首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
3.
The pre-synaptic sympathetic modulator role of adenosine was assessed by studying transmitter release following electrical depolarization of nerve endings from the rat mesenteric artery. Mesentery perfusion with exogenous adenosine exclusively inhibited the release of norepinephrine (NA) but did not affect the overflow of neuropeptide Y (NPY), establishing the basis for a differential pre-synaptic modulator mechanism. Several adenosine structural analogs mimicked adenosine's effect on NA release and their relative order of potency was: 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride = 1-[2-chloro-6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1-deoxy-N-methyl-beta-d-ribofuranuronamide = 5'-(N-ethylcarboxamido)adenosine > adenosine > N(6)-cyclopentyladenosine. The use of selective receptor subtype antagonists confirmed the involvement of A(2A) and A(3) adenosine receptors. The modulator role of adenosine is probably due to the activation of both receptors; co-application of 1 nM 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride plus 1 nM 1-[2-chloro-6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1-deoxy-N-methyl-beta-D-ribofuranuronamide caused additive reductions in NA released. Furthermore, while 1 nM of an A(2A) or A(3) receptor antagonist only partially reduced the inhibitory action of adenosine, the combined co-application of the two antagonists fully blocked the adenosine-induced inhibition. Only the simultaneous blockade of the adenosine A(2A) plus A(3) receptors with selective antagonists elicited a significant increase in NA overflow. H 89 reduced the release of both NA and NPY. We conclude that pre-synaptic A(2A) and A(3) adenosine receptor activation modulates sympathetic co-transmission by exclusively inhibiting the release of NA without affecting immunoreactive (ir)-NPY and we suggest separate mechanisms for vesicular release modulation.  相似文献   

4.
On the basis of potent and selective binding affinity of Cl-IB-MECA to the human A(3) adenosine receptor, its 4'-thioadenosine derivatives were efficiently synthesized starting from D-gulonic gamma-lactone. Among compounds tested, 2-chloro-N(6)-(3-iodobenzyl)- and 2-chloro-N(6)-methyl-4' -thioadenosine-5' -methyluronamides (7a and 7b) exhibited nanomolar range of binding affinity (K(i) = 0.38 nM and 0.28 nM, respectively) at the human A(3)AR. These compounds showed anti-growth effects on HL-60 leukemia cell, which resulted from the inhibition of Wnt signaling pathway.  相似文献   

5.
The highly selective agonists of the A(3) adenosine receptor (AR), Cl-IB-MECA (2-chloro-N(6)-(3-iodobenzyl)-5'-N-methylcarboxamidoadenosine), and its 4'-thio analogue, were successfully converted into selective antagonists simply by appending a second N-methyl group on the 5'-uronamide position. The 2-chloro-5'-(N,N-dimethyl)uronamido analogues bound to, but did not activate, the human A(3)AR, with K(i) values of 29 nM (4'-O) and 15 nM (4'-S), showing >100-fold selectivity over A(1), A(2A), and A(2B)ARs. Competitive antagonism was demonstrated by Schild analysis. The 2-(dimethylamino)-5'-(N,N-dimethyl)uronamido substitution also retained A(3)AR selectivity but lowered affinity.  相似文献   

6.
Although adenosine exerts cardio-and vasculoprotective effects, the roles and signaling mechanisms of different adenosine receptors in mediating skeletal muscle protection are not well understood. We used a mouse hindlimb ischemia-reperfusion model to delineate the function of three adenosine receptor subtypes. Adenosine A(3) receptor-selective agonist 2-chloro-N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (Cl-IBMECA; 0.07 mg/kg ip) reduced skeletal muscle injury with a significant decrease in both Evans blue dye staining (5.4 +/- 2.6%, n = 8 mice vs. vehicle-treated 28 +/- 6%, n = 7 mice, P < 0.05) and serum creatine kinase level (1,840 +/- 910 U/l, n = 13 vs. vehicle-treated 12,600 +/- 3,300 U/l, n = 14, P < 0.05), an effect that was selectively blocked by an A(3) receptor antagonist 3-ethyl-5-benzyl-2-methyl-6-phenyl-4-phenylethynyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS-1191; 0.05 mg/kg). The adenosine A(1) receptor agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA; 0.05 mg/kg) also exerted a cytoprotective effect, which was selectively blocked by the A(1) antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 0.2 mg/kg). The adenosine A(2A) receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS-21680; 0.07 mg/kg)-induced decrease in skeletal muscle injury was selectively blocked by the A(2A) antagonist 2-(2-furanyl)-7-[3-(4-methoxyphenyl)propyl]-7H-pyrazolo[4,3-e] [1,2,4]triazolo[1,5-C]pyrimidin-5-amine (SCH-442416; 0.017 mg/kg). The protection induced by the A(3) receptor was abrogated in phospholipase C-beta2/beta3 null mice, but the protection mediated by the A(1) or A(2A) receptor remained unaffected in these animals. The adenosine A(3) receptor is a novel cytoprotective receptor that signals selectively via phospholipase C-beta and represents a new target for ameliorating skeletal muscle injury.  相似文献   

7.
Two radiolabeled analogues of 6-benzyloxy-9H-purin-2-ylamine (O(6)-benzylguanine; BG) potentially useful in the in vivo mapping of O(6)-alkylguanine-DNA alkyltransferase (AGT) were synthesized. Fluorine-18 labeling of the known 6-(4-fluoro-benzyloxy)-9H-purin-2-ylamine (FBG; 6) was accomplished by the condensation of 4-[(18)F]fluorobenzyl alcohol with 2-aminopurin-6-yltrimethylammonium chloride (4) or 2-amino-6-chloropurine in average decay-corrected radiochemical yields of 40 and 25%, respectively. Unlabeled 6-(3-iodo-benzyloxy)-9H-purin-2-ylamine (IBG; 7) was prepared from 4 and 3-iodobenzyl alcohol. Radioiodination of 9, prepared from 7 in two steps, and subsequent deprotection gave [(131)I]7 in about 70% overall radiochemical yield. The IC(50) values for the inactivation of AGT from CHO cells transfected with pCMV-AGT were 15 nM for IBG and 50 nM for FBG. The binding of [(18)F]6 and [(131)I]7 to purified AGT was specific and saturable with both exhibiting similar IC(50) values (5-6 microM).  相似文献   

8.
To determine whether A1 adenosine receptors (AR) participate in adenosine-induced changes of coronary flow, isolated hearts from A1AR(-/-) and A1AR(+/+) mice were perfused under constant pressure, and the effects of nonselective and selective agonists were examined. Adenosine, 5'-N-ethylcarboxamidoadenosine (NECA, nonselective), and the selective A2AAR agonist 2-2-carboxyethylphenethylamino-5'-N-ethylcarboxamidoadenosine (CGS-21680) augmented maximal coronary vasodilation in A1AR(-/-) hearts compared with A1AR(+/+) hearts. Basal coronary flow was increased (P < 0.05) in A1AR(-/-) hearts compared with A1AR(+/+) hearts: 2.548 +/- 0.1 vs. 2.059 +/- 0.17 ml/min. In addition, selective activation of A1AR with 2-chloro-N6-cyclopentyladenosine (CCPA) at nanomolar concentrations (1-100 nM) did not significantly change coronary flow; at higher concentrations, CCPA increased coronary flow in A1AR(-/-) and A1AR(+/+) hearts. Because deletion of A1AR increased basal coronary flow, it is speculated that this effect is due to removal of an inhibitory influence associated with A1AR. Adenosine and NECA at approximately EC50 (100 and 50 nM, respectively) increased coronary flow in A1AR(+/+) hearts to 177.86 +/- 8.75 and 172.72 +/- 17% of baseline, respectively. In the presence of the selective A1AR antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 50 nM), the adenosine- and NECA-induced increase in coronary flow in A1AR(+/+) hearts was significantly augmented to 216.106 +/- 8.35 and 201.61 +/- 21.89% of normalized baseline values, respectively. The adenosine- and NECA-induced increase in coronary flow in A1AR(-/-) hearts was not altered by DPCPX. These data indicate that A1AR may inhibit or negatively modulate coronary flow mediated by other AR subtypes (A2A and A2B).  相似文献   

9.
On the basis of potent and selective A(3) adenosine receptor (AR) antagonist, 2-chloro-N(6)-(3-iodobenzyl)-4'-thioadenosine-5'-N,N-dimethyluronamide, structure-activity relationships were studied for a series of 5'-N,N-dialkyluronamide derivatives, synthesized from D-gulonic gamma-lactone. From this study, it was revealed that removal of the hydrogen bond-donating ability of the 5'-uronamide was essential for the pure A(3)AR antagonism. 5'-N,N-Dimethyluronamide derivatives exhibited higher binding affinity than larger 5'-N,N-dialkyl or 5'-N,N-cycloalkylamide derivatives, indicating that steric factors are crucial in binding to the human A(3)AR. A N(6)-(3-bromobenzyl) derivative 6c (K(i)=9.32 nM) exhibited the highest binding affinity at the human A(3)AR with very low binding affinities to other AR subtypes.  相似文献   

10.
MRE 2029-F20 [N-benzo[1,3]dioxol-5-yl-2-[5-(2,6-dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)-1-methyl-1H-pyrazol-3-yloxy]-acetamide] is a selective antagonist ligand of A2B adenosine receptors. For use as a radioligand, 1,3-diallyl-xanthine, the precursor of [3H]-MRE 2029-F20, was synthesized, and tritiated on the allyl groups. [3H]-MRE 2029-F20 bound to human A2B receptors expressed in CHO cells showed a KD value of 1.65+/-0.10 nM and Bmax value of 36+/-4 fmol/mg protein. [3H]-MRE2029-F20 represents a useful tool for the pharmacological characterization of human A2B adenosine receptor subtype.  相似文献   

11.
12.
Ziagen, (1S,cis)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]- 2-cyclopentene-1-methanol, was synthesized from (1S,4R)-azabicyclo[2.2.1]hept-5-en-3-one by efficient processes which bypass problematic steps in earlier routes. 2-Amino-4,6-dichloro-5-formamidopyrimidine is a key intermediate which makes possible an efficient construction of the purine from a chiral cyclopentenyl precursor.  相似文献   

13.
Following myocardial infarction (MI), contractile dysfunction develops not only in the infarct zone but also in noninfarcted regions of the left ventricle remote from the infarct zone. Inflammatory activation secondary to MI stimulates inducible nitric oxide synthase (iNOS) induction with excess production of nitric oxide. We hypothesized that the anti-inflammatory effects of selective A(2A)-adenosine receptor (A(2A)AR) stimulation would suppress inflammation and preserve cardiac function in the remote zone early after MI. A total of 53 mice underwent 60 min of coronary occlusion followed by 24 h of reperfusion. The A(2A)AR agonist (ATL146e, 2.4 microg/kg) was administered intraperitoneally 1, 3, and 6 h postreperfusion. Because of the 1-h delay in treatment after MI, ATL146e had no effect on infarct size, as demonstrated by contrast-enhanced cardiac MRI (n = 18) performed 24 h post-MI. ATL146e did however preserve global cardiac function at that time by limiting contractile dysfunction in remote regions [left ventricle wall thickening: 51 +/- 4% in treated (n = 9) vs. 29 +/- 3% in nontreated groups (n = 9), P < 0.01]. RT-PCR, immunohistochemistry, and Western blot analysis indicated that iNOS mRNA and protein expression were significantly reduced by ATL146e treatment in both infarcted and noninfarcted zones. Similarly, elevations in plasma nitrate-nitrite after MI were substantially blunted by ATL146e (P < 0.01). Finally, treatment with ATL146e reduced NF-kappaB activation in the myocardium by over 50%, not only in the infarct zone but also in noninfarcted regions (P < 0.05). In conclusion, A(2A)AR stimulation after MI suppresses inflammatory activation and preserves cardiac function, suggesting the potential utility of A(2A)AR agonists against acute heart failure in the immediate post-MI period.  相似文献   

14.
Three unprecedented purine-containing compounds, named [6]-, [8]-, and [10]-zingerines as they are 5-(6-amino-9H-purin-9-yl) analogs of [6]-, [8]-, and [10]-gingerols, respectively, were isolated from a methanolic extract of ginger rhizomes using a phase trafficking-based method that utilizes solid phase reagents allowing for fast and selective simultaneous separation of basic, acidic, and neutral components of natural products extracts.  相似文献   

15.
The adenosine A2B receptor is the least well characterized of the four adenosine subtypes due to the lack of potent and selective agonists and antagonists. Despite the widespread distribution of A2B receptor mRNA, little information is available with regard to their function. The characterization of A2B receptors, through radioligand binding studies, has been performed, until now, by using low-affinity and non-selective antagonists like 1,3-dipropyl-8-cyclopentylxanthine ([3H]DPCPX),(4-(2-[7-amino-2-(2-furyl)-[1,2,4]triazolo-[2,3-a][1,3,5]triazin-5-ylamino]ethyl)-phenol ([3H]ZM 241385) and 3-(3,4-aminobenzyl)-8-(4-oxyacetate)phenyl-1-propyl-xanthine ([125I]ABOPX). Recently, high-affinity radioligands for A2B receptors, [N-(4-cyanophenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)-phenoxy]acetamide ([3H]MRS 1754), N-(2-(2-Phenyl-6-[4-(2,2,3,3-tetratritrio-3-phenylpropyl)-piperazine-1-carbonyl]-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino)-ethyl)-acetamide ([3H]OSIP339391) and N-benzo[1,3]dioxol-5-yl-2-[5-(1,3-dipropyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-yl)-1-methyl-1H-pyrazol-3-yloxy]-acetamide] ([3H]MRE 2029F20), have been introduced. This minireview offers an overview of these recently developed radioligands and the most important applications of drugs towards A2B receptors.  相似文献   

16.
N-[5-[N-(2-Amino-5-chloro-3,4-dihydro-4-oxoquinazolin-6-yl)methylamino]-2-thenoyl]-L-glutamic acid (6) and N-[5-[N-(5-chloro-3,4-dihydro-2-methyl-4-oxoquinazolin-6-yl)methylamino]-2-thenoyl]-L-glutamic acid (7), the first reported thiophene analogues of 5-chloro-5,8-dideazafolic acid, were synthesized and tested as inhibitors of tumor cell growth in culture. 4-Chloro-5-methylisatin (10) was converted stepwise to methyl 2-amino-5-methyl-6-chlorobenzoate (22) and 2-amino-5-chloro-3,4-dihydro-6-methyl-4-oxoquinazoline (19). Pivaloylation of the 2-amino group, followed by NBS bromination, condensation with di-tert-butyl N-(5-amino-2-thenoyl)-L-glutamate (28), and stepwise cleavage of the protecting groups with ammonia and TFA yielded. Treatment of 9 with acetic anhydride afforded 2,6-dimethyl-5-chlorobenz[1,3-d]oxazin-4-one (31), which on reaction with ammonia, NaOH was converted to 2,6-dimethyl-5-chloro-3,4-dihydroquinazolin-4-one (33). Bromination of, followed by condensation with and ester cleavage with TFA, yielded. The IC(50) of and against CCRF-CEM human leukemic lymphoblasts was 1.8+/-0.1 and 2.1+/-0.8 microM, respectively.  相似文献   

17.
The vascular response to adenosine and its analogs is mediated by four adenosine receptors (ARs), namely, A(1), A(2A), A(2B), and A(3). A(2A)ARs and/or A(2B)ARs are involved in adenosine-mediated vascular relaxation of coronary and aortic beds. However, the role of A(1)ARs in the regulation of vascular tone is less well substantiated. The aim of this study was to determine the role of A(1)ARs in adenosine-mediated regulation of vascular tone. A(1)AR-knockout [A(1)AR((-/-))] mice and available pharmacological tools were used to elucidate the function of A(1)ARs and the impact of these receptors on the regulation of vascular tone. Isolated aortic rings from A(1)AR((-/-)) and wild-type [A(1)AR((+/+))] mice were precontracted with phenylephrine, and concentration-response curves for adenosine and its analogs, 5'-N-ethyl-carboxamidoadenosine (NECA, nonselective), 2-chloro-N(6)-cyclopentyladenosine (CCPA, A(1)AR selective), 2-(2-carboxyethyl)phenethyl amino-5'-N-ethylcarboxamido-adenosine (CGS-21680, A(2A) selective), and 2-chloro-N(6)-3-iodobenzyladenosine-5'-N-methyluronamide (Cl-IBMECA, A(3) selective) were obtained to determine relaxation. Adenosine and NECA (0.1 microM) caused small contractions of 13.9 +/- 3.0 and 16.4 +/- 6.4%, respectively, and CCPA at 0.1 and 1.0 microM caused contractions of 30.8 +/- 4.3 and 28.1 +/- 3.9%, respectively, in A(1)AR((+/+)) rings. NECA- and CCPA-induced contractions were eliminated by 100 nM of 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, selective A(1)AR antagonist). Adenosine, NECA, and CGS-21680 produced an increase in maximal relaxation in A(1)AR((-/-)) compared with A(1)AR((+/+)) rings, whereas Cl-IBMECA did not produce contraction in either A(1)AR((+/+)) or A(1)AR((-/-)) rings. CCPA-induced contraction at 1.0 microM was eliminated by the PLC inhibitor U-73122. These data suggest that activation of A(1)ARs causes contraction of vascular smooth muscle through PLC pathways and negatively modulates the vascular relaxation mediated by other adenosine receptor subtypes.  相似文献   

18.
A1 adenosine receptors (A1AR) acting via the inhibitory guanine nucleotide binding protein inhibit adenylate cyclase activity in brain, cardiac, and adipose tissue. We now report the purification of the A1AR from bovine cerebral cortex. This A1AR is distinct from other A1ARs in that it displays an agonist potency series of N6-R-phenylisopropyladenosine (R-PIA) greater than N6-S-phenylisopropyladenosine greater than (S-PIA) greater than 5'-N-ethylcarboxamidoadenosine (NECA) compared to the traditional potency series of R-PIA greater than NECA greater than S-PIA. The A1AR was solubilized in 1% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (Chaps) and then purified by chromatography on an antagonist [xanthine amine congener (XAC)]-coupled Affi-Gel 10 followed by hydroxylapatite chromatography. Following purification, sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single protein of Mr 36,000 by silver staining, Na125I iodination with chloramine T and photoaffinity labeling with [125I]8-[4-[[[[2-(4-aminophenyl acetylamino) ethyl] carbonyl] methyl] oxy]-phenyl]-1,3- dipropylxanthine. This single protein displayed all the characteristics of the A1AR, including binding an antagonist radioligand [( 3H]XAC) with high affinity (Kd = 0.7 nM) and in a saturable manner (Bmax greater than 4500 pmol/mg). Agonist competition curves demonstrated the expected bovine brain A1AR pharmacology: R-PIA greater than S-PIA greater than NECA. The overall yield from soluble preparation was 7%. The glycoprotein nature of the purified A1AR was determined with endo- and exoglycosidases. Deglycosylation with endoglycosidase F increased the mobility of the A1AR from Mr 36,000 to Mr 32,000 in a single step. The A1AR was sensitive to neuraminidase but resistant to alpha-mannosidase, suggesting the single carbohydrate chain was of the complex type. This makes the bovine brain A1AR similar to rat brain and fat A1AR in terms of its carbohydrate chains yet the purified A1AR retains its unique agonist potency series observed in membranes.  相似文献   

19.
A benzylpiperidine analogue with an acetylenic linker, 5-(3-[4-(4-fluorobenzyl)-piperidin-1-yl]-prop-1-ynyl)-1,3-dihydrobenzimidazol-2-one (3), was identified as a chemical lead with excellent activity at the NR1A/2B receptor (IC50=3 nM). Efforts to optimize this activity led to focused modifications around the structural motif of 3. The synthesis and SAR studies are discussed.  相似文献   

20.
A new series of 1,3-dipropyl-8-(1-phenylacetamide-1H-pyrazol-3-yl)-xanthine derivatives has been identified as potent A(2B) adenosine receptor antagonists. The products have been evaluated for their binding affinities for the human A(2B), A(1), A(2A), and A(3) adenosine receptors. N-(4-chloro-phenyl)-2-[3-(2,6-dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)-5-methyl-pyrazol-1-yl] (11c) showed a high affinity for the human A(2B) adenosine receptor K(i)=7nM and good selectivity (A(1), A(2A), A(3)/A(2B)>140). Synthesis and SAR of this novel class of compounds is presented herein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号