首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined masseter recruitment and firing patterns during chewing in four adult ring-tailed lemurs (Lemur catta), using electromyography (EMG). During chewing of tougher foods, the working-side superficial masseter tends to show, on average, 1.7 times more scaled EMG activity than the balancing-side superficial masseter. The working-side deep masseter exhibits, on average, 2.4 times the scaled EMG activity of the balancing-side deep masseter. The relatively larger activity in the working-side muscles suggests that ring-tailed lemurs recruit relatively less force from their balancing-side muscles during chewing. The superficial masseter working-to-balancing-side (W/B) ratio for lemurs overlaps with W/B ratios from anthropoid primates. In contrast, the lemur W/B ratio for the deep masseter is more similar to that of greater galagos, while both are significantly larger than W/B ratios of anthropoids. Because ring-tailed lemurs have unfused and hence presumably weaker symphyses, these data are consistent with the symphyseal fusion-muscle recruitment hypothesis stating that symphyseal fusion in anthropoids provides increased strength for resisting forces created by the balancing-side jaw muscles during chewing. Among the masseter muscles of ring-tailed lemurs, the working-side deep masseter peaks first on average, followed in succession by the balancing-side deep masseter, balancing-side superficial masseter, and finally the working-side superficial masseter. Ring-tailed lemurs are similar to greater galagos in that their balancing-side deep masseter peaks well before their working-side superficial masseter. We see the opposite pattern in anthropoids, where the balancing-side deep masseter peaks, on average, after the working-side superficial masseter. This late activity of the balancing-side deep masseter in anthropoids is linked to lateral-transverse bending, or wishboning, of their mandibular symphyses. Subsequently, the stresses incurred during wishboning are hypothesized to be a proximate reason for strengthening, and hence fusion, of the anthropoid symphysis. Thus, the absence of this muscle-firing pattern in ring-tailed lemurs with their weaker, unfused symphyses provides further correlational support for the symphyseal fusion late-acting balancing-side deep masseter hypothesis linking wishboning and symphyseal strengthening in anthropoids. The early peak activity of the working-side deep masseter in ring-tailed lemurs is unlike galagos and most similar to the pattern seen in macaques and baboons. We hypothesize that this early activity of the working-side deep masseter moves the lower jaw both laterally toward the working side and vertically upward, to position it for the upcoming power stroke. From an evolutionary perspective, the differences in peak firing times for the working-side deep masseter between ring-tailed lemurs and greater galagos indicate that deep masseter firing patterns are not conserved among strepsirrhines.  相似文献   

2.
The major purpose of this study is to analyze anterior and posterior temporalis muscle force recruitment and firing patterns in various anthropoid and strepsirrhine primates. There are two specific goals for this project. First, we test the hypothesis that in addition to transversely directed muscle force, the evolution of symphyseal fusion in primates may also be linked to vertically directed balancing-side muscle force during chewing (Hylander et al. [2000] Am. J. Phys. Anthropol. 112:469-492). Second, we test the hypothesis of whether strepsirrhines retain the hypothesized primitive mammalian condition for the firing of the anterior temporalis, whereas anthropoids have the derived condition (Weijs [1994] Biomechanics of Feeding in Vertebrates; Berlin: Springer-Verlag, p. 282-320). Electromyographic (EMG) activities of the left and right anterior and posterior temporalis muscles were recorded and analyzed in baboons, macaques, owl monkeys, thick-tailed galagos, and ring-tailed lemurs. In addition, as we used the working-side superficial masseter as a reference muscle, we also recorded and analyzed EMG activity of the left and right superficial masseter in these primates. The data for the anterior temporalis provided no support for the hypothesis that symphyseal fusion in primates is linked to vertically directed jaw muscle forces during mastication. Thus, symphyseal fusion in primates is most likely mainly linked to the timing and recruitment of transversely directed forces from the balancing-side deep masseter (Hylander et al. [2000] Am. J. Phys. Anthropol. 112:469-492). In addition, our data demonstrate that the firing patterns for the working- and balancing-side anterior temporalis muscles are near identical in both strepsirrhines and anthropoids. Their working- and balancing-side anterior temporalis muscles fire asynchronously and reach peak activity during the power stroke. Similarly, their working- and balancing-side posterior temporalis muscles also fire asynchronously and reach peak activity during the power stroke. Compared to these strepsirrhines, however, the balancing-side posterior temporalis of anthropoids appears to have a relatively delayed firing pattern. Moreover, based on their smaller W/B ratios, anthropoids demonstrate a relative increase in muscle-force recruitment of the balancing-side posterior temporalis. This in turn suggests that anthropoids may emphasize the duration and magnitude of the power stroke during mastication. This hypothesis, however, requires additional testing. Furthermore, during the latter portion of the power stroke, the late activity of the balancing-side posterior temporalis of anthropoids apparently assists the balancing-side deep masseter in driving the working-side molars through the terminal portion of occlusion.  相似文献   

3.
Jaw-muscle electromyographic (EMG) patterns indicate that compared with thick-tailed galagos and ring-tailed lemurs, anthropoids recruit more relative EMG from their balancing-side deep masseter, and that this muscle peaks late in the power stroke. These recruitment and firing patterns in anthropoids are thought to cause the mandibular symphysis to wishbone (lateral transverse bending), resulting in relatively high symphyseal stresses. We test the hypothesis that living strepsirrhines with robust, partially fused symphyses have muscle recruitment and firing patterns more similar to anthropoids, unlike those strepsirrhines with highly mobile unfused symphyses. Electromyographic (EMG) activity of the superficial and deep masseter, anterior and posterior temporalis, and medial pterygoid muscles were recorded in four dentally adult Verreaux's sifakas (Propithecus verreauxi). As predicted, we find that sifaka motor patterns are more similar to anthropoids. For example, among sifakas, recruitment levels of the balancing-side (b-s) deep masseter are high, and the b-s deep masseter fires late during the power stroke. As adult sifakas often exhibit nearly complete symphyseal fusion, these data support the hypothesis that the evolution of symphyseal fusion in primates is functionally linked to wishboning. Furthermore, these data provide compelling evidence for the convergent evolution of the wishboning motor patterns in anthropoids and sifakas.  相似文献   

4.
Previous work indicates that compared to adult thick-tailed galagos, adult long-tailed macaques have much more bone strain on the balancing-side mandibular corpus during unilateral isometric molar biting (Hylander [1979a] J. Morphol. 159:253–296). Recently we have confirmed in these same two species the presence of similar differences in bone-strain patterns during forceful mastication. Moreover, we have also recorded mandibular bone strain patterns in adult owl monkeys, which are slightly smaller than the galago subjects. The owl monkey data indicate the presence of a strain pattern very similar to that recorded for macaques, and quite unlike that recorded for galagos. We interpret these bone-strain pattern differences to be importantly related to differences in balancing-side jaw-adductor muscle force recruitment patterns. That is, compared to galagos, macaques and owl monkeys recruit relatively more balancing-side jaw-adductor muscle force during forceful mastication. Unlike an earlier study (Hylander [1979b] J. Morphol. 160:223–240), we are unable to estimate the actual amount of working-side muscle force relative to balancing-side muscle force (i.e., the W/ B muscle force ratio) in these species because we have no reliable estimate of magnitude, direction, and precise location of the bite force during mastication. A comparison of the mastication data with the earlier data recorded during isometric molar biting, however, supports the hypothesis that the two anthropoids have a small W/ B jaw-adductor muscle force ratio in comparison to thick-tailed galagos. These data also support the hypothesis that increased recruitment of balancing-side jaw-adductor muscle force in anthropoids is functionally linked to the evolution of symphyseal fusion or strengthening. Moreover, these data refute the hypothesis that the recruitment pattern differences between macaques and thick-tailed galagos are due to allometric factors. Finally, although the evolution of symphyseal fusion in primates may be linked to increased stress associated with increased balancing-side muscle force, it is currently unclear as to whether the increased force is predominately vertically directed, transversely directed, or is a near equal combination of these two force components (cf. Ravosa and Hylander [1994] In Fleagle and Kay [eds.]: Anthropoid Origins. New York: Plenum, pp. 447–468). Am J Phys Anthropol 107:257-271, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
We examined masseter and temporalis recruitment and firing patterns during chewing in five male Belanger's treeshrews (Tupaia belangeri), using electromyography (EMG). During chewing, the working-side masseters tend to show almost three times more scaled EMG activity than the balancing-side masseters. Similarly, the working-side temporalis muscles have more than twice the scaled EMG activity of the balancing-side temporalis. The relatively higher activity in the working-side muscles suggests that treeshrews recruit less force from their balancing-side muscles during chewing. Most of the jaw-closing muscles in treeshrews can be sorted into an early-firing or late-firing group, based on occurrence of peak activity during the chewing cycle. Specifically, the first group of jaw-closing muscles to reach peak activity consists of the working-side anterior and posterior temporalis and the balancing-side superficial masseter. The balancing-side anterior and posterior temporalis and the working-side superficial masseter peak later in the power stroke. The working-side deep masseter peaks, on average, slightly before the working-side superficial masseter. The balancing-side deep masseter typically peaks early, at about the same time as the balancing-side superficial masseter. Thus, treeshrews are unlike nonhuman anthropoids that peak their working-side deep masseters early and their balancing-side deep masseters late in the power stroke. Because in anthropoids the late firing of the balancing-side deep masseter contributes to wishboning of the symphysis, the treeshrew EMG data suggest that treeshrews do not routinely wishbone their symphyses during chewing. Based on the treeshrew EMG data, we speculate that during chewing, primitive euprimates 1) recruited more force from the working-side jaw-closing muscles as compared to the balancing-side muscles, 2) fired an early group of jaw-closing muscles followed by a second group of muscles that peaked later in the power stroke, 3) did not fire their working-side deep masseter significantly earlier than their working-side superficial masseter, and 4) did not routinely fire their balancing-side deep masseter after the working-side superficial masseter.  相似文献   

6.
We investigated patterns of jaw-muscle coordination during rhythmic mastication in three species of ungulates displaying the marked transverse jaw movements typical of many large mammalian herbivores. In order to quantify consistent motor patterns during chewing, electromyograms were recorded from the superficial masseter, deep masseter, posterior temporalis and medial pterygoid muscles of goats, alpacas and horses. Timing differences between muscle pairs were evaluated in the context of an evolutionary model of jaw-muscle function. In this model, the closing and food reduction phases of mastication are primarily controlled by two distinct muscle groups, triplet I (balancing-side superficial masseter and medial pterygoid and working-side posterior temporalis) and triplet II (working-side superficial masseter and medial pterygoid and balancing-side posterior temporalis), and the asynchronous activity of the working- and balancing-side deep masseters. The three species differ in the extent to which the jaw muscles are coordinated as triplet I and triplet II. Alpacas, and to a lesser extent, goats, exhibit the triplet pattern whereas horses do not. In contrast, all three species show marked asynchrony of the working-side and balancing-side deep masseters, with jaw closing initiated by the working-side muscle and the balancing-side muscle firing much later during closing. However, goats differ from alpacas and horses in the timing of the balancing-side deep masseter relative to the triplet II muscles. This study highlights interspecific differences in the coordination of jaw muscles to influence transverse jaw movements and the production of bite force in herbivorous ungulates.  相似文献   

7.
A stress analysis of the primate mandible suggests that vertically deep jaws in the molar region are usually an adaptation to counter increased sagittal bending stress about the balancing-side mandibular corpus during unilateral mastication. This increased bending stress about the balancing side is caused by an increase in the amount of balancing-side muscle force. Furthermore, this increased muscle force will also cause an increase in dorso-ventral shear stress along the mandibular symphysis. Since increased symphyseal stress can be countered by symphyseal fusion and as increased bending stress can be countered by a deeper jaw, deep jaws and symphyseal fusion are often part of the same functional pattern. In some primates (e.g., Cercocebus albigena), deep jaws are an adaptation to counter bending in the sagittal plane during powerful incisor biting, rather than during unilateral mastication. The stress analysis of the primate mandible also suggests that jaws which are transversely thick in the molar region are an adaptation to counter increased torsion about the long axis of the working-side mandibular corpus during unilateral mastication. Increased torsion of the mandibular corpus can be caused by an increase in masticatory muscle force, an increase in the transverse component of the postcanine bite force and/or an increase in premolar use during mastication. Patterns of masticatory muscle force were estimated for galagos and macaques, demonstrating that the ratio of working-side muscle force to balancing-side muscle force is approximately 1.5:1 in macaques and 3.5:1 in galagos during unilateral isometric molar biting. These data support the hypothesis that mandibular symphyseal fusion is an adaptative response to maximize unilateral molar bite force by utilizing a greater percentage of balancing-side muscle force.  相似文献   

8.
Rosette strain gage, electromyography (EMG), and cineradiographic techniques were used to analyze loading patterns and jaw movements during mastication in Macaca fascicularis. The cineradiographic data indicate that macaques generally swallow frequently throughout a chewing sequence, and these swallows are intercalated into a chewing cycle towards the end of a power stroke. The bone strain and jaw movement data indicate that during vigorous mastication the transition between fast close and the power stroke is correlated with a sharp increase in masticatory force, and they also show that in most instances the jaws of macaques are maximally loaded prior to maximum intercuspation, i.e. during phase I (buccal phase) occlusal movements. Moreover, these data indicate that loads during phase II (lingual phase) occlusal movements are ordinarily relatively small. The bone strain data also suggest that the duration of unloading of the jaw during the power stroke of mastication is largely a function of the relaxation time of the jaw adductors. This interpretation is based on the finding that the duration from 100% peak strain to 50% peak strain during unloading closely approximates the half-relaxation time of whole adductor jaw muscles of macaques. The EMG data of the masseter and medial pterygoid muscles have important implications for understanding both the biomechanics of the power stroke and the external forces responsible for the "wishboning" effect that takes place along the mandibular symphysis and corpus during the power stroke of mastication. Although both medial pterygoid muscles reach maximum EMG activity during the power stroke, the activity of the working-side medial pterygoid peaks after the balancing-side medial pterygoid. Associated with the simultaneous increase of force of the working-side medial pterygoid and the decrease of force of the balancing-side medial pterygoid is the persistently high level of EMG activity of the balancing-side deep masseter (posterior portion). This pattern is of considerable significance because the direction of force of both the working-side medial pterygoid and the balancing-side deep masseter are well aligned to aid in driving the working-side lower molars across the upper molars in the medial direction during unilateral mastication.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The main purpose of this study is to test the hypothesis that as subjects chew with increasing levels of force, the ratio of the working- to balancing-side jaw-muscle force (W/B) decreases and begins to approach 1.0. We did this by analyzing relative masseter force in Macaca fascicularis using both strain gage and surface electromyographic (EMG) techniques. In addition, we also analyzed: 1) the relationship between jaw position using cineradiographic techniques and relative masseter force, 2) the timing differences between relative masseter force from the working and balancing sides, and 3) the loading and unloading characteristics of the masseter muscle. Our findings indicate that when macaques increase the amount of overall masticatory force during chewing, the W/B ratio for masseter force frequently (but not always) decreases and begins to approach 1.0. Therefore, our working hypothesis is not completely supported because the W/B ratio does not decrease with increasing levels of force in all subjects. The data also demonstrate timing differences in masseter force. During apple-skin mastication, the average peak masseter force on the working side occurs immediately at or slightly after the initial occurrence of maximum intercuspation, whereas the average peak masseter force on the balancing side occurs well before maximum intercuspation. On average, we found that peak force from the balancing-side masseter precedes the working-side masseter by about 26 msec. The greater the asynchrony between working- and balancing-side masseter force, the greater the difference in the relative magnitude of these forces. For example, in the subject with the greatest asynchrony, the balancing-side masseter had already fallen to about one-half of peak force when the working-side masseter reached peak force. Our data also indicate that the loading and unloading characteristics of the masseter differ between the working and balancing sides. Loading (from 50 to 100% of peak force) and unloading (from 100 to 50% of peak force) for the balancing-side masseter tends to be rather symmetrical. In contrast, the working-side masseter takes much longer to load from 50 to 100% of peak force than it does to unload from 100 to 50% of peak force. Finally, it takes on average about 35 msec for the working-side zygoma and 42 msec for the balancing-side zygoma to unload from 100 to 50% of peak force during apple-skin mastication, indicating that the unloading characteristics of the macaque masseter during mastication closely approximates its relaxation characteristics (as determined by muscle stimulation).  相似文献   

10.
Anthropoids and tarsiers are distinguished from all other vertebrates by the possession of a postorbital septum, which is formed by the frontal, alisphenoid, and zygomatic bones. Cartmill [(1980) In: Evolutionary Biology of the New World Monkeys and Continental Drift. New York: Plenum, p 243-274] suggested that the postorbital septum evolved in the stem lineage of tarsiers and anthropoids to insulate the eye from movements arising in the temporal fossa. Ross [(1996) Am J Phys Anthropol 91:305-324] suggested that the septum insulates the orbital contents from incursions by the line of action of the anterior temporal muscles caused by the unique combination of high degrees of orbital frontation and convergence. Both of these hypotheses must explain why insulation of the orbital contents could not be achieved by decreasing the size of the anterior temporal musculature with a corresponding increase in size of the remaining jaw adductors, rather than evolving a postorbital septum. One possibility is that the anterior temporalis is an important contributor to vertically directed bite forces during all biting and chewing activities. Another possibility is that reduction in anterior temporal musculature would compromise the ability to produce powerful bite forces, either at the incisors or along the postcanine toothrow. To evaluate these hypotheses, electromyographic (EMG) recordings were made from the masseter muscle and the anterior and posterior portions of the temporalis muscles of two owl monkeys, Aotus trivirgatus. The EMG data indicate that anterior temporalis activity relative to that of the superficial masseter is lower during incision than mastication. In addition, activity of the anterior temporalis is not consistently higher than the posterior temporalis during incision. The data indicate relatively greater activity of anterior temporalis compared to other muscles during isometric biting on the postcanine toothrow. This may be due to decreased activity in superficial masseter and posterior temporalis, rather than elevated anterior temporalis activity. The anterior temporalis is not consistently less variable in activity than the superficial masseter and posterior temporalis. The EMG data gathered here indicate no reason for suggesting that the anterior temporal muscles in anthropoids are utilized especially for incisal preparation of hard fruits. Maintenance of relatively high EMG activity in anterior temporalis across a wide range of biting behaviors is to be expected in a vertically oriented and rostrally positioned muscle such as this because, compared to the posterior temporalis, superficial masseter and medial pterygoid, it can contribute relatively larger vertical components of force to bites along the postcanine toothrow. The in vivo data do not support this hypothesis, possibly because of effects of bite point and bite force orientation.  相似文献   

11.
Major transformations in the skull and masticatory system characterized the evolution of crown anthropoids. To offer further insight into the phylogenetic and arguably adaptive significance of specific primate mandibular loading and kinematic patterns, allometric analyses of metric parameters linked to masticatory function are performed within and between 47 strepsirhine and 45 recent anthropoid species. When possible, basal anthropoids are considered. These results are subsequently integrated with prior experimental and morphological work on primate skull form. As compared to strepsirhines, crown anthropoids have a vertically longer ascending ramus linked to a glenoid and condyle positioned relatively higher above the occlusal plane. Interestingly, anthropoids and strepsirhines do not exhibit different mean ratios of condylar to glenoid height, which suggests that both clades are similar in their ability to evenly distribute occlusal contacts and perhaps forces along the postcanine teeth. Thus, given the considerable suborder differences in the scaling of both glenoid and condylar height, we argue that much of this variation in jaw-joint height is linked to suborder differences in relative facial height due in turn to increased encephalization, basicranial flexion, and facial kyphosis in anthropoids. Due to a more elongate ascending ramus, anthropoids evince more vertically oriented masseters than like-sized strepsirhines. Having a relatively longer ramus and a more medially displaced lateral pterygoid plate, crown anthropoids exhibit medial pterygoids oriented similar to those of strepsirhines, but with a variably longer lever arm. As anthropoid masseters are less advantageously placed to effect transverse movements/forces, we argue that balancing-side deep-masseter activity underlying a wishboning loading regime serves to increase, or at least maintain, transverse levels of jaw movement and occlusal force at the end of the masticatory power stroke. Crown anthropoids are also more isognathic and isodontic than strepsirhines. A consideration of early anthropoids suggests that the crown anthropoid masticatory pattern, i.e., more vertical masseters due to a high condyle as well as greater isognathy and isodonty, occurred stepwise during stem anthropoid evolution. This appears to correspond to a more transverse, and perhaps progressively larger, power stroke across oligopithecids, parapithecids, and propliopithecids.  相似文献   

12.
Fused symphyses, which evolved independently in several mammalian taxa, including anthropoids, are stiffer and stronger than unfused symphyses. This paper tests the hypothesis that orientations of tooth movements during occlusion are the primary basis for variations in symphyseal fusion. Mammals whose teeth have primarily dorsally oriented occlusal trajectories and/or rotate their mandibles during occlusion will not benefit from symphyseal fusion because it prevents independent mandibular movements and because unfused symphyses transfer dorsally oriented forces with equal efficiency; mammals with predominantly transverse power strokes are predicted to benefit from symphyseal fusion or greatly restricted mediolateral movement at the symphysis in order to increase force transfer efficiency across the symphysis in the transverse plane. These hypotheses are tested with comparative data on symphyseal and occlusal morphology in several mammals, and with kinematic and EMG analyses of mastication in opossums (Didelphis virginiana) and goats (Capra hircus) that are compared with published data on chewing in primates. Among mammals, symphyseal fusion or a morphology that greatly restricts movement correlates significantly with occlusal orientation: species with more transversely oriented occlusal planes tend to have fused symphyses. The ratio of working- to balancing-side adductor muscle force in goats and opossums is close to 1:1, as in macaques, but goats and opossums have mandibles that rotate independently during occlusion, and have predominantly vertically oriented tooth movements during the power stroke. Symphyseal fusion is therefore most likely an adaptation for increasing the efficiency of transfer of transversely oriented occlusal forces in mammals whose mandibles do not rotate independently during the power stroke.  相似文献   

13.
Frontal plane mandibular movements during mastication and the associated electromyographic (EMG) activity for left and right superficial masseter, posterior temporalis, anterior temporalis, and anterior belly of the digastric (ABD) were studied for two adult male Macaca mulatta by the new technique of “contour” analysis. Contour analysis allowed graphic and quantitative portrayal of multiple chew cycle patterns of mandibular movement and EMG activity during active mastication. A series of computer programs (ATS, ATSED, ATSXYZ) facilitated the collection, editing and definition, and finally processing of these masticatory data into contour plots. These preliminary data indicated the essential symmetry of mandibular movement patterns, high chew cycle variability inferior to occlusion, multiple centers of intense EMG activity for balancing-side superficial masseter, and no difference between working-side anterior and posterior temporalis EMG patterns. Maximum EMG amplitude was found in the area of buccal phase power stroke (BPS). Maximum EMG amplitude for ABD was located medial and inferior to occlusion; all other muscle maximum amplitudes were buccal and inferior to occlusion. The location of maximum EMG amplitudes for superficial masseter and ABD were closer to occlusion (more superior) during mastication of carrot than were maximum amplitudes during biscuit mastication. The absence of any detectable shift of EMG maximum amplitude location between biscuit and carrot for posterior and anterior temporalis suggested, along with the continuous EMG activity of working-side posterior temporalis, a secondary role for the temporalis (compensation for superficial masseter activity) during active mastication.  相似文献   

14.
To highlight adaptive transformations in craniomandibular form during anthropoid origins, symphyseal character states and underlying masticatory loading regimes were investigated vis-à-vis shifts in diet and body size. A study of fossil anthropoids is possible because variation in symphyseal fusion is continuous and directly proportional to the amount of symphyseal stress and because such variation can be considered a series of discrete character states each with unique functional underpinnings. Using recent systematic renderings of Eocene and Oligocene taxa as a template with which to assess character evolution, this analysis indicates when, and in which clade(s), specific masticatory features became fixed and thus diagnostic. A general trend throughout early anthropoid evolution is for descendent taxa to be progressively larger than ancestral forms. Coupled with this pattern is the tendency for larger-bodied fossil anthropoids to have ingested tougher diets variably consisting of thick-coated, unripe fruits and/or leaves. Mastication of mechanically tougher foods entails greater repetitive loading of the mandible and requires relatively larger amounts of balancing-side muscle force, thus resulting in correspondingly greater symphyseal fusion due to elevated dorsoventral shear. With a single exception, these adaptive transformations characterize the evolutionary pathway leading both to parapithecines and a catarrhine:platyrrhine clade (crown anthropoids). While the ancestor of crown anthropoids would have possessed a body size, diet and masticatory adaptations similar to parapithecines, such a common suite of features evolved independently. Moreover, the evolution of an early-fusing symphysis and associated wishboning loading regime of catarrhines and platyrrhines is unique among all anthropoids. Lastly, the apparent lack of reversals in symphyseal fusion indicates the improbability of phylogenetic hypotheses in which a relationship is proposed between 'ancestral' taxa with a greater degree of symphyseal fusion and 'descendent' anthropoids with a lesser degree of ossification.  相似文献   

15.
Ontogenetic changes in the morphology of the mandibular symphysis are described in Archaeolemur so as to infer the functional significance of symphyseal fusion in this subfossil Malagasy lemur. The first regions of the symphysis to show a more complex morphology were the lower and anterior borders of the joint and, to a lesser extent, the lingual borders of the superior and inferior transverse tori. During growth, these regions became increasingly rugose and encroached upon a centrally located, smooth, “oval” region, which may have been a principal pathway for neurovascular structures communicating with the unfused joint. In subadults, the symphysis was completely fused except for the lingual surface of the inferior transverse torus, where a patent suture and potential space were present between dentaries. Thus, in Archaeolemur there was an age- and size-related pattern of increased symphyseal ossification or fusion that was complete by adulthood. The morphology of the interlocking bony processes and the sequence of ossification in the symphysis suggest that increased dorsoventral shear stress during mastication was the most likely determinant of symphyseal fusion in Archaeolemur: The allometric pattern of greater symphyseal fusion may be linked to the presence of relatively greater dorsoventral shear in adults due to an increased recruitment of balancing-side jaw-muscle force. There is little indication that the symphysis of juvenile Archaeolemur was buttressed to resist forces associated with “wishboning” during mastication or vertical bending during incision. Our observations, as well as those of others, suggest that symphyseal fusion in primates occurs initially as a response to increased dorsoventral shear during mastication. Therefore, wishboning stress might only become a major determinant of symphyseal form and function in those taxa that develop a fused symphysis to counter increased dorsoventral shear. © 1994 Wiley-Liss, Inc.  相似文献   

16.
Single-element and/or rosette strain gages were bonded to mandibular cortical bone in Galago crassicaudatus and Macaca fascicularis. Five galago and eleven macaque bone strain experiments were performed and analyzed. In vivo bone strain was recorded from the lateral surface of the mandibular corpus below the postcanine tooth row during transducer biting and during mastication and ingestion of food objects. In macaques and galagos, the mandibular corpus on the balancing side is primarily bent in the sagittal plane during mastication and is both twisted about its long axis and bent in the sagittal plane during transducer biting. On the working side, it is primarily twisted about its long axis and directly sheared perpendicular to its long axis, and portions of it are bent in the sagittal plane during mastication and molar transducer biting. In macaques, the mandibular corpus on each side is primarily bent in the sagittal plane and twisted during incisal transducer biting and ingestion of food objects, and it is transversely bent and slightly twisted during jaw opening. Since galagos usually refused to bite the transducer or food objects with their incisors, an adequate characterization of mandibular stress patterns during these behaviors was not possible. In galagos the mandibular corpus experiences very little transverse bending stress during jaw opening, perhaps in part due to its unfused mandibular symphysis. Marked differences in the patterns of mandibular bone strain were present between galagos and macaques during the masticatory power stroke and during transducer biting. Galagos consistently had much more strain on the working side of the mandibular corpus than on the balancing side. These experiments support the hypothesis that galagos, in contrast to macaques, employ a larger amount of working-side muscle force relative to the balancing-side muscle force during unilateral biting and mastication, and that the fused mandibular symphysis is an adaption to use a maximal amount of balancing-side muscle force during unilateral biting and mastication. These experiments also demonstrate the effects that rosette position, bite force magnitudes, and types of food eaten have on recorded mandibular strain patterns.  相似文献   

17.
The establishment of a publicly-accessible repository of physiological data on feeding in mammals, the Feeding Experiments End-user Database (FEED), along with improvements in reconstruction of mammalian phylogeny, significantly improves our ability to address long-standing questions about the evolution of mammalian feeding. In this study, we use comparative phylogenetic methods to examine correlations between jaw robusticity and both the relative recruitment and the relative time of peak activity for the superficial masseter, deep masseter, and temporalis muscles across 19 mammalian species from six orders. We find little evidence for a relationship between jaw robusticity and electromyographic (EMG) activity for either the superficial masseter or temporalis muscles across mammals. We hypothesize that future analyses may identify significant associations between these physiological and morphological variables within subgroups of mammals that share similar diets, feeding behaviors, and/or phylogenetic histories. Alternatively, the relative peak recruitment and timing of the balancing-side (i.e., non-chewing-side) deep masseter muscle (BDM) is significantly negatively correlated with the relative area of the mandibular symphysis across our mammalian sample. This relationship exists despite BDM activity being associated with different loading regimes in the symphyses of primates compared to ungulates, suggesting a basic association between magnitude of symphyseal loads and symphyseal area among these mammals. Because our sample primarily represents mammals that use significant transverse movements during chewing, future research should address whether the correlations between BDM activity and symphyseal morphology characterize all mammals or should be restricted to this "transverse chewing" group. Finally, the significant correlations observed in this study suggest that physiological parameters are an integrated and evolving component of feeding across mammals.  相似文献   

18.
Electromyographical (EMG) activity was recorded bilaterally from the masseter and temporalis muscles of alert ferrets (Mustela putorius furo) during mastication and crushing. Electromyographic activity was also recorded during biting while a bite-force transducer placed between the carnassial teeth registered forces ranging from 1.5 to 48.8 N. Linear regression analysis demonstrates that temporalis and masseter EMG activity are linearly related to bite force. Electromyographic activity from the balancing-side muscles is nearly equal to EMG activity of the working-side muscles during bone crushing with the carnassial teeth. It is hypothesized that a high percentage of balancing-side muscle activity in ferrets can be recruited during carnassial biting because the postglenoid process prevents ventral displacement of the working-side mandibular condyle.  相似文献   

19.
Anthropoids and tarsiers are the only vertebrates possessing a postorbital septum. This septum, formed by the frontal, alisphenoid, and zygomatic bones, separates the orbital contents from the temporal muscles. Three hypotheses suggest that the postorbital septum evolved to resist stresses acting on the skull during mastication or incision. The facial-torsion hypothesis posits that the septum resists twisting of the face about a rostrocaudal axis during unilateral mastication; the transverse-bending hypothesis argues that the septum resists caudally directed forces acting at the lateral orbital margin during mastication or incision; and the tension hypothesis suggests that the septum resists ventrally directed components of masseter muscle force during mastication and incision. This study evaluates these hypotheses using in vitro and in vivo bone strain data recorded from the circumorbital region of owl monkeys. Incisor loading of an owl monkey skull in vitro bends the face upward in the sagittal plane, compressing the interorbital region rostrocaudally and “buckling” the lateral orbital walls. Unilateral loading of the toothrow in vitro also bends the face in the sagittal plane, compressing the interorbital region rostrocaudally and buckling the working side lateral orbital wall. When the lateral orbital wall is partially cut, so as to reduce the width of its attachment to the braincase, the following changes in circumorbital bone strain patterns occur. During loading of the incisors, lower bone strain magnitudes are recorded in the interorbital region and lateral orbital walls. In contrast, during unilateral loading of the P3, higher bone strain magnitudes are observed in the interorbital region, and generally lower bone strain magnitudes are observed in the lateral orbital walls. During unilateral loading of the M2, higher bone strain magnitudes are observed in both the interorbital region and in the lateral orbital wall ipsilateral to the loaded molar. Comparisons of the in vitro results with data gathered in vivo suggest that, during incision and unilateral mastication, the face is subjected to upward bending in the sagittal plane resulting in rostrocaudal compression of the interorbital region. Modeling the lateral orbital walls as curved plates suggests that during mastication the working side wall is buckled due to the dorsally directed component of the maxillary force which causes upward bending of the face in the sagittal plane. The balancing side lateral orbital wall may also be buckled due to upward bending of the face in the sagittal plane as well as being twisted by the caudoventrally directed components of the superficial masseter muscle force. The in vivo data do not exclude the possibility that the postorbital septum functions to improve the structural integrity of the postorbital bar during mastication. However, there is no reason to believe that a more robust postorbital bar could not also perform this function. Hypotheses stating that the postorbital septum originally evolved to reinforce the skull against routine masticatory loads must explain why, rather than evolving a postorbital septum, the stem anthropoids did not simply enlarge their postorbital bars. © 1996 Wiley-Liss, Inc.  相似文献   

20.
In this study of masticatory maturation, the ontogeny of the histochemical fiber type composition of musculus masseter is examined in the omnivorous miniature swine (Sus scrofa). Fiber type characteristics are interpreted by comparison with electromyography (EMG) recorded during feeding behavior. Similar to locomotion studies, the results suggest a correspondence between the composition and arrangement of motor units and their recruitment pattern. Serial sections of masseter muscles from 10 minipigs, ranging from 2 weeks to slightly over 1 year of age, were stained for myosin adenosine triphosphatase (mATPase) activity to distinguish slow-twitch from fast-twitch fibers, and for nicotinamide adenosine dehydrogenase-tetrazolium reductase to assess the aerobic capacity of the same fibers. Although maintaining a uniformly high aerobic capacity throughout ontogeny and in adult animals, a transition is observed in the relative proportions of fast- and slow-twitch fibers. The primarily fast-twitch neonatal pig masseter eventually comprises approximately 25-30% slow-twitch fibers in adults, with a higher predominance of slow fibers in the deep (vs. superficial) and anterior (vs. posterior) regions of the muscle. Furthermore, while individual fibers of adult masseters generally stain for either alkaline- or acid-stable mATPase activity, a substantial proportion of cells in developing animals exhibits the presence of both isozymes. EMG results indicate functional heterogeneity within the masseter of adult pigs. During chewing, when pig chow is replaced by cracked corn, EMG activity in the deep portion of the muscle either decreases or increases slightly. In the superficial portion, however, muscle amplitudes become dramatically higher for corn, surpassing levels generated for chewing the less obdurate chow. These results are consistent with a behavioral transition from neonatal suckling to sustained mastication of foods of more complex textures eaten by adult pigs. The relationship between these fiber type and EMG results for pig masseter corresponds to those pertaining to motor unit recruitment in the extensor muscles of locomotion. Implications of this work for the evolutionary morphology of mastication also are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号