首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Babenko V  Harada T  Yagi H  Goto Y  Kuroda R  Dzwolak W 《Chirality》2011,23(8):638-646
Hydrodynamic forces are capable of inducing structural order in dispersed solid phases, and of causing symmetry-breaking when chiral crystals precipitate from an achiral liquid phase. Until it was observed upon vortex-assisted fibrillation of insulin, such behavior had been thought to be confined to few unbiological systems. In this paper we are discussing chiroptical properties of two chiral variants of insulin amyloid, termed +ICD and -ICD, which form during the process of chiral bifurcation in vortexed solutions of aggregating insulin. As conventional measurements of circular dichroism of solid, anisotropic substances are particularly vulnerable to overlapping influences of linear birefringence and linear dichroism, we have employed complementary tools including dedicated universal chiroptical spectrophotometer to rule out such artifacts. We propose that the strong chiroptical properties of +ICD and -ICD insulin fibrils are an aspect of genuine superstructural chirality of amyloid fibrils and of powerful excitonic couplings taking place within them. A comparison of thioflavin T complexes with fibrils formed by insulin and polyglutamic acid suggests that the extrinsic Cotton effect stemming from the level of single twisted dye molecules is weaker, although diagnostically useful, and cannot account for the overall magnitude of ICD of the dye bound to ±ICD insulin amyloid.  相似文献   

2.
We have investigated the chemical modification of insulin under conditions that promote the conversion of the soluble protein into amyloid fibrils. The modifications that are incorporated into the fibrils include deamidation of Asn A21, Asn B3, and Gln B4. In order to prepare fibrils with minimal deamidation of these residues, the kinetics of aggregation were accelerated by seeding with aliquots of a solution containing preformed fibrils. The resulting fibrils were then reincubated to determine the extent to which chemical modification occurs in the fibril itself. The deamidation of Asn A21 in particular could be followed in detail. Deamidation of this residue in the fibrillar form of insulin was found to occur in only 52 +/- 5% of molecules. This result indicates that there are at least two different packing environments of insulin molecules in the fibrils and suggests that the characterization of chemical modifications may be a useful probe of the environment of polypeptide chains within amyloid fibrils.  相似文献   

3.
The formation of amyloid aggregates in tissue is a pathological feature of many neurodegenerative diseases and type II diabetes. Amyloid deposition, the process of amyloid growth by the association of individual soluble amyloid molecules with a pre-existing amyloid template (i.e., plaque), is known to be critical for amyloid formation in vivo. The requirement for a natural amyloid template, however, has made amyloid deposition study difficult and cumbersome. In the present work, we developed a novel, synthetic amyloid template by attaching amyloid seeds covalently onto an N-hydroxysuccinimide-activated surface, where insulin was chosen as a model amyloidogenic protein. According to ex situ atomic force microscopy observations, insulin monomers in solution were deposited onto the synthetic amyloid template to form fibrils, like hair growth. The fibril formation on the template occurred without lag time, and its rate was highly accelerated than in the solution. The fibrils were long, over 2 mum, and much thinner than those in the solution, which was caused by limited nucleation sites on the template surface and lack of lateral twisting between fibrils. According to our investigations using thioflavin T-induced fluorescence, birefringent Congo red binding, and circular dichroism, fibrils grown on the template were identified to be amyloids that formed through a conformational rearrangement of insulin monomers upon interaction with the template. The amyloid deposition rate followed saturation kinetics with respect to insulin concentration in the solution. The characteristics of amyloid deposition on the synthetic template were in agreement with previous studies performed with human amyloid plaques. It is demonstrated that the synthetic amyloid template can be used for the screening of inhibitors on amyloid deposition in vitro.  相似文献   

4.
Analysis of insulin amyloid fibrils by Raman spectroscopy   总被引:1,自引:1,他引:0  
The formation of amyloid fibrils from insulin is investigated using drop-coating-deposition-Raman (DCDR) difference spectroscopy and atomic force microscopy (AFM). Fibrils formed using various co-solvents and heating cycles are found to induce the appearance of Raman difference peaks in the amide I (approximately 1675 cm(-1)), amide III (approximately 1220 cm(-1)), and peptide backbone (approximately 1010 cm(-1)), consistent with an increase in beta-sheet content. Comparisons of results obtained from fibrils in either H2O or D2O suggest that the NH/ND stretch bands (at approximately 3300 cm(-1)/ approximately 2400 cm(-1)) are also enhanced in intensity upon fibril formation. If there is any water trapped in the core of the fibrils its OH/OD Raman intensity is too small to be detected in the presence of the stronger NH/ND bands which appear in the same region. AFM is used to confirm the formation of fibrils of about 5 nm diameter (and various lengths).  相似文献   

5.
Insulin, a 51-residue protein universally used in diabetes treatment, is known to produce amyloid fibrils at high temperature and acidic conditions. As for other amyloidogenic proteins, the mechanisms leading to nucleation and growth of insulin fibrils are still poorly understood. We here report a study of the fibrillation process for insulin confined in a suitable polymeric hydrogel, with the aim of ascertain the effects of a reduced protein mobility on the various phases of the process. The results indicate that, with respect to standard aqueous solutions, the fibrillation process is considerably slowed down at moderately high concentrations and entirely suppressed at low concentration. Moreover, the analysis of the initial stages of the fibrillation process in aqueous solutions revealed a large spatial heterogeneity, which is completely absent when the fibrillation is carried out in the hydrogel. We attribute this heterogeneity to the diffusion in solution of large amyloidal aggregates, which must be formed very fast compared to the average times for the whole sample. These findings are interpreted in the framework of recently suggested heterogeneous nucleation mechanisms. Moreover, they may be useful for the development of new insulin pharmaceutical formulations, more stable against adverse conditions.  相似文献   

6.
Today, the investigation of the structure of ordered protein aggregates-amyloid fibrils, the influence of the native structure of the protein and the external conditions on the process of fibrillation-is the subject of intense investigations. The aim of the present work is to study the kinetics of formation of insulin amyloid fibrils at low pH values (conditions that are used at many stages of the isolation and purification of the protein) using the fluorescent probe thioflavin T. It is shown that the increase of the fluorescence intensity of ThT during the formation of amyloid fibrils is described by a sigmoidal curve, in which three areas can be distinguished: the lag phase, growth, and a plateau, which characterize the various stages of fibril formation. Despite the variation in the length of the lag phase at the same experimental conditions (pH and temperature), it is seen to drop during solution stirring and seeding. Data obtained by electron microscopy showed that the formed fibrils are long, linear filaments ~20 nm in diameter. With increasing incubation time, the fibril diameter does not change, while the length increases to 2–3 μm, which is accompanied by a significant increase in the number of fibril aggregates. All the experimental data show that, irrespective of the kinetics of formation of amyloid fibrils, their properties after the completion of the fibrillation process are identical. The results of this work, together with the previous studies of insulin amyloid fibrils, may be important for clarification the mechanism of their formation, as well as for the treatment of amyloidosis associated with the aggregation of insulin.  相似文献   

7.
Binding mode of Thioflavin T in insulin amyloid fibrils   总被引:1,自引:1,他引:0  
Amyloid fibrils share various common structural features and their presence can be detected by Thioflavin T (ThT). In this paper, the binding mode of ThT to insulin amyloid fibrils was examined. Scatchard analysis and isothermal titration calorimetry (ITC) showed at least two binding site populations. The binding site population with the strongest binding was responsible for the characteristic ThT fluorescence. This binding had a capacity of about 0.1 moles of ThT bound per mole of insulin in fibril form. The binding capacity was unaffected by pH, but the affinity was lowest at low pH. Notably, presence of a third binding process prior to the other processes was suggested by ITC. Binding of ThT resulted in only minor changes in the fibril structure according to the X-ray diffraction patterns, where a slightly more dominant equatorial reflection at 16A relative to the intersheet distance of 11A was observed. No change in the interstrand distance of 4.8A was observed. On the basis of our results, we propose that ThT binds in cavities running parallel to the fibril axis, e.g., between the protofilaments forming the fibrils. Such cavities have been proposed previously in insulin fibrils and several other amyloid fibril models.  相似文献   

8.
The crystal structure of despentapeptide insulin, a monomeric insulin, has been refined at 1.3 Å spacing and subsequently used to predict and model the organization in the insulin fibril. The model makes use of the contacts in the densely packed despentapeptide insulin crystal, and takes into account other experimental evidence, including binding studies with Congo red. The dimensions of this model fibril correspond well with those measured experimentally, and the monomer–monomer contacts within the fibril are in accordance with the known physical chemistry of insulin fibrils. Using this model, it may be possible to predict mutations in insulin that might alleviate problems associated with fibril formation during insulin therapy. © 1997 Wiley-Liss Inc.  相似文献   

9.
Growing interest and research efforts have recently been focused on elucidating the molecular mechanism of amyloid formation and the screening of effective inhibitors to interrupt amyloid structures. In the present study, the anti-amyloidogenic effects of quercetin were investigated in vitro using bovine insulin as a model protein. The results demonstrated that quercetin dose-dependently inhibited amyloid formation of insulin. Moreover, quercetin destabilized the preformed insulin fibrils and transformed the fibrils into amorphous aggregates. Hemolysis was observed when human erythrocytes were co-incubated with insulin fibrils. Quercetin inhibited fibril-induced hemolysis in a dose-dependent manner. SDS–PAGE showed that insulin fibrils induced the aggregation of cytoskeletal proteins of erythrocyte membranes and that quercetin attenuated this fibril-induced cytoskeletal aggregation. The results of the present work suggest that quercetin may serve as a lead structure for the design of novel anti-amyloidogenic drugs.  相似文献   

10.
Amyloid fibrils are β-sheet-rich protein aggregates commonly found in the organs and tissues of patients with various amyloid-associated diseases. Understanding the structural organization of amyloid fibrils can be beneficial for the search of drugs to successfully treat diseases associated with protein misfolding. The structure of insulin fibrils was characterized by deep ultraviolet resonance Raman (DUVRR) and Nuclear Magnetic Resonance (NMR) spectroscopy combined with hydrogen-deuterium exchange. The compositions of the fibril core and unordered parts were determined at single amino acid residue resolution. All three disulfide bonds of native insulin remained intact during the aggregation process, withstanding scrambling. Three out of four tyrosine residues were packed into the fibril core, and another aromatic amino acid, phenylalanine, was located in the unordered parts of insulin fibrils. In addition, using all-atom MD simulations, the disulfide bonds were confirmed to remain intact in the insulin dimer, which mimics the fibrillar form of insulin.  相似文献   

11.
12.
A nanoindentation approach based on atomic force microscopy was applied to test the elastic properties of insulin amyloid fibrils. Fibrils exhibited a nearly elastic response to the compressive load. The results, corrected for the finite sample thickness effect, reveal that the fibril Young's modulus is considerably lower than the modulus of protein crystals, suggesting lower packing density in amyloid fibrils. Variation in elasticity among and within fibrils has been studied, showing that the Young's moduli of insulin fibrils have a relatively wide distribution of values, ranging from 5 to 50 MPa. Amyloid fibrils with higher modulus were found to be more wear-resistant during AFM scanning. The measured distribution of elasticity values of different fibrils together with wear-resistance tests indicates structural heterogeneity among fibrils, whereas the structure of individual fibrils appears to be homogeneous. The relative simplicity of the method used in this study can facilitate rapid collection of quantitative information related to the packing density and heterogeneity of fibrils formed by different proteins.  相似文献   

13.
Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD), and electron microscopy (EM) have been used simultaneously to follow the temperature-induced formation of amyloid fibrils by bovine insulin at acidic pH. The FTIR and CD data confirm that, before heating, insulin molecules in solution at pH 2.3 have a predominantly native-like alpha-helical structure. On heating to 70 degrees C, partial unfolding occurs and results initially in aggregates that are shown by CD and FT-IR spectra to retain a predominantly helical structure. Following this step, changes in the CD and FTIR spectra occur that are indicative of the extensive conversion of the molecular conformation from alpha-helical to beta-sheet structure. At later stages, EM shows the development of fibrils with well-defined repetitive morphologies including structures with a periodic helical twist of approximately 450 A. The results indicate that formation of fibrils by insulin requires substantial unfolding of the native protein, and that the most highly ordered structures result from a slow evolution of the morphology of the initially formed fibrillar species.  相似文献   

14.
A technique was developed for studying the nucleation and growth of fibrillar protein aggregates. Fourier transform infrared and attenuated total reflection spectroscopy were used to measure changes in the intermolecular beta-sheet content of bovine pancreatic insulin in bulk solution and on model polystyrene (PS) surfaces at pH 1. The kinetics of beta-sheet formation were shown to evolve in two stages. Combined Fourier transform infrared, dynamic light scattering, atomic force microscopy, and thioflavin-T fluorescence measurements confirmed that the first stage in the kinetics was related to the formation of nonfibrillar aggregates that have a radius of 13 +/- 1 nm. The second stage was found to be associated with the growth of insulin fibrils. The beta-sheet kinetics in this second stage were used to determine the nucleation and growth rates of fibrils over a range of temperatures between 60 degrees C and 80 degrees C. The nucleation and growth rates were shown to display Arrhenius kinetics, and the associated energy barriers were extracted for fibrils formed in bulk solution and at PS surfaces. These experiments showed that fibrils are nucleated more quickly in the presence of hydrophobic PS surfaces but that the corresponding fibril growth rates decrease. These observations are interpreted in terms of the differences in the attempt frequencies and energy barriers associated with the nucleation and growth of fibrils. They are also discussed in the context of differences in protein concentration, mobility, and conformational and colloidal stability that exist between insulin molecules in bulk solution and those that are localized at hydrophobic PS interfaces.  相似文献   

15.
The solvent protection of the amide backbone in bovine insulin fibrils was studied by FT-IR spectroscopy. In the mature fibrils, approximately 85 +/- 2% of amide protons are protected. Of those "trapped" protons, a further 25 +/- 2 or 35 +/- 2% is H-D exchanged after incubation for 1 h at 1 GPa and 25 degrees C or 0.1 MPa and 100 degrees C, respectively. In contrast to the native or unfolded protein, fibrils do not H-D exchange upon incubation at 65 degrees C. A complete deuteration of H(2)O-grown fibrils occurs when the beta-sheet structure is reassembled in a 75 wt % DMSO/D(2)O solution. Our findings suggest a densely packed environment around the amide protons involved in the intermolecular beta-sheet motive. In disagreement with the concept of "amyloid fibers as water-filled nanotubes" [Perutz, M. F., et al. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 5591-5595], elution of D(2)O-grown fibrils with H(2)O is complete, which is reflected by the vanishing of D(2)O bending vibrations at 1214 cm(-)(1). This implies the absence of "trapped water" within insulin fibrils. The rigid conformations of the native and fibrillar insulin contrast with transient intermediate states docking at the fibrils' ends. Room-temperature seeding is accompanied by an accelerated H-D exchange in insulin molecules in the act of docking and integrating with the seeds, proving that the profound structural disruption is the sine qua non of forming an aggregation-competent conformation.  相似文献   

16.
Amyloid fibrils     
《朊病毒》2013,7(3):112-117
Amyloid refers to the abnormal fibrous, extracellular, proteinaceous deposits found in organs and tissues. Amyloid is insoluble and is structurally dominated by β?sheet structure. Unlike other fibrous proteins it does not commonly have a structural, supportive or motility role but is associated with the pathology seen in a range of diseases known as the amyloidoses. These diseases include Alzheimer’s, the spongiform encephalopathies and type II diabetes, all of which are progressive disorders with associated high morbidity and mortality. Not surprisingly, research into the physicochemical properties of amyloid and its formation is currently intensely pursued. In this work we will highlight the key scientific findings and discuss how the stability of amyloid fibrils impacts on bionanotechnology.  相似文献   

17.
Amyloid fibrils     
  相似文献   

18.
Spiroplasmas contain long flexuous fibrils composed of a protein, molecular weight 55,000, which is specific to Spiroplasma and is highly conserved among different species. The protein cannot be detected in other wall-less prokaryotes reported to contain actin-like proteins and is unrelated to eukaryotic cytoskeletal components. Fibrils occur in similar concentrations in helical and nonhelical strains of Spiroplasma citri. Proposals that fibrils are responsible for maintenance of helical cell shape and rotary motility are discussed in the light of these findings. Evidence is presented which suggests that fibrils may be arrayed as one or more bundles in intact cells and a consistent association of these structures with DNA filaments is noted. These observations are discussed in relation to possible models to account for the maintenance of helical morphology and to the segregation of chromosomes during cell division.  相似文献   

19.
Building collagen molecules,fibrils, and suprafibrillar structures   总被引:8,自引:0,他引:8  
Fibril-forming collagens are synthesized in precursor form, procollagens, with N- and C-terminal propeptide extensions. The C-propeptides direct chain association during intracellular assembly of the procollagen molecule from its three constituent polypeptide chains. Following or during secretion into the extracellular matrix, propeptides are cleaved by specific procollagen proteinases, thereby triggering fibril formation. The recent determination of the low-resolution structure of the C-propeptide trimer gives insights into the mechanism of procollagen chain association. In the extracellular matrix, the procollagen C-propeptides ensure procollagen solubility, while persistence of the N-propeptides controls fibril shape. Mechanisms for the control of fibril diameter are reviewed in terms of the radial packing model for collagen fibril structure. Finally, procollagen molecules have recently been shown to undergo liquid crystalline ordering in solution, prior to fibril assembly. This may provide an explanation for the liquid crystal-like suprafibrillar architectures of different connective tissues.  相似文献   

20.
In experiments designed to characterize the basis of amyloid fibril stability through mutational analysis of the Abeta (1-40) molecule, fibrils exhibit consistent, significant structural malleability. In these results, and in other properties, amyloid fibrils appear to more resemble plastic materials generated from synthetic polymers than globular proteins. Thus, like synthetic polymers and plastics, amyloid fibrils exhibit both polymorphism, the ability of one polypeptide to form aggregates of different morphologies, and isomorphism, the ability of different polypeptides to grow into a fibrillar amyloid morphology. This view links amyloid with the prehistorical and 20th century use of proteins as starting materials to make films, fibers, and plastics, and with the classic protein fiber stretching experiments of the Astbury group. Viewing amyloids from the point of view of the polymer chemist may shed new light on a number of issues, such as the role of protofibrils in the mechanism of amyloid formation, the biological potency of fibrils, and the prospects for discovering inhibitors of amyloid fibril formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号