首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure of proteins to oxidants leads to increased oxidation followed by preferential degradation by the proteasomal system. The role of the biologically occurring oxidants singlet oxygen and peroxynitrite in oxidation of proteins in living cells and enhanced degradation of these proteins was examined in this study. Subsequent to treatment of an isolated model protein, ferritin, with singlet oxygen or peroxynitrite, there was enhanced degradation by the isolated 20S proteasome. Treatment of clone 9 liver cells (normal liver epithelia) with two different singlet oxygen-generating systems or peroxynitrite leads to a concentration-dependent increase in cellular protein turnover. At high concentrations of these oxidants, the protein turnover decreases without significant loss of cell viability and proteasome activity. To compare the increase of intracellular protein turnover with that obtained with other oxidants, cells were exposed to hydrogen peroxide or xanthine/xanthine oxidase. The maximal increase in protein turnover was similar with the various oxidants. The oxidized protein moieties were removed by enhanced protein turnover. Removal of singlet oxygen- or peroxynitrite-damaged proteins is dependent on the proteasomal system, as suggested by the sensitivity to lactacystin. Our results provide evidence that the proteasomal system is able to selectively recognize and degrade proteins modified by singlet oxygen or peroxynitrite in vitro as well as in living cells.  相似文献   

2.
Macrophages are stimulable cells able to increase the production of reactive oxygen and nitrogen species dramatically for a short period of time. Free radicals and other oxidants are able to oxidize the intracellular protein pool. These oxidized proteins are selectively recognized and degraded by the intracellular proteasomal system. We used the mouse macrophage-like cell line RAW264.7 to test whether macrophagial cells are able to increase their protein turnover after oxidative stress and whether this is accompanied by an increased protein oxidation. Macrophagial cells are particularly susceptible to bolus additions of hydrogen peroxide and peroxynitrite. In further experiments we activated RAW264.7 cells with PMA to test whether the production of endogenous oxidants has analogous effects. A clear dependence of the protein turnover and protein oxidation on the oxidative burst could be measured. In further experiments the role of the proteasomal system in the selective removal of oxidized proteins could be revealed exploring the proteasome specific inhibitor lactacystin. Therefore, although oxidants are able to attack the intracellular protein pool in macrophages, these cells are able to remove oxidized proteins selectively and protect the intracellular protein pool from oxidation.  相似文献   

3.
Degradation of oxidized extracellular proteins by microglia   总被引:11,自引:0,他引:11  
In living organisms a permanent oxidation of protein oxidation occurs. The degradation of intracellular oxidized proteins is intensively studied, but knowledge about the fate of oxidatively modified extracellular proteins is still limited. We studied the fate of exogenously added oxidized proteins in microglial cells. Both primary microglial cells and RAW cells are able to remove added oxidized laminin and myelin basic protein from the extracellular environment. Moderately oxidized proteins are degraded most efficiently, whereas strongly oxidized proteins are taken up by the microglial cells without an efficient degradation. Activation of microglial cells enhances the selective recognition and degradation of moderately oxidized protein substrates by proteases. Inhibitor studies also revealed an involvement of the lysosomal and the proteasomal system in the degradation of extracellular proteins. These studies let us conclude that microglial cells are able to remove oxidized proteins from the extracellular environment in the brain.  相似文献   

4.
The activation of microglial cells in response to neuropathological stimuli is one of the prominent features of human neurodegenerative diseases. Cytokines such as IL-1 beta and TNF-alpha and inflammation-related enzymes such as inducible nitric oxide synthase are usually induced during the activation of microglial cells. We investigated the modulation of the activation of microglial cell by transfecting a Cu/Zn-SOD cDNA into BV-2 cells. Parental and transfected BV-2 cells were then subjected to LPS stimulation. The results showed that in Cu/Zn-SOD-transfected BV-2 cells, the expression and activity of Cu/Zn-SOD increased. On the other hand, upon activation by LPS, these cells produced less NO, IL-1 beta, and TNF-alpha than the parental microglial cells. This finding suggests that superoxide may be an early signal triggering the induction of cytokines and that the transfected Cu/Zn-SOD may provide a neuroprotective function via suppression of microglial activation. In addition, this approach may provide a rationale for the development of treatments for neurodegenerative diseases.  相似文献   

5.
Endotoxin (lipopolysaccharide, LPS) is a component of the outer membrane of Gram-negative bacteria and promotes the activation of macrophages and microglia. Although these cells are highly LPS-responsive, they serve unique tissue-specific functions and exhibit different LPS sensitivities. Accordingly, it was of interest to evaluate whether these biological differences reside in variations within LPS signaling pathways between these two cell types. Because the mitogen-activated protein kinases ERK-1 and ERK-2 have been implicated in the control of many immune responses, we tested the concept that they are a key indicator for differences in cellular LPS sensitivity. We observed that murine RAW 264.7 macrophages and murine BV-2 microglial cells both respond to LPS by exhibiting increased IkappaBalpha degradation, enhanced NF-kappaB DNA binding activity, and elevated nitric oxide and interleukin-1beta production. Although LPS potently stimulates ERK activation in RAW 264.7 macrophages, it does not activate ERK-1/-2 in BV-2 microglia. Moreover, antagonism of the MEK/ERK pathway potentiates LPS-stimulated nitric oxide production, suggesting that LPS-stimulated ERK activation can exert inhibitory effects in macrophage-like cells. These data support the idea that ERK activation is not a required function of LPS-mediated signaling events and illustrate that alternative/additional pathways for LPS action exist in these cell types.  相似文献   

6.
Nitric oxide (NO) release upon microglial cell activation has been implicated in the tissue injury and cell death in many neurodegenerative diseases. Recent studies have indicated the ability of interferon-gamma (IFNgamma) and lipopolysaccharides (LPS) to independently induce type II nitric oxide synthase (iNOS) expression and NO production in BV-2 microglial cells. However, a detailed comparison between the signaling pathways activating iNOS by these two agents has not been accomplished. Analysis of PKC isoforms revealed mainly the presence of PKCdelta, iota and lambda in BV-2 cells. Although both IFNgamma and LPS could specifically enhance the tyrosine phosphorylation of PKCdelta, treatment with IFNgamma induced a steady increase of phospho-PKCdelta for up to 1h, whereas treatment with LPS elevated phospho-PKCdelta levels only transiently, with peak activity at 5 min. Rottlerin, a specific inhibitor for PKCdelta, dose-dependently inhibited IFNgamma- and LPS-induced NO production. Despite the common involvement of PKCdelta, IFNgamma- but not LPS-induced NO production involved extracellular signal-regulated kinases (ERK1/2) cascade and IFNgamma-induced phosphorylation of ERK1/2 was mediated through PKC. On the other hand, LPS- but not IFNgamma-induced NO production was through stimulation of NF-kappaB activation and nuclear translocation to interact with DNA. These results demonstrated distinct signaling pathways for induction of iNOS by IFNgamma and LPS in BV-2 microglial cells.  相似文献   

7.
The present study attempts to investigate the effect of H(2)S on lipopolysaccharide (LPS)-induced inflammation in both primary cultured microglia and immortalized murine BV-2 microglial cells. We found that exogenous application of sodium hydrosulfide (NaHS) (a H(2)S donor, 10-300 micro mol/L) attenuated LPS-stimulated nitric oxide (NO) in a concentration-dependent manner. Stimulating endogenous H(2)S production decreased LPS-stimulated NO production, whereas lowering endogenous H(2)S level increased basal NO production. Western blot analysis showed that both exogenous and endogenous H(2)S significantly attenuated the stimulatory effect of LPS on inducible nitric oxide synthase expression, which is mimicked by SB 203580, a specific p38 mitogen-activated protein kinase (MAPK) inhibitor. Exogenously applied NaHS significantly attenuated LPS-induced p38 MAPK phosphorylation in BV-2 microglial cells. Moreover, both NaHS (300 micro mol/L) and SB 203580 (1 micro mol/L) significantly attenuated LPS-induced tumor necrosis factor-alpha secretion, another inflammatory indicator. In addition, NaHS (10-300 micro mol/L) dose-dependently decreased LPS-stimulated NO production in primary cultured astrocytes, suggesting that the anti-neuroinflammatory effect of H(2)S is not specific to microglial cells alone. Taken together, H(2)S produced an anti-inflammatory effect in LPS-stimulated microglia and astrocytes, which may be due to inhibition of inducible nitric oxide synthase and p38 MAPK signaling pathways. These findings may have important implications in the treatment of neuroinflammation-related diseases.  相似文献   

8.
9.
目的探讨人脐带间充质干细胞(hUCMSCs)对脂多糖(LPS)活化的小胶质细胞功能表型的影响。 方法实验设未诱导对照组(加入PBS无LPS诱导的BV-2细胞),LPS诱导组(加入1.0 μg/mL的LPS诱导BV-2细胞向M1型分化),按比例加入不同浓度hUCMSCs进行干预(LPS+低、中、高浓度hUCMSCs干预组hUCMSCs与BV-2细胞比例分别为:1:100、1:10、1:1),分别于24、48、72 h观察BV-2形态变化,Griess法检测细胞培养上清中M1表型产物一氧化氮(NO)的浓度;将hUCMSCs与BV-2细胞在不同条件下(LPS+/LPS-)共培养,qRT-PCR检测BV-2细胞M2表型标记物精氨酸酶1表达变化。数据分析采用重复测量资料的方差分析,组间比较采用Tukey分析。 结果BV-2细胞经LPS诱导后活化,细胞变大,呈"煎饼状"、"阿米巴状"变化,呈经典的M1表型分化;与未诱导对照组相比,LPS诱导组48、72 h BV-2细胞NO含量升高[48 h:(0.507±0.012)μg/mL比(5.183±0.171)μg/ mL;72 h:(0.934±0.024)μg/ mL比(12.498±0.168) μg/mL,P均< 0.01],与LPS诱导组比较,LPS+低、中、高浓度hUCMSCs干预组72 h [(12.498±0.168)μg/mL比(11.852±0.149)μg/ mL、(9.796±0.048)μg/mL、(1.876±0.063) μg/mL]及LPS+中、高浓度hUCMSCs干预组48 h NO含量[(5.183±0.171) μg/ mL比(3.921±0.066)μg/mL、(1.202±0.012)μg/ mL]降低,且呈干预浓度依赖性NO含量下降,差异均有统计学意义(P均< 0.01)。精氨酸酶1 qRT-PCR结果显示:与未诱导组比较,单纯高浓度hUCMSCs干预组3个时间点精氨酸酶1的相对表达量均升高(1.046±0.057比19.266±0.641,1.114±0.093比16.977±0.749,1.139±0.118比16.959±0.625),与LPS诱导对照组(0.000)比较,未诱导对照组(1.046±0.057,1.114±0.093,1.139±0.118)及LPS+高浓度hUCMSCs干预组精氨酸酶1表达(0.879±0.077,1.023±0.081,1.121±0.078)升高,差异具有统计学意义(P均< 0.01)。 结论LPS可诱导小胶质细胞BV-2炎症反应,而hUCMSCs可抑制活化小胶质细胞的炎症反应,抵消LPS对BV-2的诱导效应,促进小胶质细胞由促炎的M1型向抗炎的M2型转变。  相似文献   

10.
Cocaine abuse leads to neuroinflammation, which, in turn, contributes to the pathogenesis of neurodegeneration associated with advanced HIV-1 infection. Autophagy plays important roles in both innate and adaptive immune responses. However, the possible functional link between cocaine and autophagy has not been explored before. Herein, we demonstrate that cocaine exposure induced autophagy in both BV-2 and primary rat microglial cells as demonstrated by a dose- and time-dependent induction of autophagy-signature proteins such as BECN1/Beclin 1, ATG5, and MAP1LC3B. These findings were validated wherein cocaine treatment of BV-2 cells resulted in increased formation of puncta in cells expressing either endogenous MAP1LC3B or overexpressing GFP-MAP1LC3B. Specificity of cocaine-induced autophagy was confirmed by treating cells with inhibitors of autophagy (3-MA and wortmannin). Intriguingly, cocaine-mediated induction of autophagy involved upstream activation of 2 ER stress pathways (EIF2AK3- and ERN1-dependent), as evidenced by the ability of the ER stress inhibitor salubrinal to ameliorate cocaine-induced autophagy. In vivo validation of these findings demonstrated increased expression of BECN1, ATG5, and MAP1LC3B-II proteins in cocaine-treated mouse brains compared to untreated animals. Increased autophagy contributes to cocaine-mediated activation of microglia since pretreatment of cells with wortmannin resulted in decreased expression and release of inflammatory factors (TNF, IL1B, IL6, and CCL2) in microglial cells. Taken together, our findings suggest that cocaine exposure results in induction of autophagy that is closely linked with neuroinflammation. Targeting autophagic proteins could thus be considered as a therapeutic strategy for the treatment of cocaine-related neuroinflammation diseases.  相似文献   

11.
We examined how lipopolysaccharide (LPS) and interferon gamma (IFN-γ), known to differentially activate microglia, affect the expression of G protein-coupled receptor 55 (GPR55), a novel cannabinoid receptor. We found that GPR55 mRNA is significantly expressed in both primary mouse microglia and the BV-2 mouse microglial cell line, and that LPS down-regulates this message. Conversely, IFN-γ slightly decreases GPR55 mRNA in primary microglia, while it upregulates this message in BV-2 cells. Moreover, the GPR55 agonist, lysophosphatidylinositol, increases ERK phosphorylation in BV-2 stimulated with IFN-γ, in correlation with the increased amount of GPR55 mRNA. Remarkably, these stimuli-induced changes in GPR55 expression are similar to those observed with CB2-R, suggesting that both receptors might be involved in neuroinflammation and that their expression is concomitantly controlled by the state of microglial activation.  相似文献   

12.
Microglia activation plays an important role in immune responses in the CNS including the retina. Crocin, a plant-derived carotenoid, has been reported to possess anti-inflammatory, anti-apoptotic and anti-oxidative capacity in models of retinal damage and degeneration. If these neuroprotective effects could be mediated by direct modulation of microglial cells is unclear. Here, we examined the direct effects of crocin on key functions and pro-inflammatory gene expression in lipopolysaccharide (LPS)-activated BV-2 microglia. We found that crocin stimulation strongly promoted filopodia formation and markedly increased microglial phagocytosis, two important parameters relevant for physiological microglia functions. Moreover, crocin significantly reduced gene expression of the pro-inflammatory markers IL6, CCL2, and iNOS in LPS-challenged BV-2 cells and potently blocked NO production in these microglia. The observed immunomodulatory effects of crocin were not mediated by general inhibition of NFkB nuclear translocation. Our findings indicate that many of the anti-inflammatory effects of crocin demonstrated in animal models of neuronal degeneration could be mediated by its direct effects on microglia homeostasis.  相似文献   

13.
Prion diseases are infectious and fatal neurodegenerative diseases. The pathogenic agent is an abnormal prion protein aggregate. Microglial activation in the centre nervous system is a characteristic feature of prion disease. In this study, we examined the effect of PrP 106–126 on PrP mRNA gene expression in Mouse microglia cells BV-2 by real-time quantitative PCR. PrP mRNA expression level was found to be significantly increased after 18 h exposure of BV-2 cells to PrP 106–126, with 3-fold increase after 18 h and 4.5-fold increase after 24 h and BV-2 cells proliferating occurred correspondingly. Our results provide the first in vitro evidence of the increase of PrP mRNA levels in microglial cells exposed to PrP 106–126, and indicate that microglial cells might play a critical role in prion pathogenesis.  相似文献   

14.
Recent studies have demonstrated that microglial hyperactivation-mediated neuroinflammation is involved in the pathogenesis of several neurodegenerative diseases. Thus, inhibiting microglial production of the neurotoxic mediator tumor necrosis factor-α (TNF-α) is considered a promising strategy to protect against neurodegeneration. Here, we investigated the inhibitory effect of licorice-derived dehydroglyasperin C (DGC) on lipopolysaccharide (LPS)-induced TNF-α production and inflammation-mediated neurodegeneration. We found that DGC pre-treatment attenuated TNF-α production in response to LPS stimulation of BV-2 microglia. DGC pre-treatment attenuated LPS-induced inhibitor of κB-α (IκB-α) and p65 phosphorylation and decreased the DNA binding activity of nuclear factor-κB (NF-κB). DGC pre-treatment also inhibited LPS-mediated phosphorylation of p38 mitogen-activated protein kinases (MAPKs) and extracellular signal-regulated kinase (ERK). Interestingly, DGC treatment of BV-2 microglia significantly increased MAPK phosphatase 1 (MKP-1) mRNA and protein expression, which is a phosphatase of p38 MAPK and ERK, suggesting that the DGC-mediated increase in MKP-1 expression might inhibit LPS-induced MAPKs and NF-κB activation and further TNF-α production. We also found that LPS-mediated microglial neurotoxicity can be attenuated by DGC. The addition of conditioned media (CM) from DGC- and LPS-treated microglia to neurons helped maintain healthy cell body and neurite morphology and increased the number of microtubule-associated protein 2-positive cells and the level of synaptophysin compared to treatment with CM from LPS-treated microglia. Taken together, these data suggest that DGC isolated from licorice may inhibit microglia hyperactivation by increasing MKP-1 expression and acting as a potent anti-neurodegenerative agent.  相似文献   

15.
A challenge for studies involving microglia cultures is obtaining sufficient cells for downstream experiments. Macrophage colony-stimulating factor (M-CSF) has been used to improve yield of microglia in culture. However, the effects of M-CSF on activation profiles of microglia cultures are still unclear. Microglia activation is characterised by upregulation of co-stimulatory molecules and an inflammatory phenotype. The aim of this study is to demonstrate whether M-CSF supplementation alters microglial responses in resting and activated conditions. Microglia derived from mixed glia cultures and the BV-2 microglia cell line were cultivated with/without M-CSF and activated with lipopolysaccharide (LPS) and beta amyloid (Aβ). We show M-CSF expands primary microglia without affecting microglial responses to LPS and Aβ, as shown by the comparable expression of MHC class II and CD40 to microglia grown without this growth factor. M-CSF supplementation in BV-2 cells had no effect on nitric oxide (NO) production. Therefore, M-CSF can be considered for improving microglia yield in culture without introducing activation artefacts.  相似文献   

16.
Glycated protein products are formed upon binding of sugars to lysine and arginine residues and have been shown to accumulate during aging and in pathologies such as Alzheimer disease and diabetes. Often these glycated proteins are transformed into advanced glycation end products (AGEs) by a series of intramolecular rearrangements. In the study presented here we tested the ability of microglial cells to degrade BSA-AGE formed by glycation reactions of bovine serum albumin (BSA) with glucose and fructose. Microglial cells are able to degrade BSA-AGEs to a certain degree by proteasomal and lysosomal pathways. However, the proteasome and lysosomal proteases are severely inhibited by cross-linked BSA-AGEs. BSA-AGEs are furthermore able to activate microglial cells. This activation is accompanied by an enhanced degradation of BSA-AGE. Therefore, we conclude that microglial cells are able to degrade glycated proteins, although cross-linked protein-AGEs have an inhibitory effect on proteolytic systems in microglial cells.  相似文献   

17.
Identifying MAPK pathways and understanding their role in microglial cells may be crucial for understanding the pathogenesis of neurodegenerative diseases since activated microglia could contribute to the progressive nature of neurodegeneration. In this study we show that the JNK pathway plays an important role in the survival of resting microglia BV-2 cells, as evidenced by Annexin-V positive staining and caspase-3 activation in cells treated with the specific JNK inhibitor SP600125. During LPS-induced activation of BV-2 cells inhibition of the p38 and JNK pathways with SB203580 and SP600125, respectively, results in apoptosis as detected by apoptotic markers. In the presence SP600125 the phosphorylation of p38 was significantly increased both in control and LPS-activated BV-2 cells. This suggests that the pro-survival role of JNK is possible due to its abrogation of a potentially apoptotic signal mediated by p38 MAPK pathway. Furthermore, inhibition of the p38 MAPK pathway during LPS-induced activation of BV-2 cells resulted in an increased phosphorylation of c-Jun, suggesting that the pro-survival effect of p38 MAPK during inflammatory conditions involves the JNK pathway. In conclusion, the results of this study demonstrate that both the JNK and p38 MAPK pathways possess anti-apoptotic functions in the microglial cell line BV-2 during LPS-induced activation.  相似文献   

18.
19.
Aged garlic extract (AGE) is widely used as a dietary supplement, and is claimed to promote human health through anti-oxidant/anti-inflammatory activities with hypolipidemic, antiplatelet and neuroprotective effects. Prior studies of AGE have mainly focused on its organosulfur compounds, with little attention paid to its carbohydrate derivatives, such as N-α-(1-deoxy-D-fructos-1-yl)-L-arginine (FruArg). The goal of this study is to investigate actions of AGE and FruArg on antioxidative and neuroinflammatory responses in lipopolysaccharide (LPS)-activated murine BV-2 microglial cells using a proteomic approach. Our data show that both AGE and FruArg can significantly inhibit LPS-induced nitric oxide (NO) production in BV-2 cells. Quantitative proteomic analysis by combining two dimensional differential in-gel electrophoresis (2D-DIGE) with mass spectrometry revealed that expressions of 26 proteins were significantly altered upon LPS exposure, while levels of 20 and 21 proteins exhibited significant changes in response to AGE and FruArg treatments, respectively, in LPS-stimulated BV-2 cells. Notably, approximate 78% of the proteins responding to AGE and FruArg treatments are in common, suggesting that FruArg is a major active component of AGE. MULTICOM-PDCN and Ingenuity Pathway Analyses indicate that the proteins differentially affected by treatment with AGE and FruArg are involved in inflammatory responses and the Nrf2-mediated oxidative stress response. Collectively, these results suggest that AGE and FruArg attenuate neuroinflammatory responses and promote resilience in LPS-activated BV-2 cells by suppressing NO production and by regulating expression of multiple protein targets associated with oxidative stress.  相似文献   

20.
Microglial activation has been associated with neurodegenerative diseases by inducing the neuroinflammatory mediators such as nitric oxide (NO), TNF-α and IL-1β. (?)-Nyasol, a norlignan isolated from a medicinal plant Anemarrhena asphodeloides, showed anti-inflammatory potential in lipopolysaccharide (LPS)-activated BV-2 microglial cells. (?)-Nyasol inhibited the production of NO and prostaglandin E2 (PGE2) and also the expression of inducible nitric oxide synthase and cyclooxygenase-2, which are responsible for the respective production of NO and PGE2. It also suppressed the mRNA levels of TNF-α and IL-1β in activated microglial cells. These effects of (?)-nyasol were correlated with the inactivation of p38 MAPK and the suppression of LPS-induced I-κBα degradation. Taken together, these results suggest that (?)-nyasol can be a modulator in neuroinflammatory conditions induced by microglial activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号