首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Energy equilibration in the photosystem I core antenna from the cyanobacterium Synechocystis sp. PCC 6803 was studied using femtosecond transient absorption spectroscopy at 298 K. The photosystem I core particles were excited at 660, 693, and 710 nm with 150 fs spectrally narrow laser pulses (fwhm = 5 nm). Global analysis revealed three kinetic processes in the core antenna with lifetimes of 250-500 fs, 1.5-2.5 ps, and 20-30 ps. The first two components represent strongly excitation wavelength-dependent energy equilibration processes while the 20-30 ps phase reflects the trapping of energy by the reaction center. Excitation into the blue and red edge of the absorption band induces downhill and uphill energy flows, respectively, between different chlorophyll a spectral forms of the core. Excitation at 660 nm induces a 500 fs downhill equilibration process within the bulk of antenna while the selective excitation of long-wavelength-absorbing chlorophylls at 710 nm results in a 380 fs uphill energy transfer to the chlorophylls absorbing around 695-700 nm, presumably reaction center pigments. The 1.5-2.5 ps phases of downhill and uphill energy transfer are largely equivalent but opposite in direction, indicating energy equilibration between bulk antenna chlorophylls at 685 nm and spectral forms absorbing below 700 nm. Transient absorption spectra with excitation at 693 nm exhibit spectral evolution within approximately 2 ps of uphill energy transfer to major spectral forms at 680 nm and downhill energy transfer to red pigments at 705 nm. The 20-30 ps trapping component and P(700) photooxidation spectra derived from data on the 100 ps scale are largely excitation wavelength independent. An additional decay component of red pigments at 710 nm can be induced either by selective excitation of red pigments or by decreasing the temperature to 264 K. This component may represent one of the phases of energy transfer from inhomogeneously broadened red pigments to P(700). The data are discussed based on the available structural model of the photosystem I reaction center and its core antenna.  相似文献   

2.
Chlorosomes of photosynthetic green bacteria are unique molecular assemblies providing efficient light harvesting followed by multi-step transfer of excitation energy to reaction centers. In each chlorosome, 104–105 bacteriochlorophyll (BChl) c/d/e molecules are organized by self-assembly into high-ordered aggregates. We studied the early-time dynamics of the excitation energy flow and energy conversion in chlorosomes isolated from Chloroflexus (Cfx.) aurantiacus bacteria by pump-probe spectroscopy with 30-fs temporal resolution at room temperature. Both the S2 state of carotenoids (Cars) and the Soret states of BChl c were excited at ~490 nm, and absorption changes were probed at 400–900 nm. A global analysis of spectroscopy data revealed that the excitation energy transfer (EET) from Cars to BChl c aggregates occurred within ~100 fs, and the Soret → Q energy conversion in BChl c occurred faster within ~40 fs. This conclusion was confirmed by a detailed comparison of the early exciton dynamics in chlorosomes with different content of Cars. These processes are accompanied by excitonic and vibrational relaxation within 100–270 fs. The well-known EET from BChl c to the baseplate BChl a proceeded on a ps time-scale. We showed that the S1 state of Cars does not participate in EET. We discussed the possible presence (or absence) of an intermediate state that might mediates the Soret → Qy internal conversion in chlorosomal BChl c. We discussed a possible relationship between the observed exciton dynamics and the structural heterogeneity of chlorosomes.  相似文献   

3.
The role of carotenoids in chlorosomes of the green sulfur bacterium Chlorobium phaeobacteroides, containing bacteriochlorophyll (BChl) e and the carotenoid (Car) isorenieratene as main pigments, was studied by steady-state fluorescence excitation, picosecond single-photon timing and femtosecond transient absorption (TA) spectroscopy. In order to obtain information about energy transfer from Cars in this photosynthetic light-harvesting antenna with high spectral overlap between Cars and BChls, Car-depleted chlorosomes, obtained by inhibition of Car biosynthesis by 2-hydroxybiphenyl, were employed in a comparative study with control chlorosomes. Excitation spectra measured at room temperature give an efficiency of 60–70% for the excitation energy transfer from Cars to BChls in control chlorosomes. Femtosecond TA measurements enabled an identification of the excited state absorption band of Cars and the lifetime of their S1 state was determined to be 10 ps. Based on this lifetime, we concluded that the involvement of this state in energy transfer is unlikely. Furthermore, evidence was obtained for the presence of an ultrafast (>100 fs) energy transfer process from the S2 state of Cars to BChls in control chlorosomes. Using two time-resolved techniques, we further found that the absence of Cars leads to overall slower decay kinetics probed within the Qy band of BChl e aggregates, and that two time constants are generally required to describe energy transfer from aggregated BChl e to baseplate BChl a.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

4.
Meng S  Kaxiras E 《Biophysical journal》2008,95(9):4396-4402
We investigate the relaxation dynamics of melanin model constituents including monomers, dimers, and tetramers, upon excitation, using state-of-the-art, time-dependent, density functional theory calculations. The results explain the ability of these molecules to transform photon energy into thermal energy in a remarkably short timescale of ∼100 fs. We find that after electronic excitation by light absorption, ultrafast energy conversion takes place through two novel mechanisms: proton transfer on a timescale of 110 fs and state mixing upon oligomerization on a timescale of <50 fs. These results are in good agreement with available experiments and help elucidate melanin's role in photoprotection against ultraviolet radiation.  相似文献   

5.
We have studied energy transfer in chlorosomes of Chlorobium limicola UdG6040 containing a mixture of about 50% bacteriochlorophyll (BChl) c and BChl d each. BChl d-depleted chlorosomes were obtained by acid treatment. The energy transfer between the different pigment pools was studied using both steady-state and time-resolved fluorescence spectroscopy at room temperature and low temperature. The steady-state emission of the intact chlorosome originated mainly from BChl c, as judged by comparison of fluorescence emission spectra of intact and BChl d-depleted chlorosomes. This indicated that efficient energy transfer from BChl d to BChl c takes place. At room temperature BChl c/d to BChl a excitation energy transfer (EET) was characterized by two components of 27 and 74 ps. At low temperature we could also observe EET from BChl d to BChl c with a time constant of approximately 4 ps. Kinetic modeling of the low temperature data indicated heterogeneous fluorescence kinetics and suggested the presence of an additional BChl c pool, E790, which is more or less decoupled from the baseplate BChl a. This E790 pool is either a low-lying exciton state of BChl c which acts as a trap at low temperature or alternatively represents the red edge of a broad inhomogeneous absorption band of BChl c. We present a refined model for the organization of the spatially separated pigment pools in chlorosomes of Cb. limicola UdG6040 in which BChl d is situated distal and BChl c proximal with respect to the baseplate.  相似文献   

6.
We present a theoretical study of excitation dynamics in the chlorosome antenna complex of green photosynthetic bacteria based on a recently proposed model for the molecular assembly. Our model for the excitation energy transfer (EET) throughout the antenna combines a stochastic time propagation of the excitonic wave function with molecular dynamics simulations of the supramolecular structure and electronic structure calculations of the excited states. We characterized the optical properties of the chlorosome with absorption, circular dichroism and fluorescence polarization anisotropy decay spectra. The simulation results for the excitation dynamics reveal a detailed picture of the EET in the chlorosome. Coherent energy transfer is significant only for the first 50 fs after the initial excitation, and the wavelike motion of the exciton is completely damped at 100 fs. Characteristic time constants of incoherent energy transfer, subsequently, vary from 1 ps to several tens of ps. We assign the time scales of the EET to specific physical processes by comparing our results with the data obtained from time-resolved spectroscopy experiments.  相似文献   

7.
Femtosecond energy transfer processes in a bacteriochlorophyll a-protein antenna complex from the green sulfur bacterium Chlorobium tepidum have been studied by one-color, two-color, and broadband absorption difference spectroscopy. Much of the spectral excitation equilibration in this antenna occurs with 350 to 450 fs kinetics. The anisotropy decay functions r(t) exhibit two major lifetime components, 100 to 130 fs and 1.7 to 2.0 ps. The short component lifetimes may represent single-step energy transfer kinetics in this antenna; the long component is similar to the anisotropy decay observed in earlier picosecond pump-probe experiments.  相似文献   

8.
9.
The energy transfer kinetics from carotenoids to chlorophylls and among chlorophylls has been measured by femtosecond transient absorption kinetics in a monomeric unit of the major light-harvesting complex (LHCII) from higher plants. The samples were reconstituted complexes with different carotenoid contents. The kinetics was measured both in the carotenoid absorption region and in the chlorophyll Q(y) region using two different excitation wavelengths suitable for selective excitation of the carotenoids. Analysis of the data shows that the overwhelming part of the energy transfer from the carotenoids occurs directly from the initially excited S(2) state of the carotenoids. Only a small part (<20%) may possibly take an S(1) pathway. All the S(2) energy transfer from carotenoids to chlorophylls occurs with time constants <100 fs. We have been able to differentiate among the three carotenoids, two luteins and neoxanthin, which have transfer times of approximately 50 and 75 fs for the two luteins, and approximately 90 fs for neoxanthin. About 50% of the energy absorbed by carotenoids is initially transferred directly to chlorophyll b (Chl b), while the rest is transferred to Chl a. Neoxanthin almost exclusively transfers to Chl b. Due to various complex effects discussed in the paper, such as a specific coupling of Chl b and Chl a excited states, the percentage of direct Chl b transfer thus is somewhat lower than estimated by us previously for LHCII from Arabidopsis thaliana. (Connelly, J. P., M. G. Müller, R. Bassi, R. Croce, and A. R. Holzwarth. 1997. Biochemistry. 36:281). We can distinguish three different Chls b receiving energy directly from carotenoids. We propose as a new mechanism that the carotenoid-to-Chl b transfer occurs to a large part via the B(x) state of Chl b and to the Q(x) state, while the transfer to Chl a occurs only via the Q(x) state. We find no compelling evidence in favor of a substantial S(1) transfer path of the carotenoids, although some transfer via the S(1) state of neoxanthin can not be entirely excluded. The S(1) lifetimes of the two luteins were determined to be 15 ps and 3.9 ps. A detailed quantitative analysis and kinetic model of the processes described here will be presented in a separate paper.  相似文献   

10.
Bacteriochlorophyll (BChl) c pigments in the aggregated state are responsible for efficient light harvesting in chlorosomes of the filamentous anoxygenic photosynthetic bacterium, Chloroflexus (Cfx.) aurantiacus. Absorption of light creates excited states in the BChl c aggregates. After subpicosecond intrachlorosomal energy transfer, redistribution and relaxation, the excitation is transferred to the BChl a complexes and further to reaction centers on the picosecond time scale. In this work, the femtosecond excited state dynamics within BChl c oligomers of isolated Cfx. aurantiacus chlorosomes was studied by double difference pump‐probe spectroscopy at room temperature. Difference (Alight ? Adark) spectra corresponding to excitation at 725 nm (blue side of the BChl c absorption band) were compared with those corresponding to excitation at 750 nm (red side of the BChl c absorption band). A very fast (time constant 70 ± 10 fs) rise kinetic component was found in the stimulated emission (SE) upon excitation at 725 nm. This component was absent at 750‐nm excitation. These data were explained by the dynamical red shift of the SE due to excited state relaxation. The nature and mechanisms of the ultrafast excited state dynamics in chlorosomal BChl c aggregates are discussed.  相似文献   

11.
Excitation energy transfer in the light-harvesting antenna of Rhodospirillum rubrum was studied at room temperature using sub-picosecond transient absorption measurements. Upon excitation of Rs. rubrum membranes with a 200 fs, 600 nm laser flash in the Qx transition of the bacteriochlorophyll-a (BChl-a) absorption, the induced transient absorption changes in the Qy region were monitored. In Rs. rubrum membranes the observed delta OD spectrum exhibits ground state bleaching, excited state absorption and stimulated emission. Fast Qx --> Qy relaxation occurs in approximately 100-200 fs as reflected by the building up of stimulated emission. An important observation is that the zero-crossing of the transient difference absorption (delta OD) spectrum exhibits a dynamic redshift from 863 to 875 nm that can be described with by a single exponential with 325 fs time constant. The shape of the transient difference spectrum observed in a purified subunit of the core light-harvesting antenna, B820, consisting of only a single interacting pair of BChl-as, is similar to the spectrum observed in Rs. rubrum membranes and clearly different from the spectrum of BChl-a in a protein/detergent mixture. In the B820 and monomeric BChl-a preparations the 100-200 fs Qx --> Qy relaxation is still observed, but the dynamic redshift of the delta OD spectrum is absent. The spectral kinetics observed in the Rs. rubrum membranes are interpreted in terms of the dynamics of excitation equilibration among the antenna subunits that constitute the inhomogeneously broadened antenna. A simulation of this process using a set of reasonable physical parameters is consistent with an average hopping time in the core light harvesting of 220-270 fs, resulting in an average single-site excitation lifetime of 50-70 fs. The observed rate of this equilibration process is in reasonable agreement with earlier estimations for the hopping time from more indirect measurements. The implications of the findings for the process of excitation trapping by reaction centers will be discussed.  相似文献   

12.
Ultrafast transient absorption spectroscopy was used to probe excitation energy transfer and trapping at 77 K in the photosystem I (PSI) core antenna from the cyanobacterium Synechocystis sp. PCC 6803. Excitation of the bulk antenna at 670 and 680 nm induces a subpicosecond energy transfer process that populates the Chl a spectral form at 685--687 nm within few transfer steps (300--400 fs). On a picosecond time scale equilibration with the longest-wavelength absorbing pigments occurs within 4-6 ps, slightly slower than at room temperature. At low temperatures in the absence of uphill energy transfer the energy equilibration processes involve low-energy shifted chlorophyll spectral forms of the bulk antenna participating in a 30--50-ps process of photochemical trapping of the excitation by P(700). These spectral forms might originate from clustered pigments in the core antenna and coupled chlorophylls of the reaction center. Part of the excitation is trapped on a pool of the longest-wavelength absorbing pigments serving as deep traps at 77 K. Transient hole burning of the ground-state absorption of the PSI with excitation at 710 and 720 nm indicates heterogeneity of the red pigment absorption band with two broad homogeneous transitions at 708 nm and 714 nm (full-width at half-maximum (fwhm) approximately 200--300 cm(-1)). The origin of these two bands is attributed to the presence of two chlorophyll dimers, while the appearance of the early time bleaching bands at 683 nm and 678 nm under excitation into the red side of the absorption spectrum (>690 nm) can be explained by borrowing of the dipole strength by the ground-state absorption of the chlorophyll a monomers from the excited-state absorption of the dimeric red pigments.  相似文献   

13.
Examination was made of changes in fluorescence polarization plane by energy transfer in the chlorosomes of the green photosynthetic bacterium,Chloroflexus aurantiacus. Fluorescence anisotropy in the picosecond (ps) time region was analyzed using chlorosomes suspended in solution as well as those oriented in a polyacrylamide gel. When the main component of BChlc was preferentially excited, the decay of fluorescence anisotropy was found to depend on wavelength. In the chlorosome suspension, the anisotropy ratio of BChlc changed from 0.31 to 0.24 within 100 ps following excitation. In the baseplate BChla region, this ratio decreased to a negative value (–0.09) from the initial 0.14. In oriented samples, the degree of polarization remained at 0.68 for BChlc, and changed from 0.25 to –0.40 for the baseplate BChla by excitation light whose electric vector was parallel to the longest axis of chlorosomes. In the latter case, there was a shift from 0.30 to –0.55 by excitation perpendicular to the longest axis. Time-resolved fluorescence polarization spectra clearly indicated extensive changes in polarization plane accompanied by energy transfer. The directions of polarization plane of emission from oriented samples were mostly dependent on chlorosome orientation in the gel but not on that of the polarization plane of excitation light. Orientations of the dipole moment of fluorescence components was consistent with that of absorption components as determined by the linear dichroism (Matsuura et al. (1993) Photochem. Photobiol. 57: 92–97). A model for molecular organization of BChlc anda in chlorosomes is proposed based on anisotropic optical properties.  相似文献   

14.
The efficiency of energy transfer in chlorosome antennas in the green sulfur bacteria Chlorobium vibrioforme and Chlorobium limicola was found to be highly sensitive to the redox potential of the suspension. Energy transfer efficiencies were measured by comparing the absorption spectrum of the bacteriochlorophyll c or d pigments in the chlorosome to the excitation spectrum for fluorescence arising from the chlorosome baseplate and membrane-bound antenna complexes. The efficiency of energy transfer approaches 100% at low redox potentials induced by addition of sodium dithionite or other strong reductants, and is lowered to 10-20% under aerobic conditions or after addition of a variety of membrane-permeable oxidizing agents. The redox effect on energy transfer is observed in whole cells, isolated membranes and purified chlorosomes, indicating that the modulation of energy transfer efficiency arises within the antenna complexes and is not directly mediated by the redox state of the reaction center. It is proposed that chlorosomes contain a component that acts as a highly quenching center in its oxidized state, but is an inefficient quencher when reduced by endogenous or exogenous reductants. This effect may be a control mechanism that prevents cellular damage resulting from reaction of oxygen with reduced low-potential electron acceptors found in the green sulfur bacteria. The redox modulation effect is not observed in the green gliding bacterium Chloroflexus aurantiacus, which contains chlorosomes but does not contain low-potential electron acceptors.  相似文献   

15.
The effect of 1-hexanol on spectral properties and the processes of energy transfer of the green gliding photosynthetic bacterium Chloroflexus aurantiacus was investigated with reference to the baseplate region. On addition of 1-hexanol to a cell suspension in a concentration of one-fourth saturation, a specific change in the baseplate region was induced: that is, a bleach of the 793-nm component, and an increase in absorption of the 813-nm component. This result was also confirmed by fluorescence spectra of whole cells and isolated chlorosomes. The processes of energy transfer were affected in the overall transfer efficiency but not kinetically, indicating that 1-hexanol suppressed the flux of energy flow from the baseplate to the B806-866 complexes in the cytoplasmic membranes. The fluorescence excitation spectrum suggests a specific site of interaction between bacteriochlorophyll (BChl) c with a maximum at 771 nm in the rod elements and BChl a with a maximum at 793 nm in the baseplate, which is a funnel for a fast transfer of energy to the B806-866 complexes in the membranes. The absorption spectrum of chlorosomes was resolved to components consistently on the basis, including circular dichroism and magnetic circular dichroism spectra; besides two major BChl c forms, bands corresponding to tetramer, dimer, and monomer were also discernible, which are supposed to be intermediary components for a higher order structure. A tentative model for the antenna system of C. aurantiacus is proposed.Abbreviations A670 a component whose absorption maximum is located at 670 nm - (B)Chl (bacterio)chlorophyll - CD circular dichroism - F675 a component whose emission maximum is located at 675 nm - FMO protein Fenna-Mathews-Olson protein - LD linear dichroism - LH light-harvesting - McD magnetic circular dichroism - PS photosystem - RC reaction center  相似文献   

16.
Chlorosomes comprise thousands of bacteriochlorophylls (BChl c, d, or e) in a closely packed structure surrounded by a lipid-protein envelope and additionally contain considerable amounts of carotenoids, quinones, and BChl a. It has been suggested that carotenoids in chlorosomes provide photoprotection by rapidly quenching triplet excited states of BChl via a triplet-triplet energy transfer mechanism that prevents energy transfer to oxygen and the formation of harmful singlet oxygen. In this work we studied triplet energy transfer kinetics and photodegradation of chlorosomes isolated from wild-type Chlorobium tepidum and from genetically modified species with different types of carotenoids and from a carotenoid-free mutant. Supporting a photoprotective function of carotenoids, carotenoid-free chlorosomes photodegrade approximately 3 times faster than wild-type chlorosomes. However, a significant fraction of the BChls forms a long-lived, triplet-like state that does not interact with carotenoids or with oxygen. We propose that these states are triplet excitons that form due to triplet-triplet interaction between the closely packed BChls. Numerical exciton simulations predict that the energy of these triplet excitons may fall below that of singlet oxygen and triplet carotenoids; this would prevent energy transfer from triplet BChl. Thus, the formation of triplet excitons in chlorosomes serves as an alternative photoprotection mechanism.  相似文献   

17.
《FEBS letters》1986,209(1):37-43
Reaction centers from the photosynthetic bacterium Rhodopseudomonas sphaeroides have been excited either in the bacteriopheophytin band at 760 nm or in the accessory bacteriochlorophyll (B) band around 800 nm with laser pulses of 150 fs duration. Upon monitoring in the absorption band of the primary donor (P) at 860 nm, ultrafast energy transfer is observed which leads to the excited state of P in less than 100 fs. A transient bleaching recovering in 400 ± 100 fs is specifically detected upon excitation and observation in the 800 nm absorption band of B. However, upon direct excitation of P in the near infrared and using either normal or borohydride-treated reaction centers, we have found no spectral or kinetic evidence indicating the presence of a transient intermediate state such as P+B.  相似文献   

18.
《BBA》1986,848(1):77-82
Isolated chlorosomes of the photosynthetic green sulfur bacterium Chorobium limicola upon cooling to 4 K showed, in addition to the near-infrared absorption band at 753 nm due to bacteriochlorophyll c, a weak band near 800 nm that could be attributed to bacteriochlorophyll a. The emission spectrum showed bands of bacteriochlorophyll c and a at 788 and 828 nm, respectively. The fluorescence excitation spectrum indicated a high efficiency of energy transfer from bacteriochlorophyll c to bacteriochlorophyll a. When all bacteriochlorophyll c absorption had been lost upon storage, no appreciable change in the optical properties of the bacteriochlorophyll a contained in these ‘depleted chlorosomes’ was observed. The fluorescence and absorption spectra of the chlorosomal bacteriochlorophyll a were clearly different from those of the soluble bacteriochlorophyll a protein present in these bacteria. The results provide strong evidence that bacteriochlorophyll a, although present in a small amount, is an integral constituent of the chlorosome. It presumably functions in the transfer of energy from the chlorosome to the photosynthetic membrane; its spectral properties and the orientation of its near-infrared optical transitions as determined by linear dichroism are such as to favor this energy transfer.  相似文献   

19.
采用相同的分离技术,从水葫芦(Eichhornia crassipes(Mart)Solms.)和菠菜(Spinacia oleracea L.)叶片中提取叶绿体.利用吸收光谱和低温荧光光谱及皮秒荧光单光子计数技术对它们的光谱性质和光系统Ⅱ荧光寿命进行了研究.这两种叶绿体吸收光谱相似,暗示着它们都能高效吸收不同波长的光子.低温荧光光谱显示,水葫芦叶绿体两个光系统之间激发能分配平衡状态差,表明不利于该植物叶绿体高效利用吸收的光子能.采用三指数动力学模型对测定的光系统Ⅱ荧光衰减曲线拟合,水葫芦叶绿体光系统Ⅱ荧光衰减寿命分别是:138,521和1 494 ps;菠菜叶绿体荧光寿命分别是:197,465和1 459ps.并且归属了荧光组分,慢速度荧光衰减是由叶绿素堆积造成的,中等速度荧光衰减源于PSⅡ反应中心重新结合电荷组分,快速度荧光衰减归属于PSⅡ反应中心组分.基于20ps模型计算的水葫芦和菠菜叶绿体PSⅡ反应中心激发能转能效率分别是87%和91%.该结果与转能效率为100%的观点不一致.实验结果支持PSⅡ反应中心电荷分裂20 ps时间常数模型.根据转能效率,水葫芦生长速度不大于菠菜生长速度,但是,水葫芦叶绿体中含有丰富的胡萝卜素成分,其单位质量叶绿体吸收光能大于单位质量菠菜叶绿体吸收的量.实验结果还暗示植物叶绿体体系传能高效,接近于100%.  相似文献   

20.
Wild type green fluorescent protein (wt-GFP) and the variant S65T/H148D each exhibit two absorption bands, A and B, which are associated with the protonated and deprotonated chromophores, respectively. Excitation of either band leads to green emission. In wt-GFP, excitation of band A ( approximately 395 nm) leads to green emission with a rise time of 10-15 ps, due to excited-state proton transfer (ESPT) from the chromophore hydroxyl group to an acceptor. This process produces an anionic excited-state intermediate I* that subsequently emits a green photon. In the variant S65T/H148D, the A band absorbance maximum is red-shifted to approximately 415 nm, and as detailed in the accompanying papers, when the A band is excited, green fluorescence appears with a rise time shorter than the instrument time resolution ( approximately 170 fs). On the basis of the steady-state spectroscopy and high-resolution crystal structures of several variants described herein, it is proposed that in S65T/H148D, the red shift of absorption band A and the ultrafast appearance of green fluorescence upon excitation of band A are due to a very short (相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号