首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
mRNAs containing premature translation termination codons (nonsense mRNAs) are targeted for deadenylation-independent degradation in a mechanism that depends on Upf1p, Upf2p and Upf3p. This decay pathway is often called nonsense- mediated mRNA decay (NMD). Nonsense mRNAs are decapped by Dcp1p and then degraded 5′ to 3′ by Xrn1p. In the yeast Saccharomyces cerevisiae, a significant number of wild-type mRNAs accumulate in upf mutants. Wild-type PPR1 mRNA is one of these mRNAs. Here we show that PPR1 mRNA degradation depends on the Upf proteins, Dcp1p, Xrn1p and Hrp1p. We have mapped an Upf1p-dependent destabilizing element to a region located within the 5′-UTR and the first 92 bases of the PPR1 ORF. This element targets PPR1 mRNA for Upf-dependent decay by a novel mechanism.  相似文献   

4.
5.
6.
7.
8.
A new function for nonsense-mediated mRNA-decay factors   总被引:10,自引:0,他引:10  
mRNAs often contain premature-termination (nonsense) codons as a result of mutations and RNA splicing errors. These nonsense codons cause rapid decay of the mRNAs that contain them, a phenomenon called nonsense-mediated mRNA decay (NMD). This response is thought to be a quality-control mechanism that protects cells from truncated dominant-negative proteins. Surprisingly, recent evidence strongly suggests that the NMD factors UPF1, UPF2, UPF3B, RNPS1, Y14 and MAGOH also promote translation of normal mRNAs in mammalian cells. This, along with an earlier discovery that NMD factors appear to dictate efficient translation termination, suggests that NMD factors do not merely function in RNA surveillance. These findings lead to the interesting question of why NMD factors evolved; are they for RNA-quality control or to promote efficient translation initiation and termination?  相似文献   

9.
10.
Eukaryotic mRNAs containing premature termination codons are subjected to accelerated turnover, known as nonsense-mediated decay (NMD). Recognition of translation termination events as premature requires a surveillance complex, which includes the RNA helicase Upf1p. In Saccharomyces cerevisiae, NMD provokes rapid decapping followed by 5'-->3' exonucleolytic decay. Here we report an alternative, decapping-independent NMD pathway involving deadenylation and subsequent 3'-->5' exonucleolytic decay. Accelerated turnover via this pathway required Upf1p and was blocked by the translation inhibitor cycloheximide. Degradation of the deadenylated mRNA required the Rrp4p and Ski7p components of the cytoplasmic exosome complex, as well as the putative RNA helicase Ski2p. We conclude that recognition of NMD substrates by the Upf surveillance complex can target mRNAs to rapid deadenylation and exosome-mediated degradation.  相似文献   

11.
Rapid turnover of nonsense-containing mRNAs in the yeast Saccharomyces cerevisiae is dependent on the products of the UPF1 (Upf1p), NMD2/UPF2 (Nmd2p) and UPF3 (Upf3p) genes. Mutations in each of these genes lead to the selective stabilization of mRNAs containing early nonsense mutations without affecting the decay rates of most other mRNAs. NMD2 was recently identified in a two-hybrid screen as a gene that encodes a Upf1p-interacting protein. To identify the amino acids essential to this interaction, we used two-hybrid analysis as well as missense, nonsense, and deletion mutants of NMD2, and mapped the Upf1p-interacting domain of Nmd2p to a 157-amino acid segment at its C-terminus. Mutations in this domain that disrupt interaction with Upf1p also disrupt nonsense-mediated mRNA decay. A dominant-negative deletion allele of NMD2 identified previously includes the Upf1p-interacting domain. However, mutations in the Upf1p-interacting domain do not affect dominant-negative inhibition of mRNA decay caused by this allele, suggesting interaction with yet another factor. These results, and the observation that deletion of a putative nuclear localization signal and a putative transmembrane domain also inactivate nonsense-mediated mRNA decay, suggest that Nmd2p may contain as many as four important functional domains.  相似文献   

12.
13.
Targeting of aberrant mRNAs to cytoplasmic processing bodies   总被引:12,自引:0,他引:12  
Sheth U  Parker R 《Cell》2006,125(6):1095-1109
In eukaryotes, a specialized pathway of mRNA degradation termed nonsense-mediated decay (NMD) functions in mRNA quality control by recognizing and degrading mRNAs with aberrant termination codons. We demonstrate that NMD in yeast targets premature termination codon (PTC)-containing mRNA to P-bodies. Upf1p is sufficient for targeting mRNAs to P-bodies, whereas Upf2p and Upf3p act, at least in part, downstream of P-body targeting to trigger decapping. The ATPase activity of Upf1p is required for NMD after the targeting of mRNAs to P-bodies. Moreover, Upf1p can target normal mRNAs to P-bodies but not promote their degradation. These observations lead us to propose a new model for NMD wherein two successive steps are used to distinguish normal and aberrant mRNAs.  相似文献   

14.
Nonsense-mediated mRNA decay (NMD), also called mRNA surveillance, is an important pathway used by all organisms that have been tested to degrade mRNAs that prematurely terminate translation and, as a consequence, eliminate the production of aberrant proteins that could be potentially harmful. In mammalian cells, NMD appears to involve splicing-dependent alterations to mRNA as well as ribosome-associated components of the translational apparatus. To date, human (h) Upf1 protein (p) (hUpf1p), a group 1 RNA helicase named after its Saccharomyces cerevisiae orthologue that functions in both translation termination and NMD, has been the only factor shown to be required for NMD in mammalian cells. Here, we describe human orthologues to S. cerevisiae Upf2p and S. cerevisiae Upf3p (Caenorhabditis elegans SMG-4) based on limited amino acid similarities. The existence of these orthologues provides evidence for a higher degree of evolutionary conservation of NMD than previously appreciated. Interestingly, human orthologues to S. cerevisiae Upf3p (C. elegans SMG-4) derive from two genes, one of which is X-linked and both of which generate multiple isoforms due to alternative pre-mRNA splicing. We demonstrate using immunoprecipitations of epitope-tagged proteins transiently produced in HeLa cells that hUpf2p interacts with hUpf1p, hUpf3p-X, and hUpf3p, and we define the domains required for the interactions. Furthermore, we find by using indirect immunofluorescence that hUpf1p is detected only in the cytoplasm, hUpf2p is detected primarily in the cytoplasm, and hUpf3p-X localizes primarily to nuclei. The finding that hUpf3p-X is a shuttling protein provides additional indication that NMD has both nuclear and cytoplasmic components.  相似文献   

15.
16.
Nonsense-mediated messenger RNA decay (NMD) generally degrades mRNAs that prematurely terminate translation as a means of quality control. NMD in mammalian cells targets newly spliced mRNA that is bound by the cap-binding protein heterodimer CBP80/20 and one or more post-splicing exon junction complexes during a pioneer round of translation. NMD targets mRNA that initiates translation using the encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES), therefore NMD might target not only CBP80/20-bound mRNA but also its remodelled product, eIF4E-bound mRNA. Here, we provide evidence that NMD triggered by translation initiation at the EMCV IRES, similar to NMD triggered by translation initiation at an mRNA cap, targets CBP80/20-bound mRNA but does not detectably target eIF4E-bound mRNA. We show that EMCV IRES-initiated translation undergoes a CBP80/20-associated pioneer round of translation that results in CBP80/20-dependent and Upf factor-dependent NMD when translation terminates prematurely.  相似文献   

17.
18.
19.
To understand the relationship between translation and mRNA decay, we have been studying how premature translation termination accelerates the degradation of mRNAs. In the yeast Saccharomyces cerevisiae, the Upf1 protein (Upf1p), which contains a cysteine- and histidine-rich region and nucleoside triphosphate hydrolysis and helicase motifs, was shown to be a trans-acting factor in this decay pathway. A UPF1 gene disruption results in the stabilization of nonsense-containing mRNAs and leads to a nonsense suppression phenotype. Biochemical analysis of the wild-type Upf1p demonstrated that it has RNA-dependent ATPase, RNA helicase, and RNA binding activities. In the work described in the accompanying paper (Y. Weng, K. Czaplinski, and S. W. Peltz, Mol. Cell. Biol. 16:5477-5490, 1996) mutations in the helicase region of Upf1p that inactivated its mRNA decay function but prevented suppression of leu2-2 and tyr7-1 nonsense alleles are identified. On the basis of these results, we suggested that Upf1p is a multifunctional protein involved in modulating mRNA decay and translation termination at nonsense codons. If this is true, we predict that UPF1 mutations with the converse phenotype should be identified. In this report, we describe the identification and biochemical characterization of mutations in the amino-terminal cysteine- and histidine-rich region of Upf1p that have normal nonsense-mediated mRNA decay activities but are able to suppress leu2-2 and tyr7-1 nonsense alleles. Biochemical characterization of these mutant proteins demonstrated that they have altered RNA binding properties. Furthermore, using the two-hybrid system, we characterized the Upf1p-Upf2p interactions and demonstrated that Upf2p interacts with Upf3p. Mutations in the cysteine- and histidine-rich region of Upf1p abolish Upf1p-Upf2p interaction. On the basis of these results, the role of the Upf complex in nonsense-mediated mRNA decay and nonsense suppression is discussed.  相似文献   

20.
Non-sense-mediated mRNA decay (NMD) is a mechanism of translation-dependent mRNA surveillance in eukaryotes: it degrades mRNAs with premature termination codons (PTCs) and contributes to cellular homeostasis by downregulating a number of physiologically important mRNAs. In the NMD pathway, Upf proteins, a set of conserved factors of which Upf1 is the central regulator, recruit decay enzymes to promote RNA cleavage. In mammals, the degradation of PTC-containing mRNAs is triggered by the exon–junction complex (EJC) through binding of its constituents Upf2 and Upf3 to Upf1. The complex formed eventually induces translational repression and recruitment of decay enzymes. Mechanisms by which physiological mRNAs are targeted by the NMD machinery in the absence of an EJC have been described but still are discussed controversially. Here, we report that the DEAD box proteins Ddx5/p68 and its paralog Ddx17/p72 also bind the Upf complex by physical interaction with Upf3, thereby interfering with the binding of EJC. By activating the NMD machinery, Ddx5 is shown to regulate the expression of its own, Ddx17 and Smg5 mRNAs. For NMD triggering, the adenosine triphosphate-binding activity of Ddx5 and the 3′-untranslated region of substrate mRNAs are essential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号