首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The complementary DNA for a human folate binding protein has been cloned from a lambda gt11-cDNA library prepared from cultured KB cells. A number of clones were selected by immunoscreening with a monospecific antiserum and by oligonucleotide probes corresponding to the NH2-terminal sequence of the folate binding protein. A partial nucleotide sequence of the cDNA was determined directly from the lambda gt11 phage and after subcloning into M13. The 18 amino acids deduced from the initial 19 codons were exactly the same as the amino acid sequence obtained by peptide analysis of the purified protein providing proof that this clone is the folate binding protein cDNA.  相似文献   

3.
In proteobacterial cytosol, ClpS protein is known as a molecular adaptor for substrate selectivity and proteolytic activity of the ATP-dependent chaperone-protease complex, ClpAP. ClpA-related ClpS is a small protein usually encoded immediately upstream of ClpA in the genome of proteobacteria. Recent bioinformatics analysis has revealed the presence of cyanobacterial-type ClpS or ClpC-related ClpS in organisms lacking ClpA, including all the plant species sequenced to date. Here we report the identification of an actinobacterial homologue of the ClpS (possibly Clp-related) gene from a plant system. A cDNA, spanning 566 bp with a complete coding region corresponding to 132 amino acids, was isolated from a Celosia cristata expression library constructed on a λ TriplEX2 vector. This cDNA product was considered to be an ATP-dependent Clp protease adaptor and was designated as Celosia actinobacterial-type ClpS, since it contains a highly conserved domain belonging to the ClpS family of proteins from actinobacteria. Celosia ClpS is about 80% identical to actinobacterial ClpS proteins in its overall deduced amino acid sequence. Based on this finding, we may define a novel target of ATP-dependent Clp complex in a plant system or speculate the presence of a second type of molecular chaperone besides ClpC in plants, as predicted for actinobacteria.  相似文献   

4.
A novel neomycin–methidium conjugate was synthesized. The covalent linkage of the aminoglycoside to an intercalator, a derivative of ethidium bromide, results in a new conjugate capable of selective recognition of the DNA:RNA hybrid duplex. Spectroscopic methods: UV, CD, fluorescence, and calorimetric techniques: DSC and ITC were used to characterize the sub-nanomolar binding displayed by the conjugate for the DNA:RNA hybrid duplex, poly(dA):poly(rU).  相似文献   

5.
6.
A screening assay for the detection of RNA-binding proteins was developed. It allows the rapid isolation of cDNA clones coding for proteins with sequence-specific binding affinity to a target RNA. For developing the screening protocol, constituents of the human U1 snRNP were utilized as model system. The RNA partner consisted of the U1-RNA stem-loop II and the corresponding protein consisted of the 102 amino acid N-terminal recognition motif of the U1A protein, which was fused to beta-galactosidase and expressed by the recombinant lambda phage LU1A. Following binding of the fusion protein to nitrocellulose membranes, hybridization with a 32P-labeled U1-RNA ligand was carried out to detect specific RNA-protein interaction. Parameters influencing the specificity and the detection limit of binding were systematically investigated with the aid of the model system. Processing the nitrocellulose membranes in the presence of transition metals greatly increased the signal:background ratio. A simple screening protocol involving a single-buffer system was developed. Specific RNA-protein interaction could be detected in the presence of a large excess of recombinant phages from a cDNA library. Only moderate binding affinities (Kd = 10(-8) M) were required. The suitability of the RNA-ligand screening protocol was demonstrated by the identification of new viroid-RNA binding proteins from tomato.  相似文献   

7.
A technique has been developed to efficiently extract purified, restrictable genomic DNA from spores of different arbuscular mycorrhizal fungi in order to begin detailed investigations of the genome of the Glomales. The protocol yielded variable amounts of DNA depending on the fungal species; for Scutellospora castanea and Gigaspora rosea it reached values of 1.5–2 ng/spore. EcoRI digests of DNA from S. castanea were cloned into pUC18 and about 1000 recombinant DNA clones were obtained. Of those screened, 50 contained inserts of 500–7000 bp. Selected inserts detected DNA sequences from S. castanea spores or roots infected by this fungus, but not from nonmycorrhizal roots. This is the first report of a partial genomic library from an arbuscular mycorrhizal fungus.  相似文献   

8.
9.
RI-HB is an extracellular heparin binding protein regulated by retinoic acid and essentially expressed during embryogenesis. This study reports the cloning and sequencing of the cDNA that encodes RI-HB. The sequence of RI-HB contains 121 amino acid residues and is very rich in basic amino acids and cysteines. This sequence was compared to those of HBGAM and MK protein, two other heparin binding proteins exhibiting growth and/or neurotrophic activities. Northern blot analysis indicates that RI-HB mRNA is strongly expressed during early chicken embryogenesis and that it is induced by retinoic acid treatment of chicken fibroblasts and myotubes in culture.  相似文献   

10.
11.
Native Escherichia coli polynucleotide phosphorylase can be retained on blue-dextran--Sepharose. The bound enzyme cannot be displaced by its mononucleotide substrates such as ADP, UDP, CDP, GDP and IDP, but it is easily eluted by its polymeric substrates. Under identical conditions, lactate dehydrogenase, bound on blue-dextran--Sepharose, is not eluted by poly(I) but can be specifically displaced by NADH. On the other hand, the trypsinized polynucleotide phosphorylase, known to be an active enzyme which has lost its polynucleotide site, does not bind to the affinity column. The native polynucleotide phosphorylase can also be tightly bound to poly(U)--agarose and displaced from it only by high salt concentration. The trypsinized enzyme is not bound at all on poly(I)--AGAROSe. Moreover, the native enzyme linked on blue-dextran--Sepharose, remains active indicating a free access of nucleoside diphosphates to the active center. These results taken together show that the dye ligand is not inserted onto the mononucleotide binding site and suggest rather that it binds to the polynucleotide binding region. The implications of this study and the application of blue-dextran--Sepharose affinity chromatography to other proteins having affinity for nucleic acids are discussed.  相似文献   

12.
13.
14.
15.
Two 57-residue peptides containing one pair of "zinc fingers" from a human enhancer binding protein were prepared by solid-phase peptide synthesis. One peptide (MBP-DF) contained the native sequence, while the second peptide ([Abu11]MBP-DF) has an alpha-aminobutyric acid residue substituted for a nonconserved cysteine residue at position 11. The peptides were characterized by several chemical and physical methods, and their DNA binding properties were evaluated using gel retardation experiments. Spectroscopic studies demonstrated that addition of metal ions such as zinc and cobalt resulted in specific conformational changes in both peptides, indicating that cysteine-11 does not appear to be involved in metal chelation. One-dimensional 1H NMR studies indicate that a stable folded structure is formed upon addition of zinc, and the chemical shift pattern is consistent with that previously observed for one constituent single finger (Omichinski, J., Clore, G. M., Appella, E., Sakaguchi, K., and Gronenborn, A. M. (1990) Biochemistry 29, 9324-9334). Gel retardation experiments demonstrate that the peptides are capable of interacting with a 15-mer oligonucleotide comprising a portion of the major histocompatibility complex enhancer sequence and that the interaction is zinc-dependent. The dissociation constant for the [Abu11]MBP-DF peptide is 1.4 x 10(-7) M with maximal binding occurring at a zinc-to-peptide ratio of 2 to 1. The binding specificity observed with respect to related enhancer sequences exhibits the same relative order as noted previously for the whole protein. Studies with point mutants of the major histocompatibility complex enhancer binding sequence indicate that the last GC base pair in a four-guanine stretch plays a pivotal role in the interaction between the peptide and DNA.  相似文献   

16.
17.
18.
19.
Short DNA sequence motifs have been identified in viral and cellular enhancers which represent the binding sites for a variety of trans- acting factors. One such HeLa cell factor, EBP1, has been purified and shown to bind to sequences in the SV40 enhancer. The PRDII element in the human beta-interferon gene regulatory element (IRE) shows strong sequence similarity to the EBP1 binding site in the SV40 enhancer. We demonstrate here that EBP1 binds to its sites in the SV40 enhancer and IRE in a similar manner, making base specific contacts over one complete turn of the DNA double helix. Mutational analysis of the EBP1 sites in the IRE and SV40 enhancer has identified the DNA sequence requirements necessary for specific EBP1/DNA complex formation. In addition, 34 DNA sequences related to the EBP1 binding site were analysed for their ability to bind EBP1. Sequences constituting high affinity binding sites possess the sequence 5'-GG(N)6CC-3'. Single base pair changes in the region between the conserved Gs and Cs can generally be tolerated although it is clear that these intervening bases contribute to binding affinity. Mutations in the recognition site which could lead to gross structural changes in the DNA abolish EBP1 binding.  相似文献   

20.
C M Price  R Skopp  J Krueger  D Williams 《Biochemistry》1992,31(44):10835-10843
The 51-kDa telomere protein from Euplotes crassus binds to the extreme terminus of macronuclear telomeres, generating a very salt-stable telomeric DNA-protein complex. The protein recognizes both the sequence and the structure of the telomeric DNA. To explore how the telomere protein recognizes and binds telomeric DNA, we have examined the DNA-binding specificity of the purified protein using oligonucleotides that mimic natural and mutant versions of Euplotes telomeres. The protein binds very specifically to the 3' terminus of single-stranded oligonucleotides with the sequence (T4G4) > or = 3 T4G2; even slight modifications to this sequence reduce binding dramatically. The protein does not bind oligonucleotides corresponding to the complementary C4A4 strand of the telomere or to double-stranded C4A4.T4G4-containing sequences. Digestion of the telomere protein with trypsin generates an N-terminal protease-resistant fragment of approximately 35 kDa. This 35-kDa peptide appears to comprise the DNA-binding domain of the telomere protein as it retains most of the DNA-binding characteristics of the native 51-kDa protein. For example, the 35-kDa peptide remains bound to telomeric DNA in 2 M KCl. Additionally, the peptide binds well to single-stranded oligonucleotides that have the same sequence as the T4G4 strand of native telomeres but binds very poorly to mutant telomeric DNA sequences and double-stranded telomeric DNA. Removal of the C-terminal 15 kDa from the telomere protein does diminish the ability of the protein to bind only to the terminus of a telomeric DNA molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号