a negative curvature to RL in roots. In addition, phyA and phyB were both essential for a positive response to RL and act in a complementary fashion. However, either photoreceptor acting without the other results in negative curvature in response to red illumination so that the mode of action differs depending on whether phyA and phyB act independently or together. Our results suggest that PKS1 is part of a signalling pathway independent of phyA and phyB and that PKS1 modulates RL-based root phototropism. 相似文献
6.
The interaction between light and gravity is critical in determining the final form of a plant. For example, the competing
activities of gravitropism and phototropism can determine the final orientation of a stem or root. The results reported here
indicate that, in addition to the previously described blue-light-dependent negative phototropic response in roots, roots
of Arabidopsis thaliana (L.) Heynh. display a previously unknown red-light-dependent positive phototropic response. Both phototropic responses in
roots are considerably weaker than the graviresponse, which often masks phototropic curvature. However, through the use of
mutant strains with impaired gravitropism, we were able to identify a red-light-dependent positive phototropic response in
Arabidopsis roots. The red-induced positive phototropic response is considerably weaker than the blue-light response and is barely detectable
in plants with a normal gravitropic response.
Received: 22 May 2000 / Accepted: 3 July 2000 相似文献
7.
8.
9.
Phytotropins, even those not absorbing in the visible region of the spectrum, can induce a phototropic response in maize ( Zea mays L. cv. PX-75) roots when illuminated unilaterally with white light. The most active phytotropin, 2-(1-pyrenoyl) benzoic acid (PBA) can elicit a full response at 10 μ M , while the other active molecules, 2-carboxyphenyl-3-phenylpropane-1,3-dione (CPD), 2-carboxyphenyl-3-phenyl-1,2-pyrazole (CPP), 1-N-naphthylphthalamic acid (NPA) and erythrosin elicit a full response at 100 μ M . The less active phytotropins BBA and fluorescein give a reduced response. It is suggested that the observed effect cannot be explained solely on the basis of auxin transport inhibition. There is a photoreceptor in the extension zone of the root, which may be associated in some way with the receptor for NPA. The results are consistent with the proposal that the phototropic process may form part of the root gravitropic response mechanism. 相似文献
10.
11.
Blue-light-induced phototropism of maize (Zea mays L.) coleoptiles was studied with a view to kinetic models. Red-light-grown plants were used to eliminate complication arising from the activation by blue light of phytochrome-mediated phototropism. In the first part, mathematical models were developed to explain the phototropic fluence-response data, which were obtained for the responses induced by a single unilateral pulse (30 s) and those induced by a unilateral pulse (30 s) given immediately after a bilateral pulse (30 s, fixed fluences). These data showed bell-shaped fluence-response curves, characteristic of first positive curvature. Modelling began with the assumptions that the light gradient plays a fundamental role in phototropism and that the magnitude of the response is determined by the gradient, or the concentration difference, in a photoproduct between the irradiated and the shaded sides of the tissue. Minimal mathematical models were then derived, by defining chemical kinetics of the photoreaction and introducing the minimum of parameters needed to correlate the incident fluencerate to the functional fluence-rates within the tissue, the functional fluence-rate to the rate constant of the photoreaction, and the photoproduct concentration difference to the curvature response. The models were tested using a curve-fitting computer program. The model obtained by assigning first-order kinetics to the photoreaction failed to explain the fluence-response data, whereas application of second-order kinetics led to a successful fit of the model to the data. In the second part, temporal aspects of the photosystem were examined. Experimental results showed that a high-fluence bilateral pulse eliminated the bell-shaped fluence-response curve for an immediate unilateral pulse, and that the curve gradually reappeared as the time for unilateral stimulation elapsed after the bilateral pulse. The model based on a second-order photoreaction could be extended to explain the results, with assumed changes in two components: the concentration of the reactant for the photoproduct, and the light-sensitivity of the reaction. The reactant concentration, computed with the curvefitting program, showed a gradual increase from zero to a saturation level. This increase was then modelled in terms of regeneration of the reactant from the photoproduct, with an estimated first-order rate constant of about 0.001·s-1. The computed value for the constant reflecting the light-sensitivity showed a sharp decline after the high-fluence pulse, followed by a gradual return to the initial level. From these analytical results, the appearance of second positive curvature was predicted.Abbreviations FPC
first positive curvature
- SPC
second positive curvature
CIW-DPB publication No. 884 相似文献
12.
13.
Moritoshi Iino 《Planta》1988,176(2):183-188
The effects of pretreatments with red and blue light (RL, BL) on the fluence-response curve for the phototropism induced by a BL pulse (first positive curvature) were investigated with darkadapted maize (Zea mays L.) coleoptiles. A pulse of RL, giving a fluence sufficient to saturate phytochrome-mediated responses in this material, shifted the bell-shaped phototropic fluence-response curve to higher fluences and increased its peak height. A pulse of high-fluence BL given immediately prior to this RL treatment temporarily suppressed the phototropic fluence-response curve, and shifted the curve to higher fluences than induced by RL alone. The shift by BL progressed rapidly compared to that by RL. The results indicate (1) that first positive curvature is desensitized by both phytochrome and a BL system, (2) that desensitization by BL occurs with respect to both the maximal response and the quantum efficiency, and (3) that the desensitization responses mediated by phytochrome and the BL system can be induced simultaneously but develop following different kinetics. It is suggested that theses desensitization responses contribute to the induction of second positive curvature, a response induced by prolonged irradiation.Abbreviations BL
blue light
- RL
red light
CIW-DPB Publication No. 1001 相似文献
14.
Unilateral irradiation with red light (R) or blue light (BL) elicits positive curvature of the mesocotyl of maize (Zea mays L.) seedlings raised under R for 2 d from sowing and kept in the dark for 1 d prior to curvature induction. The fluenceresponse curve for R-induced mesocotyl curvature, obtained by measuring curvature 100 min after phototropic induction, shows peaks in two fluence ranges, designated first positive range (from the threshold to the trough), and second positive range (above the trough). The fluence-response curve for BL is similar to that for R but shifted two orders of magnitude to higher fluences. Blue light elicits the classical first positive curvature of the coleoptile, whereas this response is not found with R. Positive mesocotyl curvature induced by either R or BL is eliminated by R given from above just before the unilateral irradiation, whereas BL-induced coleoptile curvature is not eliminated. The above results collectively offer evidence that phototropic curvature of the mesocotyl is induced by R-sensitive photosystem(s). Mesocotyl curvature in the second positive range is reduced by vertical far-red light (FR) applied after phototropic induction with R, but is not affected by FR applied before R. Unilateral irradiation with FR following vertical irradiation with a high R fluence leads to negative curvature of the mesocotyl. It is concluded that mesocotyl curvature in the second positive range results from a gradient in the amount of the FR-absorbing form of phytochrome (Pfr) established across the plant axis. Mesocotyl curvature in the first positive range is inhibited by vertical FR given either before or after phototropic induction with R. Since the FR used here is likely to produce more Pfr than the very low fluences of R eliciting the mesocotyl curvature in the first positive range, it is assumed that FR reduces the response in this case by adding Pfr at both sides of the plant axis. By rotating seedlings on a clinostat with its axis horizontal, the kinetics of mesocotyl curvature can be studied in the absence of a counteracting gravitropic response. On the clinostat, the R-induced mesocotyl curvature develops after a lag, through two successive phases having different curvature rates, the late phase is slower than the early phase. Negative curvature of the coleoptile can be induced by either R or BL; the BL-induced negative curvature is found at fluences higher than those giving positive curvature. The clinostat experiments show that the negative coleoptile curvature induced by either R or BL is a gravitropic compensation for positive mesocotyl curvature.Abbreviations BL
blue light
- FR
far-red light
- Pfr
phytochrome in the far-red-absorbing form
- Pr
phytochrome in the red-absorbing form
- R
red light
C.I.W.-D.P.B. Publication No. 824 相似文献
15.
Control of hypocotyl phototropism by phytochrome in a dicotyledonous seedling (Sesamum indicum L.) 总被引:3,自引:3,他引:0
Abstract The phototropic response in stems of higher plants is brought about by blue/UV light. The problem studied here is to what extent long-wavelength light, which is absorbed by phytochrome, affects the phototropic response. A refined measurement of phototropism — a curvature index — was applied to the hypocotyl of the sesame seedling (Sesamum indicum L.). The time course of the phototropic response was followed in continuous unilateral weak blue light (B, 460 nm, 8 mW m?2). Long term red light (R) pretreatments, operating through phytochrome, strongly increase the rate and extent of the phototropic response once it is elicited by unilateral B, while the pretreatments decrease the sensitivity towards B. If a R pulse is given immediately prior to the onset of unilateral B, the rate of the response is strongly reduced compared to the time course of curvature observed when the pretreatment was terminated with a long wavelength far-red light (FR) pulse. R and FR were then applied simultaneously with unilateral B to manipulate the status of the phytochrome system during actual curvature. It was found that a low Pfr/P ratio (established by FR) stimulates the phototropic response far above the control (B alone), while a high Pfr/P ratio (established by R) reduces the response below the control. During bending a positive effect of phytochrome on the rate and extent of the phototropic response, which is saturated at a low level of Pfr, appears to be counteracted by an inhibitory effect which dominates at higher levels of Pfr, such as established by omnilateral R. However, if R is applied unilaterally from the same direction as B, R increases the rate of curvature. Apparently the sesame seedling is capable of detecting the direction of R relative to the direction of B. While a mechanistic explanation of these effects cannot be advanced at present, it is clear that the seedling is capable of super-imposing information about the actual light conditions during bending on a ‘memory’ of the light conditions prior to the onset of bending. Thus, the previous as well as the actual light conditions determine its phototropic responsiveness. 相似文献
16.
17.
A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis 总被引:11,自引:0,他引:11
Anthony RG Henriques R Helfer A Mészáros T Rios G Testerink C Munnik T Deák M Koncz C Bögre L 《The EMBO journal》2004,23(3):572-581
Here we report on a lipid-signalling pathway in plants that is downstream of phosphatidic acid and involves the Arabidopsis protein kinase, AGC2-1, regulated by the 3'-phosphoinositide-dependent kinase-1 (AtPDK1). AGC2-1 specifically interacts with AtPDK1 through a conserved C-terminal hydrophobic motif that leads to its phosphorylation and activation, whereas inhibition of AtPDK1 expression by RNA interference abolishes AGC2-1 activity. Phosphatidic acid specifically binds to AtPDK1 and stimulates AGC2-1 in an AtPDK1-dependent manner. AtPDK1 is ubiquitously expressed in all plant tissues, whereas expression of AGC2-1 is abundant in fast-growing organs and dividing cells, and activated during re-entry of cells into the cell cycle after sugar starvation-induced G1-phase arrest. Plant hormones, auxin and cytokinin, synergistically activate the AtPDK1-regulated AGC2-1 kinase, indicative of a role in growth and cell division. Cellular localisation of GFP-AGC2-1 fusion protein is highly dynamic in root hairs and at some stages confined to root hair tips and to nuclei. The agc2-1 knockout mutation results in a reduction of root hair length, suggesting a role for AGC2-1 in root hair growth and development. 相似文献
18.
An apparatus has been devised to measure the irradiance falling on a central point from each of 48 points of the compass. The apparatus has been used to estimate the magnitude and spatial distribution of light gradients in a variety of situations which are known to cause phototropism.
Measurements show that the typical laboratory treatments used to induce phototropism produce extreme light gradients which are not typical of the light gradients likely to be experienced by seedlings growing in the natural environment. Diffuse light which is always present in the natural environment, ensures that all flanks of seedlings will be subject to potentially physiologically significant light stimulation. Such findings need to be taken into account when devising and testing models of phototropic detection in plants. 相似文献
Measurements show that the typical laboratory treatments used to induce phototropism produce extreme light gradients which are not typical of the light gradients likely to be experienced by seedlings growing in the natural environment. Diffuse light which is always present in the natural environment, ensures that all flanks of seedlings will be subject to potentially physiologically significant light stimulation. Such findings need to be taken into account when devising and testing models of phototropic detection in plants. 相似文献
19.
Nollen EA Brunsting JF Song J Kampinga HH Morimoto RI 《Molecular and cellular biology》2000,20(3):1083-1088
Studies on the Hsp70 chaperone machine in eukaryotes have shown that Hsp70 and Hsp40/Hdj1 family proteins are sufficient to prevent protein misfolding and aggregation and to promote refolding of denatured polypeptides. Additional protein cofactors include Hip and Bag1, identified in protein interaction assays, which bind to and modulate Hsp70 chaperone activity in vitro. Bag1, originally identified as an antiapoptotic protein, forms a stoichiometric complex with Hsp70 and inhibits completely Hsp70-dependent in vitro protein refolding of an unfolded polypeptide. Given its proposed involvement in multiple cell signaling events as a regulator of Raf1, Bcl2, or androgen receptor, we wondered whether Bag1 functions in vivo as a negative regulator of Hsp70. In this study, we demonstrate that Bag1, expressed in mammalian tissue culture cells, has pronounced effects on one of the principal activities of Hsp70, as a molecular chaperone essential for stabilization and refolding of a thermally inactivated protein. The levels of Hsp70 and Bag1 were modulated either by transient transfection or conditional expression in stably transfected lines to achieve levels within the range detected in different mammalian tissue culture cell lines. For example, a twofold increase in the concentration of Bag1 reduced Hsp70-dependent refolding of denatured luciferase by a factor of 2. This effect was titratable, and higher levels of wild-type but not a mutant form of Bag1 further inhibited Hsp70 refolding by up to a factor of 5. The negative effects of Bag1 were also observed in a biochemical analysis of Bag1- or Hsp70-overexpressing cells. The ability of Hsp70 to maintain thermally denatured firefly luciferase in a soluble state was reversed by Bag1, thus providing an explanation for the in vivo chaperone-inhibitory effects of Bag1. Similar effects on Hsp70 were observed with other cytoplasmic isoforms of Bag1 which have in common the carboxyl-terminal Hsp70-binding domain and differ by variable-length amino-terminal extensions. These results provide the first formal evidence that Bag1 functions in vivo as a regulator of Hsp70 and suggest an intriguing complexity for Hsp70-regulatory events. 相似文献
20.
Mast cells are known to play a pivotal role in allergic diseases such as allergic rhinitis, asthma, and atopic dermatitis by releasing granules containing histamine, LTC4, and other preformed chemical mediators. Previous reports have demonstrated that IKK2 (also called IKKβ), a central intracellular component of NF-κB activation pathways, plays a critical role in IgE-mediated degranulation of mast cells and anaphylaxis in mice. In this study, we show that protein levels of tumor suppressor p53 are up-regulated upon IgE-mediated activation in mast cells and lack of p53 results in enhanced responses in both early and late phase anaphylaxis. p53 inhibits not only the catalytic activity of IKK2 presumably through the modulation of glycosylation but also p65 (RelA)-mediated transactivation. Our findings are the first to demonstrate that p53 functions as a negative regulator in mast cells. 相似文献