首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conventional observations of mitotic chromosomes from two male blue foxes, revealing a centric-fusion translocation and whole-arm heterochromatin, were verified by synaptonemal complex analysis. This analysis revealed that the centric fusion had been preceded by a conspicuous loss of chromosome material in the two one-armed chromosomes involved, but the chromosomal origin of the centric-fusion kinetochore could not be established. The nontranslocated chromosomes of the trivalent, which in all cells but one were in cis configuration, had reached by early pachytene a stage in which almost complete homologous pairing and nonhomologous association or pairing of the free ends of the chromosomes could be observed. In later stages, complete pairing of the nontranslocated chromosomes with the corresponding arms of the centric-fusion translocation was seen occasionally. One to six autosomal bivalents demonstrated unpaired heterochromatic arms in early pachytene, and the heterochromatic chromosome arms were sometimes unpaired even in late pachytene. Some of them showed a distinct size heteromorphism in late zygotene and early pachytene. In most late-pachytene cells, however, the heteromorphic chromosomes were completely length-adjusted. Only a small fraction of the cells showed pairing interference between nonhomologous chromosomes.  相似文献   

2.
Sen Pathak  T. C. Hsu 《Chromosoma》1976,57(3):227-234
Using C-banded preparations of Mus dunni it is possible to study the behavior of constitutive heterochromatin in early stages of meiotic prophase. The X and the Y chromosomes, both of which contain a large amount of heterochromatin, lie apart in leptotene but move toward each other during zygotene. They then form the sex vesicle at late zygotene. In autosomes zygotene pairing appears to start from the telomeric ends. The centromere of the Y chromosome associates end-to-end with the terminal end of the long arm of the X chromosome. The autosomal heterochromatic short arms show forked morphology in certain bivalents at pachytene, suggesting probable incomplete synapsis.  相似文献   

3.
The influence of X-autosome Robertsonian (Rb) translocation hemizygosity on meiotic chromosome behaviour was investigated in male mice. Two male fertile translocations [Rb(X.2)2Ad and Rb(X.9)6H] and a male sterile translocation [Rb(X.12)7H] were used. In males of all three Rb translocation types, the acrocentric homologue of the autosome involved in the rearrangement regularly failed at pachytene to pair completely with its partner in the Rb metacentric. The centric end of the acrocentric autosome was found regularly to associate either with the proximal end of the Y chromosome or with the ends of nonhomologous autosomal bivalents; the proportions of cells with such configurations varied between pachytene substages and genotypes. Various other categories of synaptic anomaly, such as nonhomologous synapsis, foldback pairing and interlocks, affected the sex chromosome multivalent in a substantial proportion of cells. In one of the Rb(X.12)7H males screened, an unusual, highly aneuploid spermatocyte that contained trivalent and bivalent configurations was found. Rb translocation hemizygosity did not appear to increase to a significant extent the incidence of X-Y pairing failure at pachytene, although the incidence was elevated at metaphase I in Rb(X.12)7H animals. Overall, a comparison of the frequencies and types of chromosome pairing anomalies did not suggest that these were important factors in the aetiology of infertility in males carrying the Rb(X.12)7H translocation.  相似文献   

4.
Meiotic prophase in rye was investigated by serial-section reconstruction of pollen mother cell nuclei. In the mid-late zygotene nucleus, all lateral elements were continuous from telomere to telomere, and 9–20 pairing initiation sites per bivalent were observed. Chromosome and bivalent interlockings detected during zygotene were resolved at early pachytene when pairing was completed. In the three pachytene nuclei, the relative synaptonemal complex (SC) lengths and arm ratios were found to be in good correlation with light microscopic data of pachytene bivalents. Spatial tracing of the bivalents showed that they occupy separate areas in the nucleus. Three types of recombination nodules were observed: large, ellipsoïdal and small nodules at early pachytene and irregularly shaped nodules mainly associated with chromatin at late pachytene. Their number and position along the bivalents correlated well with the number and distribution of chiasmata. The classification of the seven bivalents was based on arm ratio and heterochromatic knob distribution.  相似文献   

5.
Serial sectioning followed by three dimensional reconstruction of lateral components of the synaptonemal complex have been used to follow chromosome pairing during the prophase of the achiasmatic meiotic division in the silkworm, Bombyx mori. During leptotene and early zygotene, the lateral components become attached to the nuclear envelope at a specific region, thus forming a chromosome bouquet. The attachment of lateral components to the nuclear envelope precedes the completion of the components between their attachment points. Synapsis and synaptonemal complex formation start during the period of lateral component organization in the individual nucleus. Telomeric movements on the nuclear envelope occur at two stages of the prophase: the chromosome pairing appears to be initiated by an association of unpaired ends of homologous chromosomes, the nature of this primary attraction and recognition being unknown. Secondly, the paired chromosomes become dispersed in the nucleus by shifting of attachment sites of completed synaptonemal complexes at the end of zygotene. This movement is possibly related to a membrane flow occurring during this stage. Membrane material is synthesized at the region of synaptonemal complex attachment. Later, the excess membrane material is shifted to the opposite pole where it protrudes into the lumen of the nuclei thus forming vacuoles. — Two previously undescribed features of chromosome pairing were revealed. In late zygotene, chromosome pairing and synaptonemal complex formation were frequently observed to be delayed or even prevented over a short distance by interlocking of two bivalents, both being attached to the nuclear envelope. Such interlocking of bivalents was not found in pachytene. Secondly, one nucleus was found in which two homologous chromosomes were totally unpaired while the remaining 27 bivalents were completed or in a progressed state of pairing. The lateral components of the two unpaired chromosomes had the same length and were located several microns apart, thus eliminating the possibility of a permanent association of homologous chromosomes before the onset of meiosis in Bombyx mori females. — During pachytene, one of the 8 cells belonging to the syncytial cell cluster characteristic of oogenesis continues the meiotic prophase whereas the remaining 7 cells, the nurse cells, enter a different developmental sequence, finally resulting in their degeneration. The synaptonemal complex of the oocyte develops into a sausage-like structure after pachytene by a deposition of dense material onto the lateral components, thus filling out most of the central region. The diameter of this modified synaptonemal complex reaches at least 300 nm, as compaired to a pachytene width of approximately 130 nm. Also, the length of synaptonemal complexes increases from 212 at zygotene/pachytene to at least 300 at the modified pachytene stage. In nurse cells, synaptonemal complexes are shed from the bivalents shortly after pachytene simultaneously with a condensation of the chromatin. These free synaptonemal complex fragments associate and form various aggregates, either more or less normal looking polycomplexes or various complex figures formed by reorganized synaptonemal complex subunits. Later stages have not been included in the present investigation.  相似文献   

6.
The molecular cause of germ cell meiotic defects in azoospermic men is rarely known. During meiotic prophase I, a proteinaceous structure called the synaptonemal complex (SC) appears along the pairing axis of homologous chromosomes and meiotic recombination takes place. Newly-developed immunofluorescence techniques for SC proteins (SCP1 and SCP3) and for a DNA mismatch repair protein (MLH1) present in late recombination nodules allow simultaneous analysis of synapsis, and of meiotic recombination, during the first meiotic prophase in spermatocytes. This immunofluorescent SC analysis enables accurate meiotic prophase substaging and the identification of asynaptic pachytene spermatocytes. Spermatogenic defects were examined in azoospermic men using immunofluorescent SC and MLH1 analysis. Five males with obstructive azoospermia, 18 males with nonobstructive azoospermia and 11 control males with normal spermatogenesis were recruited for the study. In males with obstructive azoospermia, the fidelity of chromosome pairing (determined by the percentage of cells with gaps [discontinuities]/splits [unpaired chromosome regions] in the SCs, and nonexchange SCs [bivalents with 0 MLH1 foci]) was similar to those in normal males. The recombination frequencies (determined by the mean number of MLH1 foci per cell at the pachytene stage) were significantly reduced in obstructive azoospermia compared to that in controls. In men with nonobstructive azoospermia, a marked heterogeneity in spermatogenesis was found: 45% had a complete absence of meiotic cells; 5% had germ cells arrested at the zygotene stage of meiotic prophase; the rest had impaired fidelity of chromosome synapsis and significantly reduced recombination in pachytene. In addition, significantly more cells were in the leptotene and zygotene meiotic prophase stages in nonobstructive azoospermic patients, compared to controls. Defects in chromosome pairing and decreased recombination during meiotic prophase may have led to spermatogenesis arrest and contributed in part to this unexplained infertility.  相似文献   

7.
Martí DA  Bidau CJ 《Hereditas》2001,134(3):245-254
Dichroplus pratensis has a complex system of Robertsonian rearrangements with central-marginal distribution; marginal populations are standard telocentric. Standard bivalents show a proximal-distal chiasma pattern in both sexes. In Robertsonian individuals a redistribution of chiasmata occurs: proximal chiasmata are suppressed in fusion trivalents and bivalents which usually display a single distal chiasma per chromosome arm. In this paper we studied the synaptic patterns of homologous chromosomes at prophase I of different Robertsonian status in order to find a mechanistic explanation for the observed phenomenon of redistribution of chiasmata. Synaptonemal complexes of males with different karyotypes were analysed by transmission electron microscopy in surface-spread preparations. The study of zygotene and early pachytene nuclei revealed that in the former, pericentromeric regions are the last to synapse in Robertsonian trivalents and bivalents and normally remain asynaptic at pachytene in the case of trivalents, but complete pairing in bivalents. Telocentric (standard) bivalents usually show complete synapsis at pachytene, but different degrees of interstitial asynapsis during zygotene, suggesting that synapsis starts in opposite (centromeric and distal) ends. The sequential nature of synapsis in the three types of configuration is directly related to their patterns of chiasma localisation at diplotene-metaphase I, and strongly supports our previous idea that Rb fusions instantly produce a redistribution of chiasmata towards chromosome ends by reducing the early pairing regions (which pair first, remain paired longer and thus would have a higher probability of forming chiasmata) from four to two (independently of the heterozygous or homozygous status of the fusion). Pericentromeric regions would pair the last, thus chiasma formation is strongly reduced in these areas contrary to what occurs in telocentric bivalents.  相似文献   

8.
A. Weith  W. Traut 《Chromosoma》1980,78(3):275-291
Chromosome structure and pairing behaviour of the pachytene bivalents in the wildtype and in W chromosome mutants were studied using a microcentrifugation technique. The spread bivalents display a characteristic lampbrush structure with lateral loops having the typical appearance of nucleosomal fibers, in autosomes as well as in the W and Z chromosomes. While the autosomal loops are always completely dispersed by the spreading forces, the loops of the heterochromatic W chromosome frequently are found to be condensed in tangles. These tangles contain supranucleosomal globular particles of a diameter of 37.7±1.2 nm. — Pairing of the WZ can be complete or partial, probably depending on the stage of the pachytene. Incomplete pairing normally is interpreted as demonstrating non-homology. Pairing was weak, however, even between homologous segments of the W chromosome, which were introduced into the genome in homozygous form by a translocation chromosome.  相似文献   

9.
Gillies CB 《Genetics》1979,91(1):1-17
Reconstruction of serially sectioned zygotene and pachytene nuclei has allowed the estimation of both the number and position of central component recombination nodules in the synaptinemal complexes of two chromosomally different strains of Neurospora crassa. In both strains the number of nodules is that expected if each nodule represents one crossover event (50 map units). The distribution of nodules within the arms of bivalents shows evidence of centromeric repulsion and telomeric localization. Nodules appear quite early in the zygotene before pairing of chromosomes is complete. Evidence was found of size differences in nodules, and multiple nodules were occasionally seen. Chromosome lengths and nuclear sizes increased from early zygotene to late pachytene. The three quadrivalents present in the alcoy translocation heterozygotes were readily distinguishable in reconstructions, and their cytological dimensions were in agreement with predictions from linkage map distances.  相似文献   

10.
11.
Different wild allopolyploid species of Triticeae show extensive bivalent formation at zygotene while a considerable number of multivalents is present in cultivated polyploid wheats. To study the chromosome behaviour at early meiotic stages in wild forms of tetraploid wheats Triticum turgidum and T timopheevii (2n = 4x = 28) we have analysed the synaptic pattern in fully traced spread nuclei at mid- and late zygotene and at pachytene of wild accessions of these species. The mean number of synaptonemal complex (SC) bivalents at mid-zygotene ranged from 12.22 to 13.14 among the accessions studied indicating a strong restriction of synapsis initiation to homologous chromosomes. The mean of bivalents increased at pachytene because of the transformation of multivalents into bivalents. Ring bivalents observed at metaphase I support that SC bivalents were formed by homologous chromosomes. The average values of SC bivalents at mid-zygotene in the wild forms are much higher than the average values observed in the cultivated tetraploid wheats but similar to that of a mutant line of T turgidum with a duplication that includes Ph1, the major homoeologous pairing suppressor locus. These results suggest that the efficiency of the mechanism operating in the homologous recognition for synapsis is higher in wild wheat populations than in cultivated varieties. Apparently, a relatively detrimental modification of the pairing regulating genetic system accompanied the domestication of the wild wheat forms.  相似文献   

12.
Relative length is a constant and distinctive characteristic for each autosomal SC, despite variations in absolute length from cell to cell. Arm ratio is distinctive for each SC except for two of the three sub-acrocentrics, and serves, together with relative length, for identification. The constancy of relative length and arm ratios indicates biological stability and lack of physical distortion in these spread preparations. There is a 11 relationship between relative lengths of autosomal SCs and mitotic autosomes; their arm ratios are also similar. These close parallels provide strikingly similar SC and somatic karyotypes. Variability was observed in sub-acrocentric arm ratios and in lengths of unpaired X and Y axes, correlated with the presence of constitutive heterochromatin. — Utilizing progressive differentiations of the X and Y chromosomes for staging, it is demonstrated that autosomal SCs decrease in length from late zygotene to mid-pachytene, and then increase at late pachytene. Within a nucleus, synchrony of length changes is maintained. It is concluded that the factors governing autosomal SC length are regular for any given bivalent from cell to cell, and may be related to those that control somatic autosome length relationships. — The X and Y axes differ quantitatively as well as qualitatively from autosomal SCs. The SC portion of the X and Y is constant in length through most of pachytene; the unpaired axes shorten and lengthen, but not in proportion to autosomal SCs. X and Y relative lengths and arm ratios vary throughout pachytene and do not maintain proportionality with somatic values. The evidence suggests, but does not prove, that the long arm of the X is paired with the short arm of the Y. — Twists occur in autosomal SCs at increasing frequencies throughout pachytene but cannot account for length changes. The number of twists per SC is directly proportional to SC length. Intertwining of SCs is random and proportional to SC length. End-to-end associations of autosomal SCs appear to be random; however, the ends of the X and Y are less often involved in such connections. — The length of axial material in all chromosomes at pachytene, expressed as an equivalent length of DNA double helix, represents 0.013% of the diploid DNA complement.  相似文献   

13.
C. Tease  G. Fisher 《Chromosoma》1986,93(5):447-452
Chromosome pairing has been examined in foetal oocytes of mice heterozygous either for an X-linked inversion, In(X)1H, or an autosomal inversion, In(2)2H. The patterns of chromosome pairing have been screened systematically in foetuses of different gestational ages in a search for a production-line effect particularly affecting the inversion-bearing bivalents. The proportion of pachytene oocytes with a loop fell with increasing gestational age for both inversions. The decrease was linear for In(X)1H but best described by a quadratic function for In(2)2H. Examination of late zygotene cells and a comparison of loop frequency in early, mid and late pachytene oocytes suggested this age-related decrease to be principally due to synaptic adjustment and not to a production-line effect. However, two particular observations were somewhat at variance with this conclusion. Firstly, in In(X)1H heterozygotes, the presence of an inversion loop and the occurrence of partial pairing of long/long-medium bivalents at pachytene were independent of each other only on day 19. Secondly, although the proportion of oocytes with a loop fell overall, there was a rise at 19 days in In(2)2H heterozygotes. Thus in both inversions there is some evidence of a change in pairing behaviour affecting the inversion-bearing bivalents at the latest gestational age, as would be expected under the production-line hypothesis.  相似文献   

14.
Analysis of surface-spread synaptonemal complexes of zygotene and pachytene spermatocytes was carried out on a human male carrier of a pericentric inversion of chromosome 21 ascertained after four miscarriages. The synaptic behavior of the bivalent, which could be unambiguously identified by its nonaligned kinetochores, was analyzed. All zygotene and pachytene spermatocytes had 22 linearly paired autosomal bivalents, with apparently normal synaptonemal complexes, and no evidence of a loop configuration in the 50 cells analyzed. According to the XY type (classification of Solari), the cells were distributed across zygotene and pachytene stages, not exclusively in the late pachytene to which adjustment is conventionally thought to be confined. It is suggested that inverted segments heterosynapse at early pachytene, without previous homosynapsis. It is expected that this meiotic process leads to failure of crossing-over, reduces the production of unbalanced gametes, and the risk of recombinant offspring, but can increase the incidence of aneuploidy as a result of nondisjunction during meiosis I (a frequent cause of pregnancy wastage).  相似文献   

15.
Due to its low fertility, expressed as small litter size, a Mexican hairless boar was subjected to cytogenetic investigation. Analysis of G-banded mitotic chromosomes revealed a reciprocal chromosome translocation, rcp(3;6) (p14;q21). Synaptonemal complex analysis showed a regular pairing behavior of the translocation chromosome axes, always resulting in a quadrivalent configuration. However, due to extensive nonhomologous pairing between the axes of nonderivative chromosomes 3 and 6, the quadrivalent mostly had an asymmetrical cross-shaped morphology. The nonhomologous pairing occurred not only at mid and late pachytene, but also at the earliest stage of pachytene. It seems that early pachytene heterosynapsis is a common phenomenon in the pairing behavior of pig reciprocal translocations. Therefore, heterosynapsis may reduce apoptosis of germ cells due to partial absence of homologous synapsis during the pairing phase of meiosis. The frequency of spermatocytes showing quadrivalent configurations with unpaired axial segments apparently did not affect germ cell progression in the boar, since fairly normal testicular histology was noticed.  相似文献   

16.
The distribution of meiotic pairing sites on a Drosophila melanogaster autosome was studied by characterizing patterns of prophase pairing and anaphase segregation in males heterozygous for a number of 2-Y transpositions, collectively coveringall of chromosome arm 2R and one-fourth of chromosome arm 2L. It was found that all transpositions involving euchromatin from chromosome 2, even short stretches, increased the frequency of prophase I quadrivalents involving the sex and second chromosome bivalents above background levels. Quadrivalent frequencies were the same whether the males carried both elements of the transposition or just the Dp (2;Y) element along with two normal chromosome 2s, indicating that pairing is non-competitive. The frequency of quadrivalents was proportional to the size of the transposed region, suggesting that pairing sites are widely distributed on chromosome 2. Moreover, all but the smallest transpositions caused a detectable bias in the segregation ratio, in favor of alternate segregations, indicating that the prophase associations were effective in orienting centromeres to opposite poles. One transposition involving only heterochromatin of chromosome 2 had no effect on quadrivalent frequency, consistent with previous evidence that autosomal heterochromatin lacks meiotic pairing ability in males. One region at the base of chromosome arm 2L proved to be especially effective in stimulating quadrivalent formation and anaphase segregation, indicating the presence of a strong pairing site in this region. It is concluded that autosomal pairing in D. melanogaster males is based on general homology, despite the lack of homologous recombination.by A.C. Spradling  相似文献   

17.
Synaptonemal complexes (SCs) in surface spread pachytene spermatocytes of Lemur resemble those in other mammals and are of two types: metacentric (or submetacentric) and acrocentric, with a very short second arm. In autosomal SC and mitotic karyotypes of Lemur fulvus (2n=60) a 11 proportionality in relative length is observed as in other mammals. In an intraspecific lemur hybrid (2n=55) obtained by mating L. fulvus rufus (2n=60) x L. fulvus collaris (2n=51), G-band patterns show that 10 single acrocentric mitotic chromosomes correspond to the arms of 5 single metacentrics, implying homology. It is inferred that the metacentrics have evolved by centric (Robertsonian) fusion of the acrocentrics. In the SC karyotype of the hybrid all SCs are normal except for five which have the configurations expected of metacentric-acrocentric trivalents. Similarly, in L. f. collaris (2n= 51), with one unpaired metacentric and two unpaired acrocentrics, one such SC trivalent is present in the complement. In an SC trivalent, each of the acrocentric long axes is synapsed with an arm of the metacentric axis, confirming the homology predicted from banding similarities. At late zygotene, the acrocentric short arms, which are non-homologous, are the last to pair, demonstrating that synapsis of the homologous arms occurs first. At later pachytene the acrocentric short arms are fully synapsed, producing a short SC side arm. This subsequent non-homologous synapsis is taken to be an instance of the synaptic adjustment phenomenon which has been shown to lead to non-homologous synapsis in a duplication and several inversions in the mouse. The kinetochore of the metacentric is the same size as those of the acrocentrics, and thus is unlikely to have arisen by true centromeric fusion, but rather by a translocation. The kinetochores of the acrocentrics always lie together on the same side of the metacentric kinetochore (cis configuration), implying a single pairing face on the metacentric axis. The observed trivalent configuration may well constitute a prerequisite for proper meiotic disjunction in metacentric-acrocentric heterozygotes. Such a mechanism is consistent with fertility regularly observed in such hybrid lemurs.  相似文献   

18.
A study of the chromomere maps of the sex and twenty autosomal bivalents of Turkish hamster pachytene oocytes was carried out. The average total number of chromomeres in early/mid pachytene autosomes was 280 with 91 on the p (short arm) and 189 on the q (long arm). The submetacentric X1 chromosome had 20 chromomeres and the metacentric X2 had 27. Comparisons of the number and location of oocyte chromomeres are made with the pachytene spermatocyte chromomere maps of this species.  相似文献   

19.
Denise Zickler 《Chromosoma》1977,61(4):289-316
Complete reconstruction of seven leptotene, six zygotene, three pachytene and three diplotene nuclei has permitted to follow the pairing process in the Ascomycete Sordaria macrospora. The seven bivalents in Sordaria can be identified by their length. The lateral components of the synaptonemal complexes (SC) are formed just after karyogamy but are discontinuous at early leptotene. Their ends are evenly distributed on the nuclear envelope. The homologous chromosomes alignment occurs at late leptotene before SC formation. The precise pairing starts when a distance of 200–300 nm is reached. Each bivalent has several independent central component initiation sites with preferentially pairing starting near the nuclear envelope. These sites are located in a constant position along the different bivalents in the 6 observed nuclei. The seven bivalents are not synchronous either in the process of alignment or in SC formation: the small chromosomes are paired first. At pachytene the SC is completed in each of the 7 bivalents. Six bivalents have one fixed and one randomly attached telomeres. The fixed end of the nucleolar organizer is the nucleolus anchored end. At diffuse stage and diplotene, only small stretches of the SC are preserved. The lateral components increase in length is approximately 34% between leptotene and pachytene. Their lengths remain constant during pachytene. From zygotene to diplotene the central components contain local thickenings (nodules). At late zygotene and pachytene each bivalent has 1 to 4 nodules and the location of at least one is constant. The total number of nodules remains constant from pachytene to diplotene and is equal to the mean total number of chiasmata. The observations provide additional insight into meiotic processes such as chromosome movements, initiation and development of the pairing sites during zygotene, the existence of fixed telomeres, the variations in SC length. The correspondence between nodules and chiasmata are discussed.  相似文献   

20.
Chromosome pairing behaviour of the natural allotetraploid Aegilops biuncialis (genome UUMM) and a triploid hybrid Ae. biuncialis x Secale cereale (genome UMR) was analyzed by electron microscopy in surface-spread prophase I nuclei. Synaptonemal-complex analysis at zygotene and pachytene revealed that synapsis in the allotetraploid was mostly between homologous chromosomes, although a few quadrivalents were also formed. Only homologous bivalents were observed at metaphase I. In contrast, homoeologous and heterologous chromosome associations were common at prophase I and metaphase I of the triploid hybrid. It is concluded that the mechanism controlling bivalent formation in Ae. biuncialis acts mainly at zygotene by restricting pairing to homologous chromosomes, but also acts at pachytene by preventing chiasma formation in the homoeologous associations. In the hybrid the mechanism fails at both stages. Key words : Aegilops biuncialis, allotetraploid, intergeneric hybrid, pairing control, synaptonemal complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号