首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The possible role of intrapulmonary CO2 receptors (IPC) in arterial CO2 partial pressure (PaCO2) homeostasis was investigated by comparing the arterial blood gas and ventilatory responses to CO2 loading via the inspired gas and via the venous blood. Adult male Pekin ducks were decerebrated 1 wk prior to an experiment. Venous CO2 loading was accomplished with a venovenous extracorporeal blood circuit that included a silicone-membrane blood oxygenator. The protocol randomized four states: control (no loading), venous CO2 loading, inspired CO2 loading, and venous CO2 unloading. Intravenous and inspired loading both resulted in hypercapnic hyperpnea. Comparison of the ventilatory sensitivity (delta VE/delta PaCO2) showed no significant difference between the two loading regimes. Likewise, venous CO2 unloading led to a significant hypocapnic hypopnea. Sensitivity to changes in PaCO2 could explain the response of ventilation under these conditions. The ventilatory pattern, however, was differentially sensitive to the route of CO2 loading; inspired CO2 resulted in slower deeper breathing than venous loading. It is concluded that IPC play a minor role in adjusting ventilation to match changes in pulmonary CO2 flux but rather are involved in pattern determination.  相似文献   

2.
The ventilatory response to a reduction in mixed venous PCO2 has been reported to be a decrease in breathing even to the point of apnea with no change in arterial CO2 partial pressure (PaCO2), whereas a recent report in exercising dogs found a small but significant drop in PaCO2 (F. M. Bennett et al. J. Appl. Physiol. 56: 1335-1337, 1984). The purpose of the present study was to attempt to reconcile this discrepancy by carefully investigating the cardiopulmonary response to venous CO2 removal over the entire range from eupnea to the apneic threshold in awake, spontaneously breathing normoxic dogs. Six dogs with chronic tracheostomies were prepared with bilateral femoral arteriovenous shunts under general anesthesia. Following recovery, an extracorporeal venovenous bypass circuit, consisting of a roller pump and a silicone-membrane gas exchanger, was attached to the femoral venous cannulas. Cardiopulmonary responses were measured during removal of CO2 from the venous blood and during inhalation of low levels of CO2. Arterial PO2 was kept constant by adjusting inspired O2. The response to venous CO2 unloading was a reduction in PaCO2 and minute ventilation (VE). The slope of the response, delta VE/delta PaCO2, was the same as that observed during CO2 inhalation. This response continued linearly to the point of apnea without significant changes in cardiovascular function.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We examined the effects of different modes of airway CO2 load on the ventilation-CO2 output (VE-VCO2) relationship during mild to moderate exercise. Four young and three older male subjects underwent incremental steady-state treadmill exercise while breathing a mixture of CO2 in O2 (CO2 loading) or 100% O2 with and without a large external dead space [DS loading and control (C), respectively]. During DS loading, the elevated arterial PCO2 (PaCO2) remained constant from rest to mild exercise and began to increase only at higher work rates. To achieve similar chemical drive, the same PaCO2 levels were established during CO2 loading by external PCO2 forcing. In the young group, CO2 loading resulted in a steepening of the VE-VCO2 relationship compared with C, whereas in the older group the reverse pattern was found. DS loading resulted in a consistent increase in the VE-VCO2 slope compared with C and CO2 loading [39.1 +/- 5.6 (mean +/- SD) vs. 24.9 +/- 5.0 and 26.7 +/- 4.4, respectively] in all subjects. The difference in potentiation of VE-VCO2 by CO2 and DS loading was not due to differences in mean chemical drive or changes in breathing pattern. Thus changes in the profile of airway CO2 influx may have an independent influence on ventilatory CO2-exercise interaction. Peripheral chemoreceptors mediation, although important, is not obligatory for this behavior.  相似文献   

4.
We determined the role of blood flow-induced changes in CO2 load to the lungs on ventilatory control, at rest and in the steady-state of electrically induced exercise, in the anesthetized dog. A portion of the vena caval blood was diverted to the descending aorta following "arterialization" through an extracorporeal gas exchanger. Ventilation typically decreased, both at rest and during exercise (i.e., at 2 different levels of mixed venous CO2), in proportion to the CO2 loss; arterial PCO2 was consequently regulated. There were concomitant increases of the pulmonary and peripheral vascular resistance. Bilateral cervical vagosympathectomy markedly attenuated the ventilatory response at rest, thus disrupting arterial PCO2 homeostasis, but not so during exercise. The results therefore provide evidence for and support the suggestion of CO2 flow-related hyperpnea both at rest and during muscular exercise.  相似文献   

5.
We examined the role of the carotid chemoreceptors in the ventilatory response to changes in venous CO2 load in 12 awake sheep using a venovenous extracorporeal perfusion circuit and two carbon dioxide membrane lungs (CDML). Three of the sheep had undergone surgical denervation of the carotid bodies (CBD). In the nine intact sheep, as CO2 was removed from or added to the peripheral venous blood through the CDML under normoxic conditions, there was a linear relationship between the rate of pulmonary CO2 excretion (VCO2) and the resulting rate of ventilation over a VCO2 range of 0--800% of control, so that arterial PCO2 remained close to isocapnic. In contrast, in the three CBD sheep, the ventilatory response to changes in VCO2 was significantly decreased under normoxic conditions, resulting in marked hypercapnia. The results indicate that the carotid chemoreceptors exert a major influence on the ventilatory response to changes in venous CO2 load.  相似文献   

6.
The effects of elevated venous PCO2 and denervation of the cardiac ventricles on ventilation were studied in 20 anesthetized open-chest unidirectionally ventilated White Leghorn cockerels. Venous PCO2 was increased by insufflating the gut with high CO2 while recording changes in the amplitude of the sternal movements. Arterial blood gases were held constant by unidirectionally ventilating the lungs with gas flows approximately five times the animal's resting minute volume. Insufflating the gut with 90% N2-10% O2 did not change the level of ventilation, whereas with 90% CO2-10% O2 the amplitude of sternal movement increased 500% above that with no gut gas flow. Exchange of N2 for the CO2 was followed by a rapid reduction of ventilatory movements to control levels. Arterial blood gases remained constant during gut gas insufflation, whereas mixed venous PCO2 increased and mixed venous pH decreased when high CO2 was given to the gut. Cutting the middle cardiac nerves, which primarily innervate the ventricles of the heart, reduced the ventilatory response to CO2 gut insufflation by 67%. Sympathetic denervation of the thoracic viscera did not change the responses. It appears that, in the chicken, increasing the mixed venous PCO2 while holding the arterial blood gases constant alters ventilation by an afferent system located in the venous circulation or in the right ventricle which is sensitive to changes in PCO2.  相似文献   

7.
Theory predicts that the rate of rise of the oscillation in arterial CO2 partial pressure (PaCO2) is linearly dependent on CO2 flux from venous blood to alveolar gas. We have measured, in the anesthetized cat, CO2 output (VCO2) and oscillations in arterial pH. The pH signal was differentiated to give the maximum rate of fall of pH on the downstroke of the oscillation (dpH/dt decreases max). Since oscillations in pH are due to oscillations in arterial PCO2, dpH/dt decreases max was considered to be equivalent to the maximum rate of rise of the PCO2 oscillation. VCO2 was increased by ventilating the intestines with CO2 and by the intra-arterial infusion of 2,4-dinitrophenol. VCO2 was decreased by filling the intestines with isotonic tris(hydroxymethyl)methylamine buffer. The maximum range of VCO2 covered was 7.8-51 ml/min, and the mean range was from 13.6 +/- 1.3 to 29.7 +/- 1.6 (SE) ml/min. Although CO2 loading produced a small rise and CO2 unloading a small fall in mean PaCO2, the changes were not statistically significant, so that overall the response was close to isocapnia. Over the limited range of VCO2 studied there was a highly significant linear association between dpH/dt decreases max and VCO2 which supports the contention that the slope of the upstroke of the PaCO2 oscillation is determined by the CO2 flux from mixed venous blood to alveolar gas. As such this slope is a potential chemical signal linking ventilation to CO2 production.  相似文献   

8.
Garter snakes increase ventilation in response to elevated venous PCO2 without a concomitant rise in arterial PCO2 (Furilla et al. Respir. Physiol. 83: 47-60, 1991). Elevating venous PCO2 will increase the PCO2 gradient between pulmonary arterial blood and intrapulmonary gas during inspiration, leading to a greater rate of rise of intrapulmonary CO2 after inspiration. Because the lung contains CO2-sensitive receptors, I assessed the effect of the rate of rise of intrapulmonary CO2 on ventilation in unidirectionally ventilated snakes. CO2 concentration was altered using a digital gas mixer connected to a personal computer. Breathing frequency was highly correlated with the rate of rise intrapulmonary CO2 but only slightly affected by peak intrapulmonary CO2. On the other hand, tidal volume was more closely related to peak intrapulmonary CO2 than to the rate of rise of CO2. Bilateral pulmonary or cervical vagotomy nearly eliminated the ventilatory response associated with altered CO2 rise times but had little influence on the tidal volume response to the rate of rise of CO2. The mechanism whereby breathing frequency is controlled by the rate of rise of intrapulmonary CO2 is likely to originate with intrapulmonary chemoreceptors and may be important in the control of breathing during exercise.  相似文献   

9.
It has often been assumed that under normoxia, closed-loop ventilatory responses to transient CO2 stimulation (i.e., lasting for 1-3 breaths) are less likely to be mediated by the slow-responding central (medullary) chemoreflex. This assumption, however, has not been quantitatively examined in humans. We hypothesized that in the closed-loop respiratory chemical feedback system [in which the centrally mediated ventilatory response to transient changes in the arterial PCO2 levels (PaCO2) will in turn affect the pulmonary CO2 and hence PaCO2], the contribution of the central chemoreflex pathways to brief disturbances in blood gases may be more important than considered previously. Using the technique of pseudorandom binary CO2 stimulation, we quantified the ventilatory response of normal humans to brief disturbances in arterial CO2 during hyperoxia. Tidal volume (VI), inspiratory ventilation (VI), inspiratory time (TI), expiratory time (TE), and end-tidal CO2 fraction (FETCO2) were measured in subjects who inhaled a mixture that was pseudorandomly switched between 95% O2-5% CO2 and 100% O2 (63 breath sequences). From these data, we calculated the responses of VI, VI, TI, TE, and FETCO2 to a single-breath inhalation of 1% CO2 in O2. Our results showed that in response to a brief increase of 0.75 Torr in alveolar CO2, VI showed a transient increase (average peak response of 0.12 1/min) that persisted for greater than or equal to 80 s in every subject. The response of VI was similar to that of VI, whereas TI and TE showed no consistent changes. Using these results we calculated that central chemoreflex pathways may contribute significantly to typical transient CO2 stimulation tests in hyperoxic and normoxic humans.  相似文献   

10.
Our objectives were to determine 1) the effects of increased respiratory dead space (VD) on the ventilatory response to exercise and 2) whether changes in the ventilatory response are due to changes in chemoreceptor feedback (rest to exercise) vs. changes in the feedforward exercise stimulus. Steady-state ventilation (VI) and arterial blood gas responses to mild or moderate hyperoxic exercise in goats were compared with and without increased VD. Responses were compared using a simple mathematical model with the following assumptions: 1) steady state, 2) linear CO2 chemoreceptor feedback, 3) linear feedforward exercise stimulus proportional to CO2 production (VCO2) and characterized by an exercise gain (Gex), and 4) additive exercise stimulus and CO2 feedback producing the system gain (Gsys = delta VI/delta VCO2). Model predictions at constant Gex [assuming VD-to-tidal volume (VT) ratio independent of VCO2] are that increased VD/VT will 1) increase arterial PCO2 (PaCO2) and VI at rest and 2) increase Gsys via changes in chemoreceptor feedback due to a small increase in the PaCO2 vs. VCO2 slope. Experimental results indicate that increased VD increased VD/VT, PaCO2, and VI at rest and increased Gsys during exercise. However, measurable changes in the PaCO2 vs. VCO2 slope occurred only at high VD/VT or running speeds. Gex was estimated at each VD for each goat by using the model in conjunction with experimental measurements. With 0.2 liter VD, Gex increased 40% (P less than 0.01); with 0.6 liter VD, Gex increased 110% between 0 and 2.4 km/h and 5% grade (P less than 0.01) but not between 2.4 and 4.8 km/h. Thus, Gex is increased by VD through a limited range. In goats, increases in Gsys with increased VD result from increases in both Gex and CO2 chemoreceptor feedback. These results are consistent with other experimental treatments that increase the exercise ventilatory response, maintaining constant relative PaCO2 regulation, and suggest that a common mechanism linked to resting ventilatory drive modulates Gex.  相似文献   

11.
Control of exercise hyperpnea during hypercapnia in humans   总被引:1,自引:0,他引:1  
Previous studies have yielded conflicting results on the ventilatory response to CO2 during muscular exercise. To obviate possible experimental errors contributing to such variability, we have examined the CO2-exercise interaction in terms of the ventilatory response to exercise under conditions of controlled hypercapnia. Eight healthy male volunteers underwent a sequence of 5-min incremental treadmill exercise runs from rest up to a maximum CO2 output (VCO2) of approximately 1.5 l . min-1 in four successive steps. The arterial PCO2 (PaCO2) at rest was stabilized at the control level or up to 14 Torr above control by adding 0-6% CO2 to the inspired air. Arterial isocapnia (SD = 1.2 Torr) throughout each exercise run was maintained by continual adjustment of the inspired PCO2. At all PaCO2 levels the response in total ventilation (VE) was linearly related to exercise VCO2. Hypercapnia resulted in corresponding increases in both the slope (S) and zero intercept (V0) of the VE-VCO2 curve; these being directly proportional to the rise in PaCO2 (means +/- SE: delta S/ delta PaCO2, 2.73 +/- 0.28 Torr-1; delta V0/ delta PaCO2, 1.67 +/- 0.18 l . min-1 . Torr-1). Thus the ventilatory response to concomitant hypercapnia and exercise was characterized by a synergistic (additive plus multiplicative) effect, suggesting a positive interaction between these stimuli. The increased exercise sensitivity in hypercapnia is qualitatively consistent with the hypothesis that VE is controlled to minimize the conflicting challenges due to chemical drive and the mechanical work of breathing (Poon, C. S. In: Modelling and Control of Breathing, New York: Elsevier, 1983, p. 189-196).  相似文献   

12.
An inhibitor of the HCO3-/Cl- exchange carrier protein, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) or vehicle was infused in mock cerebrospinal fluid (CSF) via the cisterna magna in conscious rabbits at 10 mumol/l for 40 min at 10 microliter/min. Neither treatment had any effect over 2-5 h on the non-CO2-stimulated CSF ion values or blood gases. With CO2 stimulation such that arterial PCO2 (PaCO2) was increased 25 Torr over 3 h, DIDS treatment significantly decreased the stoichiometrically opposite changes in CSF [HCO3-] and [Cl-] that normally accompany hypercapnia and reflect ionic mechanisms of CSF pH regulation. Expressed as delta CSF [HCO3-]/delta PaCO2, DIDS treatment decreased the CSF ionic response by 35%. In a separate paired study design DIDS administration via the same protocol had no effect on resting ventilation but significantly increased the ventilation and tidal volume responses to a 28-Torr increase in PaCO2. Expressed as change in minute ventilation divided by delta PaCO2, DIDS treatment produced a 39.6% increase. The results support the concept of a DIDS-inhibitable anion exchange carrier being involved in CSF pH regulation in hypercapnia and suggest a DIDS-related effect on the ventilatory response to CO2.  相似文献   

13.
We assessed the time course of changes in eupneic arterial PCO(2) (Pa(CO(2))) and the ventilatory response to hyperoxic rebreathing after removal of the carotid bodies (CBX) in awake female dogs. Elimination of the ventilatory response to bolus intravenous injections of NaCN was used to confirm CBX status on each day of data collection. Relative to eupneic control (Pa(CO(2)) = 40 +/- 3 Torr), all seven dogs hypoventilated after CBX, reaching a maximum Pa(CO(2)) of 53 +/- 6 Torr by day 3 post-CBX. There was no significant recovery of eupneic Pa(CO(2)) over the ensuing 18 days. Relative to control, the hyperoxic CO(2) ventilatory (change in inspired minute ventilation/change in end-tidal PCO(2)) and tidal volume (change in tidal volume/ change in end-tidal PCO(2)) response slopes were decreased 40 +/- 15 and 35 +/- 20% by day 2 post-CBX. There was no recovery in the ventilatory or tidal volume response slopes to hyperoxic hypercapnia over the ensuing 19 days. We conclude that 1) the carotid bodies contribute approximately 40% of the eupneic drive to breathe and the ventilatory response to hyperoxic hypercapnia and 2) there is no recovery in the eupneic drive to breathe or the ventilatory response to hyperoxic hypercapnia after removal of the carotid chemoreceptors, indicating a lack of central or aortic chemoreceptor plasticity in the adult dog after CBX.  相似文献   

14.
Ventilatory response to graded external dead space (0.5, 1.0, 2.0, and 2.5 liters) with hyperoxia and CO2 steady-state inhalation (3, 5, 7, and 8% CO2 in O2) was studied before and after 4% lidocaine aerosol inhalation in nine healthy males. The mean ventilatory response (delta VE/delta PETCO2, where VE is minute ventilation and PETCO2 is end-tidal PCO2) to graded dead space before airway anesthesia was 10.2 +/- 4.6 (SD) l.min-1.Torr-1, which was significantly greater than the steady-state CO2 response (1.4 +/- 0.6 l.min-1.Torr-1, P less than 0.001). Dead-space loading produced greater oscillation in airway PCO2 than did CO2 gas loading. After airway anesthesia, ventilatory response to graded dead space decreased significantly, to 2.1 +/- 0.6 l.min-1.Torr-1 (P less than 0.01) but was still greater than that to CO2. The response to CO2 did not significantly differ (1.3 +/- 0.5 l.min-1.Torr-1). Tidal volume, mean inspiratory flow, respiratory frequency, inspiratory time, and expiratory time during dead-space breathing were also depressed after airway anesthesia, particularly during large dead-space loading. On the other hand, during CO2 inhalation, these respiratory variables did not significantly differ before and after airway anesthesia. These results suggest that in conscious humans vagal airway receptors play a role in the ventilatory response to graded dead space and control of the breathing pattern during dead-space loading by detecting the oscillation in airway PCO2. These receptors do not appear to contribute to the ventilatory response to inhaled CO2.  相似文献   

15.
The respiratory effect of progestin differs among various animal species and humans. The rat does not hyperventilate in response to exogenous progestin. The present study was conducted to determine whether administration of combined progestin and estrogen prompts ventilatory stimulation in the male rat. Ventilation, blood gases, and metabolic rates (O2 consumption and CO2 production) were measured in the awake and unrestrained male Wistar rat. The combined administration of a synthetic potent progestin (TZP4238) and estradiol for 5 days significantly increased tidal volume and minute expiratory ventilation (VE), reduced arterial PCO2, and enhanced the ventilatory response to CO2 inhalation (delta VE/delta PCO2). On the other hand, respiratory frequency, O2 consumption, CO2 production, and body temperature were not affected. The arterial pH increased slightly, with a concomitant decrease in plasma [HCO3-]. Administration of either TZP4238 or estradiol alone or vehicle (Tween 80) had no effect on respiration, blood gases, and ventilatory response to CO2. The results indicated that respiratory stimulation following combined progestin plus estradiol treatment in the male rat involves activation of process(es) that regulate tidal volume and its augmentation during CO2 stimulus.  相似文献   

16.
We investigated the effects of selective large changes in the acid-base environment of medullary chemoreceptors on the control of exercise hyperpnea in unanesthetized goats. Four intact and two carotid body-denervated goats underwent cisternal perfusion with mock cerebrospinal fluid (CSF) of markedly varying [HCO-3] (CSF [H+] = 21-95 neq/l; pH 7.68-7.02) until a new steady state of alveolar hypo- or hyperventilation was reached [arterial PCO2 (PaCO2) = 31-54 Torr]. Perfusion continued as the goats completed two levels of steady-state treadmill walking [2 to 4-fold increase in CO2 production (VCO2)]. With normal acid-base status in CSF, goats usually hyperventilated slightly from rest through exercise (-3 Torr PaCO2, rest to VCO2 = 1.1 l/min). Changing CSF perfusate [H+] changed the level of resting PaCO2 (+6 and -4 Torr), but with few exceptions, the regulation of PaCO2 during exercise (delta PaCO2/delta VCO2) remained similar regardless of the new ventilatory steady state imposed by changing CSF [H+]. Thus the gain (slope) of the ventilatory response to exercise (ratio of change in alveolar ventilation to change in VCO2) must have increased approximately 15% with decreased resting PaCO2 (acidic CSF) and decreased approximately 9% with increased resting PaCO2 (alkaline CSF). A similar effect of CSF [H+] on resting PaCO2 and on delta PaCO2/VCO2 during exercise also occurred in two carotid body-denervated goats. Our results show that alteration of the gain of the ventilatory response to exercise occurs on acute alterations in resting PaCO2 set point (via changing CSF [H+]) and that the primary stimuli to exercise hyperpnea can operate independently of central or peripheral chemoreception.  相似文献   

17.
We studied the role of central command mediation of exercise hyperpnea by comparing the ventilatory and arterial CO2 partial pressure (PaCO2) responses to voluntary (ExV) and electrically induced (ExE) muscle contractions in normal, awake human subjects. We hypothesized that if central command signals are critical to a normal ventilatory response, then ExE should cause a slower ventilatory response resulting in hypercapnia at the onset of exercise. ExE was induced through surface electrodes placed over the quadriceps and hamstring muscles. ExE and ExV produced leg extension (40/min) against a spring load that increased CO2 production (VCO2) 100-1,000 ml/min above resting level. PaCO2 and arterial pH during work transitions and in the steady state did not differ significantly from rest (P greater than 0.05) or between ExE and ExV. The temporal pattern of ventilation, tidal volume, breathing frequency, and inspired and expired times, and the ventilation-VCO2 relationship were similar between ExE and ExV. We conclude that since central command was reduced and/or eliminated by ExE, central command is not requisite for the precise matching of alveolar ventilation to increases in VCO2 during low-intensity muscle contractions.  相似文献   

18.
Compensation for inspiratory flow-resistive loading was compared during progressive hypercapnia and incremental exercise to determine the effect of changing the background ventilatory stimulus and to assess the influence of the interindividual variability of the unloaded CO2 response on evaluation of load compensation in normal subjects. During progressive hypercapnia, ventilatory response was incompletely defended with loading (mean unloaded delta VE/delta PCO2 = 3.02 +/- 2.29, loaded = 1.60 +/- 0.67 1.min-1.Torr-1 CO2, where VE is minute ventilation and PCO2 is CO2 partial pressure; P less than 0.01). Furthermore the degree of defense of ventilation with loading was inversely correlated with the magnitude of the unloaded CO2 response. During exercise, loading produced no depression in ventilatory response (mean delta VE/delta VCO2 unloaded = 20.5 +/- 1.9, loaded = 19.2 +/- 2.5 l.min-1.l-1.min-1 CO2 where VCO is CO2 production; P = NS), and no relationship was demonstrated between degree of defense of the exercise ventilatory response and the unloaded CO2 response. Differences in load compensation during CO2 rebreathing and exercise suggest the presence of independent ventilatory control mechanisms in these states. The type of background ventilatory stimulus should therefore be considered in load compensation assessment.  相似文献   

19.
The effects of mild hypoxia on brain oxyhemoglobin, cytochrome a,a3 redox status, and cerebral blood volume were studied using near-infrared spectroscopy in eight healthy volunteers. Incremental hypoxia reaching 70% arterial O2 saturation was produced in normocapnia [end-tidal PCO2 (PETCO2) 36.9 +/- 2.6 to 34.9 +/- 3.4 Torr] or hypocapnia (PETCO2 32.8 +/- 0.6 to 23.7 +/- 0.6 Torr) by an 8-min rebreathing technique and regulation of inspired CO2. Normocapnic hypoxia was characterized by progressive reductions in arterial PO2 (PaO2, 89.1 +/- 3.5 to 34.1 +/- 0.1 Torr) with stable PETCO2, arterial PCO2 (PaCO2), and arterial pH and resulted in increases in heart rate (35%) systolic blood pressure (14%), and minute ventilation (5-fold). Hypocapnic hypoxia resulted in progressively decreasing PaO2 (100.2 +/- 3.6 to 28.9 +/- 0.1 Torr), with progressive reduction in PaCO2 (39.0 +/- 1.6 to 27.3 +/- 1.9 Torr), and an increase in arterial pH (7.41 +/- 0.02 to 7.53 +/- 0.03), heart rate (61%), and ventilation (3-fold). In the brain, hypoxia resulted in a steady decline of cerebral oxyhemoglobin content and a decrease in oxidized cytochrome a,a3. Significantly greater loss of oxidized cytochrome a,a3 occurred for a given decrease in oxyhemoglobin during hypocapnic hypoxia relative to normocapnic hypoxia. Total blood volume response during hypoxia also was significantly attenuated by hypocapnia, because the increase in volume was only half that of normocapnic subjects. We conclude that cytochrome a,a3 oxidation level in vivo decreases at mild levels of hypoxia. PaCO is an important determinant of brain oxygenation, because it modulates ventilatory, cardiovascular, and cerebral O2 delivery responses to hypoxia.  相似文献   

20.
To reinvestigate the blood-gas CO2 equilibrium in lungs, rebreathing experiments were performed in five unanesthetized dogs prepared with a chronic tracheostomy and an exteriorized carotid loop. The rebreathing bag was initially filled with a gas mixture containing 6-8% CO2, 12, 21, or 39% O2, and 1% He in N2. During 4-6 min of rebreathing PO2 in the bag was kept constant by a controlled supply of O2 while PCO2 rose steadily from approximately 40 to 75 Torr. Spot samples of arterial blood were taken from the carotid loop; their PCO2 and PO2 were measured by electrodes and compared with the simultaneous values of end-tidal gas read from a mass spectrometer record. The mean end-tidal-to-arterial PO2 differences averaging 16, 4, and 0 Torr with bag PO2 about 260, 130, and 75 Torr, respectively, were in accordance with a venous admixture of about 1%. No substantial PCO2 differences between arterial blood and end-tidal gas (PaCO2 - PE'CO2) were found. The mean PaCO2 - PE'CO2 of 266 measurements in 70 rebreathing periods was -0.4 +/- 1.4 (SD) Torr. There was no correlation between PaCO2 - PE'CO2 and the level of arterial PCO2 or PO2. The mean PaCO2 - PE'CO2 became +0.1 Torr when the blood transit time from lungs to carotid artery (estimated at 6 s) and the rate of rise of bag PCO2 (4.5 Torr/min) were taken into account. These experimental results do not confirm the presence of significant PCO2 differences between arterial blood and alveolar gas in rebreathing equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号