首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Controversies remain over the relationships among several of the marsupial families and between the three major extant lineages of mammals: Eutheria (placentals), Metatheria (marsupials), and Prototheria (monotremes). Two opposing hypotheses place the marsupials as either sister to the placental mammals (Theria hypothesis) or sister to the monotremes (Palimpsest or Marsupionta hypothesis). A nuclear gene that has proved useful for analyzing phylogenies of vertebrates is the recombination activation gene-1 (RAG1). RAG1 is a highly conserved gene in vertebrates and likely entered the genome by horizontal transfer early in the evolution of jawed vertebrates. Phylogenetic analyses were performed on RAG1 sequences from seven placentals, 28 marsupials, and all three living monotreme species. Phylogenetic analyses of RAG1 sequences support many of the traditional relationships among the marsupials and suggest a relationship between bandicoots (order Peramelina) and the marsupial mole (order Notoryctemorphia), two lineages whose position in the phylogenetic tree has been enigmatic. A sister relationship between South American shrew opossums (order Paucituberculata) and all other living marsupial orders is also suggested by RAG1. The relationship between the three major groups of mammals is consistent with the Theria hypothesis, with the monotremes as the sister group to a clade containing marsupials and placentals.  相似文献   

2.
Although the family Sciuridae is large and well known, phylogenetic analyses are scarce. We report on a comprehensive molecular phylogeny for the family. Two nuclear genes (c-myc and RAG1) comprising approximately 4500 bp of data (most in exons) are applied for the first time to rodent phylogenetics. Parsimony, likelihood, and Bayesian analyses of the separate gene regions and combined data reveal five major lineages and refute the conventional elevation of the flying squirrels (Pteromyinae) to subfamily status. Instead, flying squirrels are derived from one of the tree squirrel lineages. C-myc indels corroborate the sequence-based topologies. The common ancestor of extant squirrels appears to have been arboreal, confirming the fossil evidence. The results also reveal an unexpected clade of mostly terrestrial squirrels with African and Holarctic centers of diversity. We present a revised classification of squirrels. Our results demonstrate the phylogenetic utility of relatively slowly evolving nuclear exonic data even for relatively recent clades.  相似文献   

3.
Turtles have highly specialized morphological characteristics, and their phylogenetic position has been under intensive debate. Previous molecular studies have not established a consistent and statistically well supported conclusion on this issue. In order to address this, complete mitochondrial DNA sequences were determined for the green turtle and the blue-tailed mole skink. These genomes possess an organization of genes which is typical of most other vertebrates, such as placental mammals, a frog, and bony fishes, but distinct from organizations of alligators and snakes. Molecular evolutionary rates of mitochondrial protein sequences appear to vary considerably among major reptilian lineages, with relatively rapid rates for snake and crocodilian lineages but slow rates for turtle and lizard lineages. In spite of this rate heterogeneity, phylogenetic analyses using amino acid sequences of 12 mitochondrial proteins reliably established the Archosauria (birds and crocodilians) and Lepidosauria (lizards and snakes) clades postulated from previous morphological studies. The phylogenetic analyses further suggested that turtles are a sister group of the archosaurs, and this untraditional relationship was provided with strong statistical evidence by both the bootstrap and the Kishino-Hasegawa tests. This is the first statistically significant molecular phylogeny on the placement of turtles relative to the archosaurs and lepidosaurs. It is therefore likely that turtles originated from a Permian-Triassic archosauromorph ancestor with two pairs of temporal fenestrae behind the skull orbit that were subsequently lost. The traditional classification of turtles in the Anapsida may thus need to be reconsidered.  相似文献   

4.
The phylogenetic relationships among major eukaryotic protist lineages are largely uncertain. Two significant obstacles in reconstructing eukaryotic phylogeny are long-branch attraction (LBA) effects and poor taxon sampling of free-living protists. We have obtained and analyzed gene sequences encoding the largest subunit of RNA Polymerase II (RPB1) from Naegleria gruberi (a heterolobosean), Cercomonas ATCC 50319 (a cercozoan), and Ochromonas danica (a heterokont); we have also analyzed the RPB1 gene from the nucleomorph (nm) genome of Guillardia theta (a cryptomonad). Using a variety of phylogenetic methods our analysis shows that RPB1s from Giardia intestinalis and Trichomonas vaginalis are probably subject to intense LBA effects. Thus, the deep branching of these taxa on RPB1 trees is questionable and should not be interpreted as evidence favoring their early divergence. Similar effects are discernable, to a lesser extent, with the Mastigamoeba invertens RPB1 sequence. Upon removal of the outgroup and these problematic sequences, analyses of the remaining RPB1s indicate some resolution among major eukaryotic groups. The most robustly supported higher-level clades are the opisthokonts (animals plus fungi) and the red algae plus the cryptomonad nm-the latter result gives added support to the red algal origin of cryptomonad chloroplasts. Clades comprising Dictyostelium discoideum plus Acanthamoeba castellanii (Amoebozoa) and Ochromonas plus Plasmodium falciparum (chromalveolates) are consistently observed and moderately supported. The clades supported by our RPB1 analyses are congruent with other data, suggesting that bona fide phylogenetic relationships are being resolved. Thus, the RPB1 gene has apparently retained some phylogenetically meaningful signal, making it worthwhile to obtain sequences from more diverse protist taxa. Additional RPB1 data, especially in combination with other genes, should provide further resolution of branching orders among protist groups within the apparently rapid early divergence of eukaryotes.  相似文献   

5.
Over 200 described endemic species make up the adaptive radiation of cichlids in Lake Tanga-nyika. This species assemblage has been viewed as both an evolutionary reservoir of old cichlid lineages and an evolutionary hotspot from which the modern cichlid lineages arose, seeding the adaptive radiations in Lakes Victoria and Malawi. Here we report on a phylogenetic analysis of Lake Tanganyika cichlids combining the previously determined sequences of the mitochondrial ND2 gene (1047 bp) with newly derived sequences of the nuclear RAG1 gene (∼700 bp of intron 2 and ∼1100 bp of exon 3). The nuclear data—in agreement with mitochondrial DNA—suggest that Lake Tanganyika harbors several ancient lineages that did not undergo rampant speciation (e.g., Bathybatini, Trematocarini). We find strong support for the monophyly of the most species-rich Tanganyikan group, the Lamprologini, and we propose a new taxonomic group that we term the C-lineage. The Haplochromini and Tropheini both have an 11-bp deletion in the intron of RAG1, strongly supporting the monophyly of this clade and its derived position. Mapping the phylogenetically informative positions revealed that, for certain branches, there are six times fewer apomorphies in RAG1. However, the consistency index of these positions is higher compared to the mitochondrial ND2 gene. Nuclear data therefore provide, on a per–base pair basis, less but more reliable phylogenetic information. Even if in our case RAG1 has not provided as much phylogenetic information as we expected, we suggest that this marker might be useful in the resolution of the phylogeny of older groups. Reviewing Editor: Dr. Rafael Zardoya  相似文献   

6.
Nemacheilidae, in the superfamily Cobitoidea, is comprised of many of morphologically similar fish species that occur in Eurasian water bodies. This large group shows inconsistencies between traditional morphological taxonomy and molecular phylogenetic data. We used mitochondrial genomes, recombinase‐activating gene proteins 1 (RAG1) and the mitochondrial cytochrome c oxidase I gene (COI) to study the phylogenetic relationships among Nemacheilidae species using Bayesian inference and maximum likelihood approaches. Phylogenetic analyses based on mitogenomes provided support for two clades (I and II). The mitogenomes, RAG1, and COI results indicated that several species and genera were not consistent with the traditional morphological subdivisions. The two clades inferred from mitogenomes showed clear geographical patterns. The Tibetan Plateau, Hengduan Mountains, and the Iran Plateau may act as a barrier dividing the clades. The estimated timing of clades separation (36.05 million years ago) coincides with the first uplift of the Tibetan Plateau. We conclude that the geological history of the Tibetan Plateau played a role in the diversification and distribution of the Nemacheilidae taxa. These results provided a phylogenetic framework for future studies of this complex group.  相似文献   

7.
The Caesalpinieae grade (Leguminosae) forms a morphologically and ecologically diverse group of mostly tropical tree species with a complex evolutionary history. This grade comprises several distinct lineages, but the exact delimitation of the group relative to subfamily Mimosoideae and other members of subfamily Caesalpinioideae, as well as phylogenetic relationships among the lineages are uncertain. With the aim of better resolving phylogenetic relationships within the Caesalpinieae grade, we investigated the utility of several nuclear markers developed from genomic studies in the Papilionoideae. We cloned and sequenced the low copy nuclear gene sucrose synthase (SUSY) and combined the data with plastid trnL and matK sequences. SUSY has two paralogs in the Caesalpinieae grade and in the Mimosoideae, but occurs as a single copy in all other legumes tested. Bayesian and maximum likelihood phylogenetic analyses suggest the two nuclear markers are congruent with plastid DNA data. The Caesalpinieae grade is divided into four well-supported clades (Cassia, Caesalpinia, Tachigali and Peltophorum clades), a poorly supported clade of Dimorphandra Group genera, and two paraphyletic groups, one with other Dimorphandra Group genera and the other comprising genera previously recognized as the Umtiza clade. A selection analysis of the paralogs, using selection models from PAML, suggests that SUSY genes are subjected to a purifying selection. One of the SUSY paralogs, under slightly stronger positive selection, may be undergoing subfunctionalization. The low copy SUSY gene is useful for phylogeny reconstruction in the Caesalpinieae despite the presence of duplicate copies. This study confirms that the Caesalpinieae grade is an artificial group, and highlights the need for further analyses of lineages at the base of the Mimosoideae.  相似文献   

8.
Reyes A  Pesole G  Saccone C 《Gene》2000,259(1-2):177-187
The phylogenetic relationships among major lineages of rodents is one of the issues most debated by both paleontologists and molecular biologists. In the present study, we have analyzed all complete mammalian mitochondrial genomes available in the databases, including five rodent species (rat, mouse, dormouse, squirrel and guinea-pig). Phylogenetic analyses were performed on H-strand amino acid sequences by means of maximum-likelihood and on H-strand protein-coding and ribosomal genes by means of distance methods. Also, log-likelihood ratio tests were applied to different tree topologies under the assumption of rodent monophyly, paraphyly or polyphyly. The analyses significantly rejected rodent monophyly and showed the existence of two differentiated clades, one containing non-murids (dormouse, squirrel and guinea-pig) and the other containing murids (rat and mouse). Long-branch attraction between murids and the outgroups could not be responsible for the existence of two different rodent clades, as no significant differences in evolutionary rate have been observed, except in the case of the squirrel, which shows a lower rate. The impact of among-site rate variation models on the phylogeny of rodents has been evaluated using the gamma distribution model. Results have shown that relationships among rodents remained unchanged, and the general topology of the tree was not affected, even though some branches were not properly resolved, most likely due to a lack of fit between estimated and real rate heterogeneity parameters.  相似文献   

9.
Studies that have explored the origins of patterns of community structure from a phylogenetic perspective have generally found either convergence (similarity) in community structure between regions through adaptive evolution or lack of convergence (dissimilarity) due to phylogenetic conservatism in the divergent ecological characteristics of lineages inhabiting different regions. We used a phylogenetic approach to document a third pattern in the structure of emydid turtle communities. Emydid communities in southeastern North America tend to have a higher proportion of aquatic species than those in the northeast. This pattern reflects phylogenetic conservatism in the ecology and biogeography of two basal emydid clades, limiting convergence in community structure between these regions. However, differences in community structure between northeastern and southeastern North America have also been homogenized considerably by the dispersal of species with phylogenetically conserved ecological characteristics between regions. This pattern of ecologically conservative dispersal may be important in many continental and oceanic systems.  相似文献   

10.
Viburnum phylogeny: evidence from the duplicated nuclear gene GBSSI   总被引:1,自引:0,他引:1  
DNA sequencing studies of the granule-bound starch synthase gene (GBSSI) indicate the presence of two loci in Viburnum. Gene trees from separate and combined phylogenetic analyses of the GBSSI paralogues are generally congruent with each other and with trees from previous analyses, especially those of Donoghue et al. [Syst. Bot. 29 (2004) 188] based on nuclear ribosomal ITS and chloroplast trnK intron DNA sequences. Specifically, our GBSSI trees confirm (i) the monophyly of some and non-monophyly of other traditionally recognized taxonomic sections, (ii) the presence of three major supra-sectional lineages within Viburnum, and (iii) the resolution of many species relationships within the section-level clades. Analyses of GBSSI also provide greater resolution of relationships within the largest supra-sectional lineage. Relationships at the base of the Viburnum phylogeny remain uncertain; in particular, the position of the root, relationships among the supra-sectional clades, and the exact placement of several smaller groups (e.g., Viburnum clemensiae, Viburnum urceolatum, and section Pseudotinus). In two lineages each GBSSI paralogue is represented by two distinct sequences. The presence of additional copies appears to be correlated with polyploidy in these clades. Placement of the homoeologues in our gene trees suggests the possibility of a hybrid origin for these polyploids.  相似文献   

11.
Peever TL  Barve MP  Stone LJ 《Mycologia》2007,99(1):59-77
Evolutionary relationships were inferred among a worldwide sample of Ascochyta fungi from wild and cultivated legume hosts based on phylogenetic analyses of DNA sequences from the ribosomal internal transcribed spacer regions (ITS), as well as portions of three protein-coding genes: glyceraldehyde-3-phosphate-dehydrogenase (G3PD), translation elongation factor 1-alpha (EF) and chitin synthase 1 (CHS). All legume-associated Ascochyta species had nearly identical ITS sequences and clustered with other Ascochyta, Phoma and Didymella species from legume and nonlegume hosts. Ascochyta pinodes (teleomorph: Mycosphaerella pinodes [Berk. & Blox.] Vestergen) clustered with Didymella species and not with well characterized Mycosphaerella species from other hosts and we propose that the name Didymella pinodes (Berk. & Blox.) Petrak (anamorph: Ascochyta pinodes L.K. Jones) be used to describe this fungus. Analysis of G3PD revealed two major clades among legume-associated Ascochyta fungi with members of both clades infecting pea ("Ascochyta complex"). Analysis of the combined CHS, EF and G3PD datasets revealed that isolates from cultivated pea (P. sativum), lentil (Lens culinaris), faba bean (Vicia faba) and chickpea (Cicer arietinum) from diverse geographic locations each had identical or similar sequences at all loci. Isolates from these hosts clustered in well supported clades specific for each host, suggesting a co-evolutionary history between pathogen and cultivated host. A. pisi, A. lentis, A. fabae and A. rabiei represent phylogenetic species infecting pea, lentil, faba bean and chickpea, respectively. Ascochyta spp. from wild relatives of pea and chickpea clustered with isolates from related cultivated hosts. Isolates sampled from big-flower vetch (Vicia grandiflora) were polyphyletic suggesting that either this host is colonized by phylogenetically distinct lineages of Ascochyta or that the hosts are polyphyletic and infected by distinct evolutionary lineages of the pathogen. Phylogenetic species identified among legume-associated Ascochyta spp. were fully concordant with previously described morphological and biological species.  相似文献   

12.
Tetraodontiformes includes approximately 350 species assigned to nine families, sharing several reduced morphological features of higher teleosts. The order has been accepted as a monophyletic group by many authors, although several alternative hypotheses exist regarding its phylogenetic position within the higher teleosts. To date, acanthuroids, zeiforms, and lophiiforms have been proposed as sister-groups of the tetraodontiforms. The monophyly and sister-group status was investigated using whole mitochondrial genome (mitogenome) sequences from 44 purposefully-chosen species (26 sequences newly-determined during the study) that fully represent the major tetraodontiform lineages plus all the groups that have been hypothesized as being close relatives. Partitioned Bayesian analyses were conducted with the three datasets that comprised concatenated nucleotide sequences from 13 protein-coding genes (with and without, or with RY-coding, 3rd codon positions), plus 22 transfer RNA and two ribosomal RNA genes. The resultant trees were well resolved and largely congruent, with most internal branches being supported by high posterior probabilities. Mitogenomic data strongly supported the monophyly of tetraodontiform fishes, placing them as a sister-group of either Lophiiformes plus Caproidei or Caproidei only. The sister-group relationship between Acanthuroidei and Tetraodontiformes was statistically rejected using Bayes factors. These results were confirmed by a reanalysis of the previously published nuclear RAG1 gene sequences using the Bayesian method. Within the Tetraodontiformes, however, monophylies of the three superfamilies were not recovered and further taxonomic sampling and subsequent efforts should clarify these relationships.  相似文献   

13.
Total evidence: molecules, morphology, and the phylogenetics of cichlid fishes   总被引:10,自引:0,他引:10  
We present a most comprehensive phylogenetic analysis of the family Cichlidae. New data analyzed include mitochondrial 16S rRNA sequences and two nuclear loci (Tmo-M27 and Tmo-4C4) for a large taxonomic sampling with emphasis on South American species. We also incorporate a published morphological data set for a total evidence analysis. Character congruence among mitochondrial (74 taxa) and nuclear data (50 taxa) was high. However, partition-homogeneity tests suggest significant heterogeneity among molecular and morphological data. In agreement with results obtained from molecular data alone, total evidence analysis (1,460 characters for 34 taxa) supports a robust phylogenetic hypothesis for the family Cichlidae that is congruent with drift-vicariance events associated with the fragmentation of Gondwana. Our analyses confirm the placement of Malagasy/Indian cichlids as the most basal lineages, with a sister-group relationship to the monophyletic African and Neotropical clades. Total evidence suggests that the controversial African genus Heterochromis is at the base of the African radiation. Among more than 50 Neotropical genera analyzed, Retroculus is identified as the basal taxon, with successive branching of Cichla, Astronotus, geophagines (including crenicichlines) + chaetobranchines, and cichlasomines + heroines. Relative rate tests applied to mitochondrial DNA suggest significantly higher rates of genetic variation in Neotropical than in African taxa, and both mitochondrial and nuclear sequences show that rate heterogeneity among Neotropical lineages is confined to the geophagine cichlids.  相似文献   

14.
Aim  This study uses molecular data in conjunction with palaeogeography to infer the most plausible biogeographical scenario accounting for the current distributional pattern of Iurus dufoureius .
Location  North-eastern Mediterranean region.
Methods  Sequencing of a 441-bp segment of the mitochondrial 16S rRNA gene in seven populations covering the whole distributional range of the species. Phylogenetic analyses performed included neighbour joining, maximum parsimony and Bayesian inference.
Results  The molecular phylogeny showed that two Iurus clades are strongly supported. These clades correspond to the two subspecies Iurus dufoureius dufoureius and Iurus dufoureius asiaticus , currently recognized within the genus. The assumption of a clock-like evolution could not be rejected, and this enabled us to estimate an approximation of the local rate of evolution for the I. dufoureius lineages. Based on the estimated evolutionary rate (0.79 ± 0.17 Myr−1), the split between the two Iurus clades occurred c. 8 Ma.
Main conclusions  Contrary to what was believed in the past, the genus Iurus is an old north-eastern Mediterranean genus that has been differentiating in southern Greece and south-west Turkey at least from the middle Miocene. According to the phylogenetic trees obtained and the dating of the divergence times of lineages, the genus dispersed into the Aegean Archipelago when the Aegean was still a uniform land mass. Although the phylogenetic relationships of I. d. dufoureius populations have been shaped by the most recent vicariant events, the phylogenetic relationships of I. d. asiaticus populations are mostly attributable to older palaeoevents occurring in the area.  相似文献   

15.
Phylogenetic studies based on different types and treatment of data provide substantially conflicting hypotheses of relationships among seed plants. We conducted phylogenetic analyses of sequences of two highly conserved chloroplast genes, psaA and psbB, for a comprehensive taxonomic sample of seed plants and land plants. Parsimony analyses of two different codon position partitions resulted in well-supported, but significantly conflicting, phylogenetic trees. First and second codon positions place angiosperms and gymnosperms as sister clades and Gnetales as sister to Pinaceae. Third positions place Gnetales as sister to all other seed plants. Maximum likelihood trees for the two partitions are also in conflict. Relationships among the main seed plant clades according to first and second positions are similar to those found in parsimony analysis for the same data, but the third position maximum likelihood tree is substantially different from the corresponding parsimony tree, although it agrees partially with the first and second position trees in placing Gnetales as the sister group of Pinaceae. Our results document high rate heterogeneity among lineages, which, together with the greater average rate of substitution for third positions, may reduce phylogenetic signal due to long-branch attraction in parsimony reconstructions. Whereas resolution of relationships among major seed plant clades remains pending, this study provides increased support for relationships within major seed plant clades.  相似文献   

16.
Phylogenetic relationships among major clades of anuran amphibians were studied using partial sequences of three nuclear protein coding genes, Rag-1, Rag-2, and rhodopsin in 26 frog species from 18 families. The concatenated nuclear data set comprised 2,616 nucleotides and was complemented by sequences of the mitochondrial 12S and 16S rRNA genes for analyses of evolutionary rates. Separate and combined analyses of the nuclear markers supported the monophyly of modern frogs (Neobatrachia), whereas they did not provide support for the monophyly of archaic frog lineages (Archaeobatrachia), contrary to previous studies based on mitochondrial data. The Neobatrachia contain two well supported clades that correspond to the subfamilies Ranoidea (Hyperoliidae, Mantellidae, Microhylidae, Ranidae, and Rhacophoridae) and Hyloidea (Bufonidae, Hylidae, Leptodactylidae, and Pseudidae). Two other families (Heleophrynidae and Sooglossidae) occupied basal positions and probably represent ancient relicts within the Neobatrachia, which had been less clearly indicated by previous mitochondrial analyses. Branch lengths of archaeobatrachians were consistently shorter in all separate analyses, and nonparametric rate smoothing indicated accelerated substitution rates in neobatrachians. However, relative rate tests confirmed this tendency only for mitochondrial genes. In contrast, nuclear gene sequences from our study and from an additional GenBank survey showed no clear phylogenetic trends in terms of differences in rates of molecular evolution. Maximum likelihood trees based on Rag-1 and using only one neobatrachian and one archaeobatrachian sequence, respectively, even had longer archaeobatrachian branches averaged over all pairwise comparisons. More data are necessary to understand the significance of a possibly general assignation of short branches to basal and species-poor taxa by tree-reconstruction algorithms.  相似文献   

17.
Geometridae is one of the most diverse families within the Lepidoptera, comprising nine subfamilies. Winter moths, which have a unique life history, are found in three subfamilies. To examine the phylogeny of the Geometridae at the subfamily level and determine the evolutionary history of winter moths, we constructed phylogenetic trees for all nine geometrid subfamilies using two mitochondrial and two nuclear gene sequences. Specimens of all subfamilies were sampled from Japan. Simultaneous analyses of the combined data from all genes revealed that the Geometridae comprised two major clades: one with subfamilies Larentiinae and Sterrhinae, and the other with the remaining seven subfamilies. The second clade included the largest subfamily, Ennominae, and the subfamily Archiearinae, which is traditionally considered to be an ancestral lineage of the Geometridae. The Larentiinae+Sterrhinae clade contained one winter moth lineage, and the second major clade consisted of three winter moth lineages, including Alsophilinae, which contains winter moths exclusively. Using a Bayesian inference of divergence times, we estimated that geometrids began to diverge 54 Mya (62-48 Mya), whereas winter moth lineages differentiated from non-winter moth lineages 34-12 Mya, during the global cooling events in the Oligocene and the early Miocene. The adaptation to cool climates may have been a preadaptation that facilitated the winter moth life cycle.  相似文献   

18.
Veneridae is one of the most diverse families of bivalve molluscs. However, their phylogenetic relationships among subfamilies have been debated for years. To explore phylogenetic relationships of Veneridae, we sequenced 13 complete mitochondrial genome sequences from eight subfamilies and compared with available complete mitochondrial genome of other Veneridae taxa (18 previously reported sequences). Phylogenetic analyses using probabilistic methods recovered two highly supported clades. In addition, the protein‐coding gene order revealed a highly conserved pattern among the same subclade lineages. According to our molecular analyses, Tapetinae should be recognized as a valid subfamily, but the genera formed para‐polyphyletic clades. Chioninae was recovered not monophyletic that differs from a previously molecular phylogeny. Furthermore, the reconstructed chronogram calibrated with fossils recovered the Veneridae have originated during the early Permian (about 290 million years ago). Noticeably, programmed frameshift was found in the nad4 gene of Leukoma jedoensis, Anomalodiscus squamosus and Antigona lamellaris and cob gene of L. jedoensis. This is the first time that the presence of the programmed frameshift has been found in the protein‐coding genes of Heterodonta species. Our results improved the phylogenetic resolution within Veneridae, and a more taxonomic sampling analysis of the subfamily Chioninae is supposed to construct.  相似文献   

19.
One of the most useful features of molecular phylogenetic analyses is the potential for estimating dates of divergence of evolutionary lineages from the DNA of extant species. But lineage-specific variation in rate of molecular evolution complicates molecular dating, because a calibration rate estimated from one lineage may not be an accurate representation of the rate in other lineages. Many molecular dating studies use a ``clock test' to identify and exclude sequences that vary in rate between lineages. However, these clock tests should not be relied upon without a critical examination of their effectiveness at removing rate variable sequences from any given data set, particularly with regard to the sequence length and number of variable sites. As an illustration of this problem we present a power test of a frequently employed triplet relative rates test. We conclude that (1) relative rates tests are unlikely to detect moderate levels of lineage-specific rate variation (where one lineage has a rate of molecular evolution 1.5 to 4.0 times the other) for most commonly used sequences in molecular dating analyses, and (2) this lack of power is likely to result in substantial error in the estimation of dates of divergence. As an example, we show that the well-studied rate difference between murid rodents and great apes will not be detected for many of the sequences used to date the divergence between these two lineages and that this failure to detect rate variation is likely to result in consistent overestimation the date of the rodent–primate split. Received: 9 June 1999 / Accepted: 22 October 1999  相似文献   

20.
Killer whales (Orcinus orca) are the most widely distributed marine mammals and have radiated to occupy a range of ecological niches. Disparate sympatric types are found in the North Atlantic, Antarctic and North Pacific oceans, however, little is known about the underlying mechanisms driving divergence. Previous phylogeographic analysis using complete mitogenomes yielded a bifurcating tree of clades corresponding to described ecotypes. However, there was low support at two nodes at which two Pacific and two Atlantic clades diverged. Here we apply further phylogenetic and coalescent analyses to partitioned mitochondrial genome sequences to better resolve the pattern of past radiations in this species. Our phylogenetic reconstructions indicate that in the North Pacific, sympatry between the maternal lineages that make up each ecotype arises from secondary contact. Both the phylogenetic reconstructions and a clinal decrease in diversity suggest a North Pacific to North Atlantic founding event, and the later return of killer whales to the North Pacific. Therefore, ecological divergence could have occurred during the allopatric phase through drift or selection and/or may have either commenced or have been consolidated upon secondary contact due to resource competition. The estimated timing of bidirectional migration between the North Pacific and North Atlantic coincided with the previous inter-glacial when the leakage of fauna from the Indo-Pacific into the Atlantic via the Agulhas current was particularly vigorous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号