首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel derivatives of chitosan and their antifungal activities in vitro   总被引:4,自引:0,他引:4  
Guo Z  Chen R  Xing R  Liu S  Yu H  Wang P  Li C  Li P 《Carbohydrate research》2006,341(3):351-354
Three kinds of Schiff bases of carboxymethyl chitosan (CMCTS) were prepared, and their antifungal activities were assessed according to Jasso de Rodríguez's method. The results indicated that 2-(2-hydroxybenzylideneamino)-6-carboxymethylchitosan (HNCMCTS) and 2-(5-chloro-2-hydroxybenzylideneamino)-6-carboxymethylchitosan (HCCMCTS) had better inhibitory effects than those of chitosan or CMCTS against Fusarium oxysporium f. sp. vasinfectum, Alternaria solani, and Valsa mali.  相似文献   

2.
3.
We have assessed the utility of an intracellular fluorochrome, 5-(and-6)-carboxyfluorescein diacetate succinimidyl ester (CFSE), as a tracking label for human intervertebral disc cells in vitro. Although 5 JJIM provides adequate intracellular labeling for whole cell fluorescent microscopic identification of labeled cells, 20 JJLM was preferable for immunocytochemical localization of paraffin embedded labeled cells. Electron dense vesicles are seen at the ultra-structural level in labeled cells. Discrete vesicular labeling can also be observed in whole cell mounts viewed with fluorescence microscopy. Whole cells retain good label for 6 weeks. CFSE labeling is relatively easy, nontoxic to cells and nonradiocactive. Initial optimization of dose with specific cells types is recommended when confirmation of positive immunocytochemistry is needed for tissue engineering studies.  相似文献   

4.
We have assessed the utility of an intracellular fluorochrome, 5-(and-6)-carboxyfluorescein diacetate succinimidyl ester (CFSE), as a tracking label for human intervertebral disc cells in vitro. Although 5 JJIM provides adequate intracellular labeling for whole cell fluorescent microscopic identification of labeled cells, 20 JJLM was preferable for immunocytochemical localization of paraffin embedded labeled cells. Electron dense vesicles are seen at the ultra-structural level in labeled cells. Discrete vesicular labeling can also be observed in whole cell mounts viewed with fluorescence microscopy. Whole cells retain good label for 6 weeks. CFSE labeling is relatively easy, nontoxic to cells and nonradiocactive. Initial optimization of dose with specific cells types is recommended when confirmation of positive immunocytochemistry is needed for tissue engineering studies.  相似文献   

5.
Two new rottlerin-like phloroglucinol derivatives were detected from the fruits of Mallotus japonicus and identified as 3-(3,3-dimethylallyl)-5-(3-acetyl-2,4-dihydroxy-5-methyl-6-methoxybenzyl)-phlorobutyrophenone and -phloroisobutyrophenone by spectral studies. 2,6-Dihydroxy-3-methyl-4-methoxyacetophenone was also isolated  相似文献   

6.
Novel decenoic acids such as (E)-4-decenoic acid and (E)- and (Z)-5-,6-decenoic acid were detected as minor components in heated butter using GC and GC/MS. The formation mechanism of these novel decenoic acids is discussed on the basis of the result of the reaction of δ-decalactone with active clay in a model experiment.  相似文献   

7.
Examined were effects of calmodulin antagonists (W-5 and W-7) on proliferation of two kinds of human cell lines, designated HR and KF, derived from serous cystadecarcinoma of the ovary. Although both W-5 and W-7 inhibited their cell proliferation in vitro, the degree of inhibition was more marked with W-5 rather than with W-7. HR cells had higher sensitivity to cisplatinum than KF cells, while KF cells had higher sensitivity to adriamycin. Combinations of calmodulin antagonists and anti-cancer drugs resulted in adjuvant effects with regard to the inhibition of their cell proliferation in vitro.  相似文献   

8.
Sertoli cells are responsible for regulating a wide range of processes that lead to the differentiation of male germ cells into spermatozoa. Cytoplasmic pH (pH i ) has been shown to be an important parameter in cell physiology, regulating namely cell metabolism and differentiation. However, membrane transport mechanisms involved in pH i regulation mechanisms of Sertoli cells have not yet been elucidated. In this work, pH i was determined using the pH-sensitive fluorescent probe 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF). Addition of weak acids resulted in rapid acidification of the intracellular milieu. Sertoli cells then recovered pH i by a mechanism that was shown to be sensitive to external Na+. pH i recovery was also greatly reduced in the presence of 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS) and amiloride. These results point toward the action of an Na+-driven HCO3/Cl exchanger and/or an Na+/HCO3 cotransporter and the action of the Na+/H+ exchanger on pH i regulation in the experimental conditions used. pH i recovery was only slightly affected by ouabain, suggesting that the inhibition of Na+/K+-ATPase affects recovery indirectly, possibly via the shift on the Na+ gradient. On the other hand, recovery from the acid load was independent of the presence of concanamycin A, a specific inhibitor of the V-type ATPases, suggesting that these pumps do not have a relevant action on pH i regulation in bovine Sertoli cells.  相似文献   

9.
To test the hypothesis that silicification occurs under acid conditions in the silicon deposition vesicle (SDV), the acidity of the SDV of the pennate diatoms Navicula pelliculosa (Brébisson et Kützing) Hilse, N. salinarum (Grunow) Hustedt, and Nitzschia sigma (Kützing) Smith was determined during development of new frustule valves. Cells were incubated with the weak base 3-(2,4-dinitroanilino)-3′-amino-N-methylpropylamine (DAMP) followed by immunocytochemical localization in whole cells and on ultrathin sections. After resupplying silicate to cells synchronized by silicon depletion, the uptake of this nutrient from the medium was the same with or without DAMP; new valves developed without morphological aberrations that could conceivably have been caused by the probe. DAMP was found in cellular compartments known to be acidic, such as vacuoles active as lysosomes, the lumen of thylakoids, and microbodies. In the nucleus and mitochondria, which are circumneutral and basic compartments, the probe did not appear. Besides its presence in acidic compartments, DAMP was specifically accumulated within the SDV during formation of new valves; during the process of valve maturation, the SDV seemed to become increasingly acidic. In control experiments using the ionophores chloroquine, valinomycin, and nigericin, the compartmental location of DAMP was clearly disturbed, resulting in a random intracellular distribution. Accumulation of the fluorescent probe rhodamine 123, which can be translocated over membranes by a reducing potential, confirmed that the SDV can translocate weak bases. The results with DAMP suggest that the pH of the SDV is important in the silicification of diatoms: It facilitates a fast nucleation and aggregation of silica particles, thus increasing the rate of formation of the mature frustules. In addition, the acidic environment might protect the newly formed valves against dissolution before completion and coverage by the organic casing prior to their secretion.  相似文献   

10.
The mechanisms of action of 9-(tetrahydro-2-furyl)-6-mercaptopurine (THFMP) have been studied in Chinese hamster ovary (CHO) cells in tissue culture. THFMP is relatively unstable in physiological buffers, being facilely converted to 6-mercaptopurine (6-MP) even in the absence of cells. Consequently, THFMP undergoes metabolic conversions characteristic of 6-MP, namely formation of 6-thioIMP and incorporation into DNA as 6-thioguanine (6-TG) nucleotide. A number of purines are capable of preventing the toxicity of THFMP in wild-type cells in a manner similar to that of 6-MP. However, exogenous purines and pyrimidines did not prevent the toxicity of THFMP to cells deficient in the enzyme, hypoxanthine-guanine phosphoribosyltransferase (EC 2.4.2.8; HGPRTase). Cells lacking HGPRTase were 20–40-fold resistant to 6-TG and 6-MP but were only 2–4-fold resistant to THFMP. Furthermore, the time-course for killing CHO cells deficient in HGPRTase was different from that in wild-type cells containing the enzyme. There was no apparent effect of THFMP on the utilization of precursors for DNA, RNA or protein synthesis in the enzyme-deficient mutant cell line. The results suggest that THFMP is converted non-enzymatically to 6-MP and shares its mechanisms of action in wild-type cells containing HGPRTase, i.e., inhibition of de novo purine biosynthesis and incorporation into DNA as 6-TG nucleotide. However, the mechanism of action of THFMP in cells lacking HGPRTase is probably unique and is presently unknown.  相似文献   

11.
A conjugate of plastoquinone with decylrhodamine 19 (SkQR1) selectively accumulates in mitochondria of normal and tumor cells. SkQR1 protected the cellular pool of reduced glutathione under oxidative stress. Overexpression of P-glycoprotein (Pgp 170) multidrug resistance pump strongly suppresses accumulation of SkQR1. The inhibitors of Pgp 170 stimulate accumulation of SkQR1 in various cell lines indicating that SkQR1 is a substrate of Pgp 170. The protective effect of SkQR1 against oxidative stress is diminished in the cells overexpressing Pgp 170. It is suggested that mitochondria-targeted antioxidants could selectively protect normal (Pgp 170-negative) cells against the toxic effect of anti-cancer treatments related to oxidative stress.  相似文献   

12.
Neutral sugar composition of cell walls of suspension-cultured tobacco cells was examined with the advance of culture age by an anion-exchange chromatography. Isolated cell walls gave on hydrolysis the following sugars: 2% of l-rhamnose, 6% of d-mannose, 26% of l-arabinose, 13% of d-galactose, 8% of d-xylose and 47% of d-glucose as neutral sugars. Little changes in composition of cell wall polysaccharides were recognized with the advance of culture age. Sugar composition of the extra-cellular polysaccharides was similar to that of hemicellulose fraction from cell walls. Pectinic acid gave on hydrolysis 2-O-(α-d-galactopyranosyluronic acid)-l-rhamnose, d-galacturonic acid and its oligosaccharides.  相似文献   

13.
Lipoxygenases have been classified according to their specificity of fatty acid oxygenation and for several plant enzymes pH-dependent alterations in the product patterns have been reported. Assuming that the biological role of mammalian lipoxygenases is based on the formation of specific reaction products, pH-dependent alterations would impact enzymes' functionality. In this study we systematically investigated the pH-dependence of vertebrate lipoxygenases and observed a remarkable stability of the product pattern in the near physiological range for the wild-type enzyme species. Site-directed mutagenesis of selected amino acids and alterations in the substrate concentrations induced a more pronounced pH-dependence of the reaction specificity. For instance, for the V603H mutant of the human 15-lipoxygenase-2 8-lipoxygenation was dominant at acidic pH (65%) whereas 15-H(p)ETE was the major oxygenation product at pH 8. Similarly, the product pattern of the wild-type mouse 8-lipoxygenase was hardly altered in the near physiological pH range but H604F exchange induced strong pH-dependent alterations in the positional specificity. Taken together, our data suggest that the reaction specificities of wild-type vertebrate lipoxygenase isoforms are largely resistant towards pH alterations. However, we found that changes in the assay conditions (low substrate concentration) and introduction/removal of a critical histidine at the active site impact the pH-dependence of reaction specificity for some lipoxygenase isoforms.  相似文献   

14.
Langerin mediates the carbohydrate-dependent uptake of pathogens by Langerhans cells in the first step of antigen presentation to the adaptive immune system. Langerin binds to an unusually diverse number of endogenous and pathogenic cell surface carbohydrates, including mannose-containing O-specific polysaccharides derived from bacterial lipopolysaccharides identified here by probing a microarray of bacterial polysaccharides. Crystal structures of the carbohydrate-recognition domain from human langerin bound to a series of oligomannose compounds, the blood group B antigen, and a fragment of β-glucan reveal binding to mannose, fucose, and glucose residues by Ca2+ coordination of vicinal hydroxyl groups with similar stereochemistry. Oligomannose compounds bind through a single mannose residue, with no other mannose residues contacting the protein directly. There is no evidence for a second Ca2+-independent binding site. Likewise, a β-glucan fragment, Glcβ1-3Glcβ1-3Glc, binds to langerin through the interaction of a single glucose residue with the Ca2+ site. The fucose moiety of the blood group B trisaccharide Galα1-3(Fucα1-2)Gal also binds to the Ca2+ site, and selective binding to this glycan compared to other fucose-containing oligosaccharides results from additional favorable interactions of the nonreducing terminal galactose, as well as of the fucose residue. Surprisingly, the equatorial 3-OH group and the axial 4-OH group of the galactose residue in 6SO4-Galβ1-4GlcNAc also coordinate Ca2+, a heretofore unobserved mode of galactose binding in a C-type carbohydrate-recognition domain bearing the Glu-Pro-Asn signature motif characteristic of mannose binding sites. Salt bridges between the sulfate group and two lysine residues appear to compensate for the nonoptimal binding of galactose at this site.  相似文献   

15.
Specific leukotriene C4 (LTC4) binding sites were identified in membrane preparations from human fetal lung. Specific binding of [3H]-LTC4 represented 95 percent of total binding, reached steadystate within 10 minutes and was rapidly reversible upon addition of excess unlabeled LTC4. Binding assays were performed at 4°C under conditions which prevented metabolism of [3H]-LTC4 (80 mM serineborate, 10 mM cysteine, 10 mM glycine). Under these conditions, greater than 95 percent of the membrane bound radioactivity, as analyzed by high performance liquid chromatography, co-eluted with the LTC4 standard. Computer-assisted analyses of saturation binding data showed a single class of binding sites with a dissociation constant (Kd) of 26 + 6 nM and a density (Bmax) of 84 ± 18 pmol/mg protein. Pharmacological specificity was demonstrated by competition studies in which specific binding of [3H]-LTC4 was displaced by LTC4 and its structural analogs with inhibition constants (Kj) of 10 to 30 nM, whereas LTD4, diastereoisomers of LTD1, LTE4 and the end organ antagonist FPL 55712 were 150 to 700 fold less potent competitors than LTC4. These results provide evidence for specific, reversible, saturable, high affinity binding sites for [3H]-LTC4 in human fetal lung membranes.  相似文献   

16.
Interaction of local anesthetics with calmodulin   总被引:6,自引:0,他引:6  
A crude folic acid antagonist, previously designated as X-methyl folate was studied. Five components were found to inhibit the growth of Streptococcus faecalis. 9-Methyl folic acid was the major bioactive constituent by weight (5%), but because of its low specific activity, contributed only 1% of the biological activity of the crude reaction product. The most active compound accounted for 40% of the activity and constituted 0.04% of the crude product by weight. Spectroscopic data suggest this to be a novel folic acid analogue.  相似文献   

17.
The delta 5,9 fatty acids (5Z,9Z)-5,9-hexadecadienoic acid, (5Z,9Z)-5,9-nonadecadienoic acid, and (5Z,9Z)-5,9-eicosadienoic acid were synthesized for the first time in four steps (9-12% overall yield) starting from commercially available 2-(2-bromoethyl)-1,3-dioxolane. The synthetic approach provided enough material to corroborate the structure and stereochemistry of (5Z,9Z)-5,9-nonadecadienoic acid which was recently identified in the flowers of Malvaviscus arboreus (Malvaceae). The novel phospholipids 1-hexadecanoyl-2-[(5Z,9Z)-5,9-eicosadienoyl]-sn-glycer o-3-phosphocholine and 1-octadecanoyl-2-[(5Z,9Z)-5,9-eicosadienoyl]-sn- glycero-3-phosphocholine were also synthesized from commercially available L-alpha-phosphatidylcholine (egg yolk) and characterized by positive ion electrospray mass spectrometry. These are the first examples of unsymmetrical phospholipids with saturated fatty acids at the sn-1 position and delta 5,9 fatty acids at the sn-2 position.  相似文献   

18.
Lipid peroxidation in rat brain mitochondria was induced by NADH in the presence of ADP and FeCl3. CV-2619 inhibited the lipid peroxidation in a concentration-dependent manner; the concentration giving 50% inhibition (IC50) was 84 microM. In addition, the inhibitory effect of CV-2619 was strongly enhanced by adding substrates of mitochondrial respiration; when succinate, glutamate, or succinate plus glutamate was added, the IC50 of CV-2619 was changed to 1.1, 10, or 0.5 microM, respectively. Metabolites of CV-2619 also inhibited the lipid peroxidation. The inhibitory effect of CV-2619 on mitochondrial lipid peroxidation disappeared when TTFA, an inhibitor of complex II in mitochondrial respiratory chain, was added. The results indicate that in mitochondria CV-2619 is changed to its reduced form which inhibits lipid peroxidation.  相似文献   

19.
Light-induced generation of reactive oxygen species (ROS) in 2-week-old leaves of Arabidopsis thaliana was studied by means of the ROS-sensitive dyes nitroblue tetrazolium (NBT) and 5-(and-6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate (DCF-DA). Superposition of pictures of chlorophyll fluorescence and DCF fluorescence indicated that the origin of ROS was in the chloroplasts. Experiments were done with zero, 0.1, or 10 mM NaHCO3 in the infiltration medium. Energy quenching in photosystem II was higher under low CO2 concentrations as measured by chlorophyll fluorescence. DCF fluorescence showed that CO2 deficiency led to an increase of ROS generation. In contrast, the photosystem II inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea reduced the light-induced increase of DCF fluorescence. This indicates that ROS production does not primarily result from over-reduction of photosystem II as caused by impeding electron flow in the electron transfer chain. More likely, it is an effect of diverting electron flux normally aimed at carboxylation in the Calvin cycle to other sinks more prone to the generation of toxic radicals. There was no significant effect of salicyl hydroxamate (a blocker of the alternative oxidase), showing that the mitochondrial electron transfer chain seems to play a minor role as already indicated by the superposition of chlorophyll and DCF fluorescence.  相似文献   

20.
MutS functions in mismatch repair (MMR) to scan DNA for errors, identify a target site and trigger subsequent events in the pathway leading to error removal and DNA re-synthesis. These actions, enabled by the ATPase activity of MutS, are now beginning to be analyzed from the perspective of the protein itself. This study provides the first ensemble transient kinetic data on MutS conformational dynamics as it works with DNA and ATP in MMR. Using a combination of fluorescence probes (on Thermus aquaticus MutS and DNA) and signals (intensity, anisotropy and resonance energy transfer), we have monitored the timing of key conformational changes in MutS that are coupled to mismatch binding and recognition, ATP binding and hydrolysis, as well as sliding clamp formation and signaling of repair. Significant findings include (a) a slow step that follows weak initial interaction between MutS and DNA, in which concerted conformational changes in both macromolecules control mismatch recognition, and (b) rapid, binary switching of MutS conformations that is concerted with ATP binding and hydrolysis and (c) is stalled after mismatch recognition to control formation of the ATP-bound MutS sliding clamp. These rate-limiting pre- and post-mismatch recognition events outline the mechanism of action of MutS on DNA during initiation of MMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号