首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Semiparametric models for cumulative incidence functions   总被引:1,自引:0,他引:1  
Bryant J  Dignam JJ 《Biometrics》2004,60(1):182-190
In analyses of time-to-failure data with competing risks, cumulative incidence functions may be used to estimate the time-dependent cumulative probability of failure due to specific causes. These functions are commonly estimated using nonparametric methods, but in cases where events due to the cause of primary interest are infrequent relative to other modes of failure, nonparametric methods may result in rather imprecise estimates for the corresponding subdistribution. In such cases, it may be possible to model the cause-specific hazard of primary interest parametrically, while accounting for the other modes of failure using nonparametric estimators. The cumulative incidence estimators so obtained are simple to compute and are considerably more efficient than the usual nonparametric estimator, particularly with regard to interpolation of cumulative incidence at early or intermediate time points within the range of data used to fit the function. More surprisingly, they are often nearly as efficient as fully parametric estimators. We illustrate the utility of this approach in the analysis of patients treated for early stage breast cancer.  相似文献   

2.
Zheng Y  Cai T  Jin Y  Feng Z 《Biometrics》2012,68(2):388-396
To develop more targeted intervention strategies, an important research goal is to identify markers predictive of clinical events. A crucial step toward this goal is to characterize the clinical performance of a marker for predicting different types of events. In this article, we present statistical methods for evaluating the performance of a prognostic marker in predicting multiple competing events. To capture the potential time-varying predictive performance of the marker and incorporate competing risks, we define time- and cause-specific accuracy summaries by stratifying cases based on causes of failure. Such definition would allow one to evaluate the predictive accuracy of a marker for each type of event and compare its predictiveness across event types. Extending the nonparametric crude cause-specific receiver operating characteristics curve estimators by Saha and Heagerty (2010), we develop inference procedures for a range of cause-specific accuracy summaries. To estimate the accuracy measures and assess how covariates may affect the accuracy of a marker under the competing risk setting, we consider two forms of semiparametric models through the cause-specific hazard framework. These approaches enable a flexible modeling of the relationships between the marker and failure times for each cause, while efficiently accommodating additional covariates. We investigate the asymptotic property of the proposed accuracy estimators and demonstrate the finite sample performance of these estimators through simulation studies. The proposed procedures are illustrated with data from a prostate cancer prognostic study.  相似文献   

3.
Tian L  Lagakos S 《Biometrics》2006,62(3):821-828
We develop methods for assessing the association between a binary time-dependent covariate process and a failure time endpoint when the former is observed only at a single time point and the latter is right censored, and when the observations are subject to truncation and competing causes of failure. Using a proportional hazards model for the effect of the covariate process on the failure time of interest, we develop an approach utilizing EM algorithm and profile likelihood for estimating the relative risk parameter and cause-specific hazards for failure. The methods are extended to account for other covariates that can influence the time-dependent covariate process and cause-specific risks of failure. We illustrate the methods with data from a recent study on the association between loss of hepatitis B e antigen and the development of hepatocellular carcinoma in a population of chronic carriers of hepatitis B.  相似文献   

4.
Many research questions involve time-to-event outcomes that can be prevented from occurring due to competing events. In these settings, we must be careful about the causal interpretation of classical statistical estimands. In particular, estimands on the hazard scale, such as ratios of cause-specific or subdistribution hazards, are fundamentally hard to interpret causally. Estimands on the risk scale, such as contrasts of cumulative incidence functions, do have a clear causal interpretation, but they only capture the total effect of the treatment on the event of interest; that is, effects both through and outside of the competing event. To disentangle causal treatment effects on the event of interest and competing events, the separable direct and indirect effects were recently introduced. Here we provide new results on the estimation of direct and indirect separable effects in continuous time. In particular, we derive the nonparametric influence function in continuous time and use it to construct an estimator that has certain robustness properties. We also propose a simple estimator based on semiparametric models for the two cause-specific hazard functions. We describe the asymptotic properties of these estimators and present results from simulation studies, suggesting that the estimators behave satisfactorily in finite samples. Finally, we reanalyze the prostate cancer trial from Stensrud et al. (2020).  相似文献   

5.
Hazard rate models with covariates.   总被引:3,自引:0,他引:3  
Many problems, particularly in medical research, concern the relationship between certain covariates and the time to occurrence of an event. The hazard or failure rate function provides a conceptually simple representation of time to occurrence data that readily adapts to include such generalizations as competing risks and covariates that vary with time. Two partially parametric models for the hazard function are considered. These are the proportional hazards model of Cox (1972) and the class of log-linear or accelerated failure time models. A synthesis of the literature on estimation from these models under prospective sampling indicates that, although important advances have occurred during the past decade, further effort is warranted on such topics as distribution theory, tests of fit, robustness, and the full utilization of a methodology that permits non-standard features. It is further argued that a good deal of fruitful research could be done on applying the same models under a variety of other sampling schemes. A discussion of estimation from case-control studies illustrates this point.  相似文献   

6.
Sun Y  Hyun S  Gilbert P 《Biometrics》2008,64(4):1070-1079
SUMMARY: In the evaluation of efficacy of a vaccine to protect against disease caused by a genetically diverse infectious pathogen, it is often important to assess whether vaccine protection depends on variations of the exposing pathogen. This problem can be viewed within the framework of a K-competing risks model where the endpoint event is pathogen-specific infection and the cause of failure is the strain type determined after the infection is diagnosed. The Cox model with time-dependent coefficients is used to relate the cause-specific outcomes to explanatory variables to allow for time-varying treatment effects. The strain-specific vaccine efficacy can be defined in terms of one minus the cause-specific hazard ratios. We develop inferential methods for testing whether the vaccine affords some protection against at least one pathogen strain, and for testing equal vaccine protection against the strains, adjusting for covariate effects. We also consider estimation of covariate-adjusted time-varying strain-specific vaccine efficacy. The methods are applied to a dataset from an oral cholera vaccine trial and the performances of the proposed tests are studied through simulations. These techniques apply more generally for testing and estimation of time-varying cause-specific hazard ratios.  相似文献   

7.
We consider lifetime data involving pairs of study individuals with more than one possible cause of failure for each individual. Non-parametric estimation of cause-specific distribution functions is considered under independent censoring. Properties of the estimators are discussed and an illustration of their application is given.  相似文献   

8.
Separate Cox analyses of all cause-specific hazards are the standard technique of choice to study the effect of a covariate in competing risks, but a synopsis of these results in terms of cumulative event probabilities is challenging. This difficulty has led to the development of the proportional subdistribution hazards model. If the covariate is known at baseline, the model allows for a summarizing assessment in terms of the cumulative incidence function. black Mathematically, the model also allows for including random time-dependent covariates, but practical implementation has remained unclear due to a certain risk set peculiarity. We use the intimate relationship of discrete covariates and multistate models to naturally treat time-dependent covariates within the subdistribution hazards framework. The methodology then straightforwardly translates to real-valued time-dependent covariates. As with classical survival analysis, including time-dependent covariates does not result in a model for probability functions anymore. Nevertheless, the proposed methodology provides a useful synthesis of separate cause-specific hazards analyses. We illustrate this with hospital infection data, where time-dependent covariates and competing risks are essential to the subject research question.  相似文献   

9.
A method for fitting parametric models to apparently complex hazard rates in survival data is suggested. Hazard complexity may indicate competing causes of failure. A competing risks model is constructed on the assumption that a failure time can be considered as the first passage time of possibly several latent, stochastic processes competing in reaching a barrier. An additional assumption of independence between the hidden processes leads directly to a composite hazard function as the sum of the cause specific hazards. We show how this composite hazard model based on Wiener processes can serve as a flexible tool for modelling complex hazards by varying the number of processes and their starting conditions. An example with real data is presented. Parameter estimation and model assessment are based on Markov Chain Monte Carlo methods. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The Fine–Gray proportional subdistribution hazards model has been puzzling many people since its introduction. The main reason for the uneasy feeling is that the approach considers individuals still at risk for an event of cause 1 after they fell victim to the competing risk of cause 2. The subdistribution hazard and the extended risk sets, where subjects who failed of the competing risk remain in the risk set, are generally perceived as unnatural . One could say it is somewhat of a riddle why the Fine–Gray approach yields valid inference. To take away these uneasy feelings, we explore the link between the Fine–Gray and cause-specific approaches in more detail. We introduce the reduction factor as representing the proportion of subjects in the Fine–Gray risk set that has not yet experienced a competing event. In the presence of covariates, the dependence of the reduction factor on a covariate gives information on how the effect of the covariate on the cause-specific hazard and the subdistribution hazard relate. We discuss estimation and modeling of the reduction factor, and show how they can be used in various ways to estimate cumulative incidences, given the covariates. Methods are illustrated on data of the European Society for Blood and Marrow Transplantation.  相似文献   

11.
The theory of competing risks has been developed to asses a specific risk in presence of other risk factors. In this paper we consider the parametric estimation of different failure modes under partially complete time and type of failure data using latent failure times and cause specific hazard functions models. Uniformly minimum variance unbiased estimators and maximum likelihood estimators are obtained when latent failure times and cause specific hazard functions are exponentially distributed. We also consider the case when they follow Weibull distributions. One data set is used to illustrate the proposed techniques. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
ObjectiveThe survival benefits of having a partner for all cancers combined is well recognized, however its prognostic importance for individual cancer types, including competing mortality causes, is less clear. This study was undertaken to quantify the impact of partner status on survival due to cancer-specific and competing mortality causes.MethodsData were obtained from the population-based Queensland Cancer Registry on 176,050 incident cases of ten leading cancers diagnosed in Queensland (Australia) from 1996 to 2012. Flexible parametric competing-risks models were used to estimate cause-specific hazards and cumulative probabilities of death, adjusting for age, stage (breast, colorectal and melanoma only) and stratifying by sex.ResultsBoth unpartnered males and females had higher total cumulative probability of death than their partnered counterparts for each site. For example, the survival disadvantage for unpartnered males ranged from 3% to 30% with higher mortality burden from both the primary cancer and competing mortality causes. The cause-specific age-adjusted hazard ratios were also consistent with patients without a partner having increased mortality risk although the specific effect varied by site, sex and cause of death. For all combined sites, unpartnered males had a 46%, 18% and 44% higher risk of cancer-specific, other cancer and non-cancer mortality respectively with similar patterns for females. The higher mortality risk persisted after adjustment for stage.ConclusionsIt is important to better understand the mechanisms by which having a partner is beneficial following a cancer diagnosis, so that this can inform improvements in cancer management for all people with cancer.  相似文献   

13.
In many clinical studies that involve follow-up, it is common to observe one or more sequences of longitudinal measurements, as well as one or more time to event outcomes. A competing risks situation arises when the probability of occurrence of one event is altered/hindered by another time to event. Recently, there has been much attention paid to the joint analysis of a single longitudinal response and a single time to event outcome, when the missing data mechanism in the longitudinal process is non-ignorable. We, in this paper, propose an extension where multiple longitudinal responses are jointly modeled with competing risks (multiple time to events). Our shared parameter joint model consists of a system of multiphase non-linear mixed effects sub-models for the multiple longitudinal responses, and a system of cause-specific non-proportional hazards frailty sub-models for competing risks, with associations among multiple longitudinal responses and competing risks modeled using latent parameters. The joint model is applied to a data set of patients who are on mechanical circulatory support and are awaiting heart transplant, using readily available software. While on the mechanical circulatory support, patient liver and renal functions may worsen and these in turn may influence one of the two possible competing outcomes: (i) death before transplant; (ii) transplant. In one application, we propose a system of multiphase cause-specific non-proportional hazard sub-model where frailty can be time varying. Performance under different scenarios was assessed using simulation studies. By using the proposed joint modeling of the multiphase sub-models, one can identify: (i) non-linear trends in multiple longitudinal outcomes; (ii) time-varying hazards and cumulative incidence functions of the competing risks; (iii) identify risk factors for the both types of outcomes, where the effect may or may not change with time; and (iv) assess the association between multiple longitudinal and competing risks outcomes, where the association may or may not change with time.  相似文献   

14.
Dewanji A  Sengupta D 《Biometrics》2003,59(4):1063-1070
In competing risks data, missing failure types (causes) is a very common phenomenon. In this work, we consider a general missing pattern in which, if a failure type is not observed, one observes a set of possible types containing the true type, along with the failure time. We first consider maximum likelihood estimation with missing-at-random assumption via the expectation maximization (EM) algorithm. We then propose a Nelson-Aalen type estimator for situations when certain information on the conditional probability of the true type given a set of possible failure types is available from the experimentalists. This is based on a least-squares type method using the relationships between hazards for different types and hazards for different combinations of missing types. We conduct a simulation study to investigate the performance of this method, which indicates that bias may be small, even for high proportion of missing data, for sufficiently large number of observations. The estimates are somewhat sensitive to misspecification of the conditional probabilities of the true types when the missing proportion is high. We also consider an example from an animal experiment to illustrate our methodology.  相似文献   

15.
Louzada-Neto F 《Biometrics》1999,55(4):1281-1285
We propose a polyhazard model to deal with lifetime data associated with latent competing risks. The causes of failure are assumed unobserved and affecting individuals independently. The general framework allows a broad class of hazard models that includes the most common hazard-based models. The model accommodates bathtub and multimodal hazards, keeping enough flexibility for common lifetime data that cannot be accommodated by usual hazard-based models. Maximum likelihood estimation is discussed, and parametric simulation is used for hypothesis testing.  相似文献   

16.
Naskar M  Das K  Ibrahim JG 《Biometrics》2005,61(3):729-737
A very general class of multivariate life distributions is considered for analyzing failure time clustered data that are subject to censoring and multiple modes of failure. Conditional on cluster-specific quantities, the joint distribution of the failure time and event indicator can be expressed as a mixture of the distribution of time to failure due to a certain type (or specific cause), and the failure type distribution. We assume here the marginal probabilities of various failure types are logistic functions of some covariates. The cluster-specific quantities are subject to some unknown distribution that causes frailty. The unknown frailty distribution is modeled nonparametrically using a Dirichlet process. In such a semiparametric setup, a hybrid method of estimation is proposed based on the i.i.d. Weighted Chinese Restaurant algorithm that helps us generate observations from the predictive distribution of the frailty. The Monte Carlo ECM algorithm plays a vital role for obtaining the estimates of the parameters that assess the extent of the effects of the causal factors for failures of a certain type. A simulation study is conducted to study the consistency of our methodology. The proposed methodology is used to analyze a real data set on HIV infection of a cohort of female prostitutes in Senegal.  相似文献   

17.
We propose a method to estimate the regression coefficients in a competing risks model where the cause-specific hazard for the cause of interest is related to covariates through a proportional hazards relationship and when cause of failure is missing for some individuals. We use multiple imputation procedures to impute missing cause of failure, where the probability that a missing cause is the cause of interest may depend on auxiliary covariates, and combine the maximum partial likelihood estimators computed from several imputed data sets into an estimator that is consistent and asymptotically normal. A consistent estimator for the asymptotic variance is also derived. Simulation results suggest the relevance of the theory in finite samples. Results are also illustrated with data from a breast cancer study.  相似文献   

18.
There is considerable debate regarding the choice of test for treatment difference in a randomized clinical trial in the presence of competing risks. This question arose in the study of standard and new antiepileptic drugs (SANAD) trial comparing new and standard antiepileptic drugs. This paper provides simulation results for the log-rank test comparing cause-specific hazard rates and Gray's test comparing cause-specific cumulative incidence curves. To inform the analysis of the SANAD trial, competing-risks settings were considered where both events are of interest, events may be negatively correlated, and the degree of correlation may differ in the 2 treatment groups. In settings where there are effects in opposite directions for the 2 event types, a likely situation for the SANAD trial, Gray's test has greater power to detect treatment differences than log-rank analysis. For the epilepsy application, conclusions were qualitatively similar for both log-rank and Gray's tests.  相似文献   

19.
Most research on the study of associations among paired failuretimes has either assumed time invariance or been based on complexmeasures or estimators. Little has accommodated competing risks.This paper targets the conditional cause-specific hazard ratio,henceforth called the cause-specific cross ratio, a recent modificationof the conditional hazard ratio designed to accommodate competingrisks data. Estimation is accomplished by an intuitive, nonparametricmethod that localizes Kendall's tau. Time variance is accommodatedthrough a partitioning of space into ‘bins’ betweenwhich the strength of association may differ. Inferential proceduresare developed, small-sample performance is evaluated, and themethods are applied to the investigation of familial associationin dementia onset.  相似文献   

20.
This article develops omnibus tests for comparing cause-specific hazard rates and cumulative incidence functions at specified covariate levels. Confidence bands for the difference and the ratio of two conditional cumulative incidence functions are also constructed. The omnibus test is formulated in terms of a test process given by a weighted difference of estimates of cumulative cause-specific hazard rates under Cox proportional hazards models. A simulation procedure is devised for sampling from the null distribution of the test process, leading to graphical and numerical technques for detecting significant differences in the risks. The approach is applied to a cohort study of type-specific HIV infection rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号