共查询到20条相似文献,搜索用时 15 毫秒
1.
Macropinocytosis is the endocytic pathway that mediates macrophage foam cell formation with native low density lipoprotein 总被引:4,自引:0,他引:4
Kruth HS Jones NL Huang W Zhao B Ishii I Chang J Combs CA Malide D Zhang WY 《The Journal of biological chemistry》2005,280(3):2352-2360
Previously, we reported that fluid-phase endocytosis of native LDL by PMA-activated human monocytederived macrophages converted these macrophages into cholesterol-enriched foam cells (Kruth, H. S., Huang, W., Ishii, I., and Zhang, W. Y. (2002) J. Biol. Chem. 277, 34573-34580). Uptake of fluid by cells can occur either by micropinocytosis within vesicles (<0.1 microm diameter) or by macropinocytosis within vacuoles ( approximately 0.5-5.0 microm) named macropinosomes. The current investigation has identified macropinocytosis as the pathway for fluid-phase LDL endocytosis and determined signaling and cytoskeletal components involved in this LDL endocytosis. The phosphatidylinositol 3-kinase inhibitor, LY294002, which inhibits macropinocytosis but does not inhibit micropinocytosis, completely blocked PMA-activated macrophage uptake of fluid and LDL. Also, nystatin and filipin, inhibitors of micropinocytosis from lipid-raft plasma membrane domains, both failed to inhibit PMA-stimulated macrophage cholesterol accumulation. Time-lapse video phase-contrast microscopy and time-lapse digital confocal-fluorescence microscopy with fluorescent DiI-LDL showed that PMA-activated macrophages took up LDL in the fluid phase by macropinocytosis. Macropinocytosis of LDL depended on Rho GTPase signaling, actin, and microtubules. Bafilomycin A1, the vacuolar H+-ATPase inhibitor, inhibited degradation of LDL and caused accumulation of undegraded LDL within macropinosomes and multivesicular body endosomes. LDL in multivesicular body endosomes was concentrated >40-fold over its concentration in the culture medium consistent with macropinosome shrinkage by maturation into multivesicular body endosomes. Macropinocytosis of LDL taken up in the fluid phase without receptor-mediated binding of LDL is a novel endocytic pathway that generates macrophage foam cells. Macropinocytosis in macrophages and possibly other vascular cells is a new pathway to target for modulating foam cell formation in atherosclerosis. 相似文献
2.
Boyanovsky BB van der Westhuyzen DR Webb NR 《The Journal of biological chemistry》2005,280(38):32746-32752
Accumulating evidence indicates that secretory phospholipase A2 (sPLA2) enzymes promote atherogenic processes. We have previously showed the presence of Group V sPLA2 (GV sPLA2) in human and mouse atherosclerotic lesions, its hydrolysis of low density lipoprotein (LDL) particles, and the ability of GV sPLA2-modified LDL (GV-LDL) to induce macrophage foam cell formation in vitro. The goal of this study was to investigate the mechanisms involved in macrophage uptake of GV-LDL. Peritoneal macrophages from C57BL/6 mice (wild type (WT)), C57BL/6 mice deficient in LDL receptor (LDLR-/-), or SR-A and CD36 (DKO) were treated with control LDL, GV-LDL, oxidized LDL (ox-LDL) or LDL aggregated by vortexing (vx-LDL). As expected, ox-LDL induced significantly more cholesterol ester accumulation in WT and LDLR-/- compared with DKO macrophages. In contrast, there was no difference in the accumulation of GV-LDL or vx-LDL in the three cell types. 125I-ox-LDL exhibited high affinity, saturable binding to WT cells that was significantly reduced in DKO cells. Vx-LDL and GV-LDL showed low affinity, non-saturable binding that was similar for both cell types, and significantly higher compared with control LDL. GV-LDL degradation in WT and DKO cells was similar. Analyses by confocal microscopy indicated a distinct intracellular distribution of Alexa-568-labeled GV-LDL and Alexa-488-labeled ox-LDL. Uptake of GV-LDL (but not ox-LDL or vx-LDL) was significantly reduced in cells preincubated with heparin or NaClO3, suggesting a role for proteoglycans in GV-LDL uptake. Our data point to a physiological modification of LDL that has the potential to promote macrophage foam cell formation independent of scavenger receptors. 相似文献
3.
This investigation has elucidated a mechanism for development of macrophage foam cells when macrophages are incubated with native low density lipoprotein (LDL). LDL is believed to be the main source of cholesterol that accumulates in monocyte-derived macrophages within atherosclerotic plaques, but native LDL has not previously been shown to cause substantial cholesterol accumulation when incubated with macrophages. We have found that activation of human monocyte-derived macrophages with phorbol 12-myristate 13-acetate (PMA) stimulates LDL uptake and degradation and acyl-CoA:cholesterol acyltransferase-mediated esterification of LDL-derived cholesterol, resulting in massive macrophage cholesterol accumulation that could exceed 400 nmol/mg of cell protein. Cholesterol accumulation showed a biphasic linear LDL concentration dependence with LDL levels as high as 4 mg/ml, similar to LDL levels in artery intima. Protein kinase C mediated the PMA-stimulated macrophage uptake of LDL because the protein kinase C inhibitors, G?6983 and GF109203X, inhibited cholesterol accumulation. LDL receptors did not mediate macrophage cholesterol accumulation because accumulation occurred with reductively methylated LDL and in the presence of an anti-LDL receptor-blocking monoclonal antibody. LDL-induced cholesterol accumulation was not inhibited by antioxidants, was not accompanied by increased LDL binding to macrophages, did not depend on the apoB component of LDL, and was not down-regulated by prior cholesterol enrichment of macrophages. We have shown that the mechanism of LDL uptake by macrophages was PMA-stimulated endocytosis of LDL taken up as part of the bulk phase fluid (i.e. fluid phase endocytosis). The amount of LDL taken up with the bulk phase fluid was measured with [(3)H]sucrose and accounted for a minimum of 83% of the LDL cholesterol delivery and accumulation in PMA-activated macrophages. This novel mechanism of macrophage cholesterol accumulation shows that modification of LDL is not necessary for foam cell formation to occur. In addition, the findings direct attention to macrophage fluid phase endocytosis as a relevant pathway to target for modulating macrophage cholesterol accumulation in atherosclerosis. 相似文献
4.
Enzymatic modification of low density lipoprotein by purified lipoxygenase plus phospholipase A2 mimics cell-mediated oxidative modification 总被引:21,自引:0,他引:21
Low density lipoprotein (LDL) can be oxidatively modified by cultured endothelial cells or by cupric ions, resulting in increased macrophage uptake of the lipoprotein. This process could be relevant to the formation of macrophage-derived foam cells in the early atherosclerotic lesion. The mechanism of endothelial cell modification of LDL is unknown. In the present work we show that incubation of LDL with purified soybean lipoxygenase, in the presence of pure phospholipase A2, can mimic endothelial cell-induced oxidative modification. Typically, incubation with lipoxygenase plus phospholipase A2 caused: 1) generation of about 15 nmol of thiobarbituric acid-reactive substances per mg of LDL protein; 2) a 4- to 7-fold increase in the rate of subsequent macrophage degradation of the LDL; 3) a 10-fold decrease in recognition by fibroblasts; 4) a marked increase in electrophoretic mobility in agarose gels; and, 5) disappearance of intact apoprotein B on SDS polyacrylamide gels. Degradation of the enzymatically modified LDL by macrophages was competitively inhibited by endothelial cell-modified LDL and by polyinosinic acid, but only partially suppressed by acetylated LDL. The lipoxygenase plus phospholipase A2-induced modification of LDL is not necessarily identical to endothelial cell modification, but it is a useful model for studying the mechanism of oxidative modification of LDL. This work also represents the first example of oxidative modification of LDL by specific enzymes leading to enhanced recognition by macrophages. 相似文献
5.
Sato H Kato R Isogai Y Saka G Ohtsuki M Taketomi Y Yamamoto K Tsutsumi K Yamada J Masuda S Ishikawa Y Ishii T Kobayashi T Ikeda K Taguchi R Hatakeyama S Hara S Kudo I Itabe H Murakami M 《The Journal of biological chemistry》2008,283(48):33483-33497
Among the many mammalian secreted phospholipase A2 (sPLA2) enzymes, PLA2G3 (group III secreted phospholipase A2) is unique in that it possesses unusual N- and C-terminal domains and in that its central sPLA2 domain is homologous to bee venom PLA2 rather than to other mammalian sPLA2s. To elucidate the in vivo actions of this atypical sPLA2, we generated transgenic (Tg) mice overexpressing human PLA2G3. Despite marked increases in PLA2 activity and mature 18-kDa PLA2G3 protein in the circulation and tissues, PLA2G3 Tg mice displayed no apparent abnormality up to 9 months of age. However, alterations in plasma lipoproteins were observed in PLA2G3 Tg mice compared with control mice. In vitro incubation of low density (LDL) and high density (HDL) lipoproteins with several sPLA2s showed that phosphatidylcholine was efficiently converted to lysophosphatidylcholine by PLA2G3 as well as by PLA2G5 and PLA2G10, to a lesser extent by PLA2G2F, and only minimally by PLA2G2A and PLA2G2E. PLA2G3-modified LDL, like PLA2G5- or PLA2G10-treated LDL, facilitated the formation of foam cells from macrophages ex vivo. Accumulation of PLA2G3 was detected in the atherosclerotic lesions of humans and apoE-deficient mice. Furthermore, following an atherogenic diet, aortic atherosclerotic lesions were more severe in PLA2G3 Tg mice than in control mice on the apoE-null background, in combination with elevated plasma lysophosphatidylcholine and thromboxane A2 levels. These results collectively suggest a potential functional link between PLA2G3 and atherosclerosis, as has recently been proposed for PLA2G5 and PLA2G10. 相似文献
6.
Kamitani S Yamada K Yamamoto S Ishimoto Y Ono T Saiga A Hanasaki K 《Cellular & molecular biology letters》2012,17(3):459-478
Secretory phospholipases A(2) (sPLA(2)s) are a diverse family of low molecular mass enzymes (13-18 kDa) that hydrolyze the sn-2 fatty acid ester bond of glycerophospholipids to produce free fatty acids and lysophospholipids. We have previously shown that group X sPLA(2) (sPLA(2)-X) had a strong hydrolyzing activity toward phosphatidylcholine in low-density lipoprotein (LDL) linked to the formation of lipid droplets in the cytoplasm of macrophages. Here, we show that group V sPLA(2) (sPLA(2)-V) can also cause the lipolysis of LDL, but its action differs remarkably from that of sPLA(2)-X in several respects. Although sPLA(2)-V released almost the same amount of fatty acids from LDL, it released more linoleic acid and less arachidonic acid than sPLA(2)-X. In addition, the requirement of Ca(2+) for the lipolysis of LDL was about 10-fold higher for sPLA(2)-V than sPLA(2)-X. In fact, the release of fatty acids from human serum was hardly detectable upon incubation with sPLA(2)-V in the presence of sodium citrate, which contrasted with the potent response to sPLA(2)-X. Moreover, sPLA(2)-X, but not sPLA(2)-V, was found to specifically interact with LDL among the serum proteins, as assessed by gel-filtration chromatography as well as sandwich enzyme-immunosorbent assay using anti-sPLA(2)-X and anti-apoB antibodies. Surface plasmon resonance studies have revealed that sPLA2-X can bind to LDL with high-affinity (K(d) = 3.1 nM) in the presence of Ca(2+). Selective interaction of sPLA(2)-X with LDL might be involved in the efficient hydrolysis of cell surface or intracellular phospholipids during foam cell formation. 相似文献
7.
Ishimoto Y Yamada K Yamamoto S Ono T Notoya M Hanasaki K 《Biochimica et biophysica acta》2003,1642(3):129-138
The quantitative or qualitative decline of high-density lipoprotein (HDL) is linked to the pathogenesis of atherosclerosis because of its antiatherogenic functions, including the mediation of reverse cholesterol transport from the peripheral cells to the liver. We have recently shown that group X secretory phospholipase A(2) (sPLA(2)-X) is involved in the pathogenesis of atherosclerosis via potent lipolysis of low-density lipoprotein (LDL) leading to macrophage foam cell formation. We demonstrate here that sPLA(2)-X as well as group V secretory PLA(2) (sPLA(2)-V), another group of sPLA(2) that can potently hydrolyze phosphatidylcholine (PC), also possess potent hydrolytic potency for PC in HDL linked to the production of a large amount of unsaturated fatty acids and lysophosphatidylcholine (lysoPC). In contrast, the classical types of group IB and IIA secretory PLA(2)s evoked little, if any, lypolytic modification of HDL. Treatment with sPLA(2)-X or -V also caused an increase in the negative charge of HDL with no oxidation and little modification of apolipoprotein AI (apoAI). Modification with sPLA(2)-X or -V resulted in significant decrease in the capacity of HDL to cause cellular cholesterol efflux from lipid-loaded macrophages. Immunohistochemical analysis revealed significant expression of sPLA(2)-X in foam cell lesions in the arterial intima of Watanabe heritable hyperlipidemic (WHHL) rabbit. These findings suggest that lipolytic modification of HDL by sPLA(2)-X or -V causes drastic change of HDL in terms of the production of a large amount of unsaturated fatty acids and lysoPC linked to the reduction of its antiatherogenic functions. These sPLA(2)-mediated modifications of plasma lipoproteins might be relevant to the pathogenesis of atherosclerosis. 相似文献
8.
Macrophage lipoprotein lipase promotes foam cell formation and atherosclerosis in low density lipoprotein receptor-deficient mice 总被引:4,自引:0,他引:4
Babaev VR Patel MB Semenkovich CF Fazio S Linton MF 《The Journal of biological chemistry》2000,275(34):26293-26299
The role of macrophage lipoprotein lipase (LPL) expression in atherosclerotic lesion formation was examined in low density lipoprotein receptor (LDLR(-/-)) mice using dietary conditions designed to induce either fatty streak lesions or complex atherosclerotic lesions. First, LDLR(-/-) mice chimeric for macrophage LPL expression were created by transplantation of lethally irradiated female LDLR(-/-) mice with LPL(-/-) (n = 12) or LPL(+/+) (n = 14) fetal liver cells as a source of hematopoietic cells. To induce fatty streak lesions, these mice were fed a Western diet for 8 weeks, resulting in severe hypercholesterolemia. There were no differences in plasma post-heparin LPL activity, serum lipid levels, or lipoprotein distribution between these two groups. The mean lesion area in the proximal aorta in LPL(-/-) --> LDLR(-/-) mice was significantly reduced by 33% compared with LPL(+/+) --> LDLR(-/-) mice, and a similar reduction (38%) in lesion area was found by en face analysis of the aortae. To induce complex atherosclerotic lesions, female LDLR(-/-) mice were lethally irradiated, transplanted with LPL(-/-) (n = 14), LPL(+/-) (n = 13), or LPL(+/+) (n = 14) fetal liver cells, and fed the Western diet for 19 weeks. Serum cholesterol and triglyceride levels did not differ between the three groups. After 19 weeks of diet, the lesions in the proximal aorta were complex with relatively few macrophages expressing LPL protein and mRNA in LPL(+/+) --> LDLR(-/-) mice. Analysis of cross-sections of the proximal aorta demonstrated no differences in the extent of lesion area between the groups, whereas en face analysis of the aortae revealed a dose-dependent effect of macrophage LPL on mean aortic lesion area in LPL(-/-) --> LDLR(-/-), LPL(-/+) --> LDLR(-/-), and LPL(+/+) --> LDLR(-/-) mice (1.8 +/- 0. 2%, 3.5 +/- 0.5% and 5.9 +/- 0.8%, respectively). Taken together, these data indicate that macrophage LPL expression in the artery wall promotes atherogenesis during foam cell lesion formation, but this impact may be limited to macrophage-rich lesions. 相似文献
9.
Y Yokota M Notoya K Higashino Y Ishimoto K Nakano H Arita K Hanasaki 《FEBS letters》2001,509(2):250-254
Given the potent hydrolyzing activity toward phosphatidylcholine, group X secretory phospholipase A(2) (sPLA(2)-X) elicits a marked release of arachidonic acid linked to the potent production of lipid mediators in various cell types. We have recently shown that sPLA(2)-X can also act as a ligand for mouse phospholipase A(2) receptor (PLA(2)R). Here, we found that sPLA(2)-X was internalized and degraded via binding to PLA(2)R associated with the diminished prostaglandin E(2) (PGE(2)) formation in PLA(2)R-expressing Chinese hamster ovary (CHO) cells compared to CHO cells. Indirect immunocytochemical analysis revealed that internalized sPLA(2)-X was co-localized with PLA(2)R in the punctate structures in PLA(2)R-expressing CHO cells. Moreover, in mouse osteoblastic MC3T3-E(1) cells that endogenously express the PLA(2)R, the internalized sPLA(2)-X was localized in lysosomes. These findings demonstrate that PLA(2)R acts as a clearance receptor for sPLA(2)-X to suppress its strong enzymatic activity. 相似文献
10.
Martens JS Lougheed M Gómez-Muñoz A Steinbrecher UP 《The Journal of biological chemistry》1999,274(16):10903-10910
It has recently been shown that macrophage proliferation occurs during the progression of atherosclerotic lesions and that oxidized low density lipoprotein (LDL) stimulates macrophage growth. Possible mechanisms for this include the interaction of oxidized LDL with integral plasma membrane proteins coupled to signaling pathways, the release of growth factors and autocrine activation of growth factor receptors, or the potentiation of mitogenic signal transduction by a component of oxidized LDL after internalization. The present study was undertaken to further elucidate the mechanisms involved in the growth-stimulating effect of oxidized LDL in macrophages. Only extensively oxidized LDL caused significant growth stimulation, whereas mildly oxidized LDL, native LDL, and acetyl LDL were ineffective. LDL that had been methylated before oxidation (to block lysine derivatization by oxidation products and thereby prevent the formation of a scavenger receptor ligand) did not promote growth, even though extensive lipid peroxidation had occurred. The growth stimulation could not be attributed to lysophosphatidylcholine (lyso-PC) because incubation of oxidized LDL with fatty acid-free bovine serum albumin resulted in a 97% decrease in lyso-PC content but only a 20% decrease in mitogenic activity. Similarly, treatment of acetyl LDL with phospholipase A2 converted more than 90% of the initial content of phosphatidylcholine (PC) to lyso-PC, but the phospholipase A2-treated acetyl LDL was nearly 10-fold less potent than oxidized LDL at stimulating growth. Platelet-activating factor receptor antagonists partly inhibited growth stimulation by oxidized LDL, but platelet-activating factor itself did not induce growth. Digestion of oxidized LDL with phospholipase A2 resulted in the hydrolysis of PC and oxidized PC but did not attenuate growth induction. Native LDL, treated with autoxidized arachidonic acid under conditions that caused extensive modification of lysine residues by lipid peroxidation products but did not result in oxidation of LDL lipids, was equal to oxidized LDL in potency at stimulating macrophage growth. Albumin modified by arachidonic acid peroxidation products also stimulated growth, demonstrating that LDL lipids are not essential for this effect. These findings suggest that oxidatively modified apolipoprotein B is the main growth-stimulating component of oxidized LDL, but that oxidized phospholipids may play a secondary role. 相似文献
11.
Rahaman SO Lennon DJ Febbraio M Podrez EA Hazen SL Silverstein RL 《Cell metabolism》2006,4(3):211-221
Accumulation of macrophage foam cells in atherosclerotic blood vessel intima is a critical component of atherogenesis mediated by scavenger receptor-dependent internalization of oxidized LDL. We demonstrated by coimmunoprecipitation and pull-down assays that the macrophage scavenger receptor CD36 associates with a signaling complex containing Lyn and MEKK2. The MAP kinases JNK1 and JNK2 were specifically phosphorylated in macrophages exposed to oxLDL. Using cells isolated from SRA, TLR2, or CD36 null mice, and phospholipid ligands specific for either SRA or CD36, we showed that JNK activation was mediated by CD36. Both foam cell formation and activation of JNK2 in hyperlipidemic mice were diminished in the absence of CD36. Furthermore, inhibition of Src or JNK blocked oxLDL uptake and inhibited foam cell formation in vitro and in vivo. These findings show that a specific CD36-dependent signaling pathway initiated by oxLDL is necessary for foam cell formation and identify potential targets for antiatherosclerosis therapy. 相似文献
12.
A direct role for the macrophage low density lipoprotein receptor in atherosclerotic lesion formation. 总被引:2,自引:0,他引:2
M F Linton V R Babaev L A Gleaves S Fazio 《The Journal of biological chemistry》1999,274(27):19204-19210
To evaluate the contribution of the macrophage low density lipoprotein receptor (LDLR) to atherosclerotic lesion formation, we performed bone marrow transplantation studies in different mouse strains. First, LDLR(-/-) mice were transplanted with either LDLR(+/+) marrow or LDLR(-/-) marrow and were challenged with an atherogenic Western type diet. The diet caused severe hypercholesterolemia of a similar degree in the two groups, and no differences in the aortic lesion area were detected. Thus, macrophage LDLR expression does not influence foam cell lesion formation in the setting of extreme LDL accumulation. To determine whether macrophage LDLR expression affects foam cell formation under conditions of moderate, non-LDL hyperlipidemia, we transplanted C57BL/6 mice with either LDLR(-/-) marrow (experimental group) or LDLR(+/+) marrow (controls). Cholesterol levels were not significantly different between the two groups at baseline or after 6 weeks on a butterfat diet, but were 40% higher in the experimental mice after 13 weeks, mostly due to accumulation of beta-very low density lipoprotein (beta-VLDL). Despite the increase in cholesterol levels, mice receiving LDLR(-/-) marrow developed 63% smaller lesions than controls, demonstrating that macrophage LDLR affects the rate of foam cell formation when the atherogenic stimulus is beta-VLDL. We conclude that the macrophage LDLR is responsible for a significant portion of lipid accumulation in foam cells under conditions of dietary stress. 相似文献
13.
Potential role of group X secretory phospholipase A(2) in cyclooxygenase-2-dependent PGE(2) formation during colon tumorigenesis 总被引:3,自引:0,他引:3
Although the cyclooxygenase-2 (COX-2) pathway of the arachidonic acid cascade has been suggested to play an important role in colon carcinogenesis, there is little information concerning the identity of phospholipase A(2) (PLA(2)) involved in the arachidonic acid release in colon tumors. Here, we compared the potencies of three types of secretory PLA(2)s (group IB, IIA and X sPLA(2)s) for the arachidonic acid release from cultured human colon adenocarcinoma cells, and found that group X sPLA(2) has the most powerful potency in the release of arachidonic acid leading to COX-2-dependent prostaglandin E(2) (PGE(2)) formation. Furthermore, immunohistological analysis revealed the elevated expression of group X sPLA(2) in human colon adenocarcinoma neoplastic cells in concert with augmented expression of COX-2. These findings suggest a critical role of group X sPLA(2) in the PGE(2) biosynthesis during colon tumorigenesis. 相似文献
14.
Phospholipase A(2) receptor (PLA(2)R) mediates various biological responses elicited by group IB secretory phospholipase A(2) (sPLA(2)-IB). The recently cloned group X sPLA(2) (sPLA(2)-X) possesses several structural features characteristic of sPLA(2)-IB. Here, we detected a specific binding site of sPLA(2)-X in mouse osteoblastic MC3T3-E(1) cells. Cross-linking experiments demonstrated its molecular weight (180 kDa) to be similar to that of PLA(2)R. In fact, sPLA(2)-X was found to bind the recombinant PLA(2)R expressed in COS-7 cells, and its specific binding detected in mouse lung membranes was abolished by the deficiency of PLA(2)R. These findings demonstrate sPLA(2)-X to be one of the high-affinity ligands for mouse PLA(2)R. 相似文献
15.
16.
Oxidatively-modified low density lipoprotein (LDL) is thought to play a significant role in the formation of lipid-laden macrophages, the primary cellular component of atherosclerotic fatty lesions. Recently, lipoxygenases have been implicated as a major enzymatic pathway involved in rabbit endothelial cell-mediated LDL modification. We investigated the effect of LDL on porcine aortic endothelial cell (PAEC) and human umbilical vein (HUVEC) and aortic endothelial cell (HAEC) lipoxygenase activity. By thin layer chromatography, we observed that human LDL stimulated the metabolism of radiolabeled arachidonic acid to 12 + 15-hydroxyeicosatetraenoic acid (HETE) in indomethacin-treated PAEC. Furthermore, radiolabeled linoleic acid, a specific substrate for the 15-lipoxygenase, was metabolized to its respective product 13-hydroxyoctadecadienoic acid (13-HODE) in the presence of LDL. Increased product formation in both studies was inhibited by the lipoxygenase blockers nordihydroguaiaretic acid (NDGA) and RG 6866. 15-HETE was confirmed as the predominant HETE product in LDL-treated cells by high performance liquid chromatography. Both porcine- and human-derived LDL stimulated the CL release of 15-HETE from cells as determined by radioimmunoassay. Release of immunoreactive 15-HETE was inhibited by NDGA, RG 6866, and 5,8,11,14-eicosatetraynoic acid (ETYA) but not by the selective 5-lipoxygenase inhibitor RG 5901. These lipoxygenase inhibitors had similar effects on the modification of LDL. Our results suggest that the oxidative modification of LDL by endothelial cells may be mediated in part through activation of 15-lipoxygenase. 相似文献
17.
A macrophage Fc receptor for IgG is also a receptor for oxidized low density lipoprotein. 总被引:16,自引:0,他引:16
L W Stanton R T White C M Bryant A A Protter G Endemann 《The Journal of biological chemistry》1992,267(31):22446-22451
The internalization of oxidized low density lipoprotein (OxLDL) by macrophages is hypothesized to contribute to foam cell formation and eventually to atherosclerotic lesion formation. OxLDL is a ligand for the acetylated low density lipoprotein (AcLDL) receptor, however, our data show that this receptor accounts for less than half of OxLDL uptake by mouse macrophages, suggesting additional receptors for OxLDL. We have developed a novel expression cloning strategy in order to isolate clones encoding OxLDL receptors. In addition to the AcLDL receptor, we isolated a molecular clone for a structurally unrelated receptor capable of mediating the high affinity uptake of OxLDL following transfection into cells. This receptor has been identified as the mouse Fc gamma RII-B2, a member of a family of receptors known to mediate immune complex uptake through recognition of the Fc region of IgG. The uptake of OxLDL by cells transfected with the Fc gamma RII-B2 clone is not blocked by AcLDL but is blocked by the anti-Fc gamma RII monoclonal antibody, 2.4G2. 相似文献
18.
Reactive aldehydes can be formed during the oxidation of lipids, glucose, and amino acids and during the nonenzymatic glycation of proteins. Low density lipoprotein (LDL) modified with malondialdehyde are taken up by scavenger receptors on macrophages. In the current studies we determined whether alpha-hydroxy aldehydes also modify LDL to a form recognized by macrophage scavenger receptors. LDL modified by incubation with glycolaldehyde, glyceraldehyde, erythrose, arabinose, or glucose (alpha-hydroxy aldehydes that possess two, three, four, five, and six carbon atoms, respectively) exhibited decreased free amino groups and increased mobility on agarose gel electrophoresis. The lower the molecular weight of the aldehyde used for LDL modification, the more rapid and extensive was the derivatization of free amino groups. Approximately 50-75% of free lysine groups in LDL were modified after incubation with glyceraldehyde, glycolaldehyde, or erythrose for 24-48 h. Less extensive reductions in free amino groups were observed when LDL was incubated with arabinose or glucose, even at high concentration for up to 5 days. LDL modified with glycolaldehyde and glyceraldehyde labeled with (125)I was degraded more extensively by human monocyte-derived macrophages than was (125)I-labeled native LDL. Conversely, LDL modified with (125)I-labeled erythrose, arabinose, or glucose was degraded less rapidly than (125)I-labeled native LDL. Competition for the degradation of LDL modified with (125)I-labeled glyceraldehyde was nearly complete with acetyl-, glycolaldehyde-, and glyceraldehyde-modified LDL, fucoidin, and advanced glycation end product-modified bovine serum albumin, and absent with unlabeled native LDL.These results suggest that short-chain alpha-hydroxy aldehydes react with amino groups on LDL to yield moieties that are important determinants of recognition by macrophage scavenger receptors. 相似文献
19.
Wenyuan Ding Jiamin Li Lili Wang Mingming Zhang 《Bioscience, biotechnology, and biochemistry》2020,84(10):2096-2103
ABSTRACT Macrophage foam cell formation and inflammation are a pathological hallmark of atherosclerosis. ClC-2 has been implicated in various pathological processes, including inflammation and lipid metabolic disorder. However, the functional role of ClC-2 in macrophage foam cell formation and inflammation is unclear. Here, we found that ClC-2 was dominantly expressed in macrophages of atherosclerotic plaque and increased in atherogenesis. Knockdown of ClC-2 inhibited ox-LDL -induced lipid uptake and deposition in macrophages. The increase in CD36 expression and the decrease in ABCA1 expression induced by ox-LDL were alleviated by ClC-2 downregulation. Further, ClC-2 lacking limited the ox-LDL-induced secretion of inflammatory cytokines and chemokine, and suppressed Nlrp3 inflammasome activation. Restoration of Nlrp3 expression reversed the effect of ClC-2 downregulation on macrophage lipid accumulation and inflammation. Collectively, our study demonstrates that ClC-2 knockdown ameliorates ox-LDL-induced macrophage foam cell formation and inflammation by inhibiting Nlrp3 inflammasome activation. 相似文献
20.
Meilang Xue Kaitlin Shen Kelly McKelvey Juan Li Yee-Ka Agnes Chan Vicky Hatzis Lyn March Christopher B Little Michael Tonkin Christopher J Jackson 《Arthritis research & therapy》2014,16(1):R44