首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kannan S 《Plant physiology》1969,44(4):517-521
Cuticular membranes were isolated enzymically from tomato fruits and from the dorsal and ventral surfaces of the leaves of Euonymus japonicus. Penetration of Fe from FeSO4 and FeEDDHA (ferric ethylenediamine di(o-hydroxyphenylacetate) in the absence and presence of urea through the isolated cuticular membranes was studied. Fe from FeSO4 penetrated more rapidly through the cuticles than Fe from FeEDDHA. Urea reduced the penetration of Fe from FeSO4 and FeEDDHA. Binding of Fe on the inner surfaces of tomato fruit cuticles was also reduced by EDDHA.  相似文献   

2.
Schreiber L  Elshatshat S  Koch K  Lin J  Santrucek J 《Planta》2006,223(2):283-290
Counter diffusion of chloride, applied as NaCl at the inner side of isolated cuticles, and silver, applied as AgNO3 at the outer side, lead to the formation of insoluble AgCl precipitates in isolated cuticles. AgCl precipitates could be visualized by light and scanning electron microscopy. The presence of AgCl precipitates in isolated cuticles was verified by energy dispersive X-ray analysis. It is argued that insoluble AgCl precipitates formed in polar pores of cuticles and as a consequence, cuticular transpiration of 13 out of 15 investigated species was significantly reduced up to three-fold. Water as a small and uncharged but polar molecule penetrates cuticles via two parallel paths: a lipophilic path, formed by lipophilic cutin and wax domains, and a aqueous pathe, formed by polar pores. Thus, permeances P (m s−1) of water, which is composed of the two quantities P Lipid and P Pore, decreased, since water transport across polar pores was affected by AgCl precipitates. Cuticles with initially high rates of cuticular transpiration were generally more sensitive towards AgCl precipitates compared to cuticles with initially low rates of transpiration. Results presented here, significantly improves the current model of the structure of the cuticular transpiration barrier, since the pronounced heterogeneity of the cuticular transport barrier, composed of lipophilic as well as polar paths of diffusion, has to be taken into account in future.  相似文献   

3.
Cation Penetration through Isolated Leaf Cuticles   总被引:13,自引:6,他引:7       下载免费PDF全文
The rates of penetration of various cations through isolated apricot Prunus armeniaca L. leaf cuticles were determined. Steady state rates were measured by using a specially constructed flow-through diffusion cell. The penetration rates of the monovalent cations in group IA followed a normal lyotropic series, i.e., CS+ ≥ Rb+ > K+ > Na+ > Li+. The divalent cations all penetrated through the cuticle more slowly than the monovalent cations. Comparison of the relative values of k (permeability coefficient) and D (diffusion coefficient) indicates that the penetration of ions through isolated cuticles took place by diffusion and was impeded by charge interactions between the solute and charge sites in the penetration pathway. Cuticular penetration rates of K+ and H2O at pH above 9 were of similar magnitude. At pH 5.5 H2O penetration was not affected but that of K+ was greatly reduced. From this observation and from data on cuticle titration and ion adsorption studies, we hypothesize that cuticular pores are lined with a substance (perhaps a protein) which has exposed positively charged sites.  相似文献   

4.
The mode of action of a mixture of C8 and C10 fatty alcohols, formulated in polyoxyethyelene (20) sorbitan mono-oleate (SMO) and used as an emulsion (FAE) to inhibit axillary bud (sucker) growth in tobacco production, was studied using infrared spectroscopy (NIR), photoacoustic spectroscopy (PAS), electrical resistance, and the ability of treated cells to reverse plasmolysis on leaf tissues fromNicotiana tabacum L. and other dicotyledonous species. NIR spectra showed that isolated cuticles were affected optically when treated with FAE, but did not dissolve. PAS absorbances in the UV of isolated cuticles and of epidermal peels were similar and showed that cuticles were homogeneous, unilamellar structures. In intact leaf segments, it was possible, over time using PAS absorbances in the visible region, to separate absorbance of the surface components (cuticle) from the absorption of chlorophyll and other subsurface components and to monitor the penetration by FAE into the leaf. Penetration of the FAE to the subcuticular cells took approximately 2 h. Electrical resistance measurements of FAE-treated isolated midveins of tobacco leaves decreased with time, indicating that the plasma membranes of the cells became leaky. The effect of FAE on plasma membranes of cells was confirmed withElodea sp. where leaf cells after treatment with 1 and 5% FAE lost the ability with time to plasmolyze upon exposure to a 10% solution of Ca(NO3)2. The results of the various studies were interpreted to mean that at the labeled concentration (4–5%) for use in the control of axillary bud growth on decapitated tobacco, FAE passed through the cuticle without disrupting it. However, the plasma membranes of the subtending cells were altered so that, in time, bud tissues desiccated (appeared burned) and growth of the sucker was controlled.  相似文献   

5.
Metarhizium anisopliae is a well-characterized biocontrol agent of a wide range of insects including cane grubs. In this study, a two-dimensional (2D) electrophoresis was used to display secreted proteins of M. anisopliae strain FI-1045 growing on the whole greyback cane grubs and their isolated cuticles. Hydrolytic enzymes secreted by M. anisopliae play a key role in insect cuticle-degradation and initiation of the infection process. We have identified all the 101 protein spots displayed by cross-species identification (CSI) from the fungal kingdom. Among the identified proteins were 64-kDa serine carboxypeptidase, 1,3 beta-exoglucanase, Dynamin GTPase, THZ kinase, calcineurin like phosphoesterase, and phosphatidylinositol kinase secreted by M. ansiopliae (FI-1045) in response to exposure to the greyback cane grubs and their isolated cuticles. These proteins have not been previously identified from the culture supernatant of M. anisopliae during infection. To our knowledge, this the first proteomic map established to study the extracellular proteins secreted by M. ansiopliae (FI-1045) during infection of greyback cane grubs and its cuticles.  相似文献   

6.
Cuticles were isolated enzymatically from the leaves of two maple species (Acer saccharum Marsh and A. platanoides L.) and from orange (Citrus aurantium L.). The cuticles were placed in a plastic cuvette and different concentrations of KCl were perfused over the physiological inner and outer surfaces while the electrical potential (E10) that developed across the cuticles and was caused by ion diffusion was measured. E10 was always positive, indicating that the permeability of K+ was always greater than that of Cl-. Measured E10 in cuticles did not fit the Goldman equation, whereas, E10 measured during KCl diffusion across selected artificial membranes fit the equation. The magnitude of E10 in cuticles and artificial membranes also was dependent on ionic strength, decreasing as ionic strength increased. These observations are explained by combining classical transport equations with equations that describe the equilibrium ion distribution between ionic double layers in the cuticle or membranes and the bathing solution.  相似文献   

7.
H. W. Schmidt  J. Schönherr 《Planta》1982,156(4):380-384
The effect of BF3-methanol treatment on the mass and fine structure of isolated Clivia leaf cuticles at different stages of development has been investigated. BF3-methanol cleaves ester linkages in cutin; however, the cuticles are not completely depolymerized. With increasing age, the residue left after BF3-methanol treatment increases in mass. In very young cuticles, 10% of the total cutin resisted BF3-methanol and the fraction of nonester cutin increased up to 62% in mature leaves. Transmission electron microscopy shows that fine structure of the cuticle proper is severely distorted but not destroyed. The internal cuticular layer, which exhibits a heavy contrast when fixed with KMnO4, is completely depolymerized, while the external cuticular layer is hardly affected. The results are discussed in relation to cuticle development and to the function of cuticles as transpiration resistances.Abbreviation CP cuticle proper - ECL external cuticular layer - E cutin ester bonded cutin - ICL internal cuticular layer - MX-membrane polymer matrix membrane - NE-cutin non-ester bonded cutin - TEM transmission electron microscopy  相似文献   

8.
The abdominal cuticles of Rhodnius prolixus (fifth instar) and Boophilus microplus (adult female) expand dramatically and rapidly during feeding. In the unfed stage of both species the epicuticle of the abdomen is deeply folded, and when rapid stretching takes place the epicuticle unfolds and the underlying procuticle stretches so that the thickness of the cuticle is halved. The cuticles contained only trace amounts of protein soluble in water and aqueous KCl but substantial quantities were extracted with 7 M aqueous urea. The proteins were analysed for their amino acid composition and investigated by gel electrophoresis and isoelectric focusing.In solubility, amino acid composition, molecular weight distribution, and isoelectric points, the proteins isolated from both species resembled one another closely. They had higher molecular weights and higher isoelectric points than did the proteins from flexible, non-stretching cuticles and unlike them had high alanine and histidine and low aspartic acid and glutamic acid contents. Their amino acid composition was very similar to that of the whole cuticle. The proteins were not associated with neutral sugars. Both the Rhodnius and Boophilus cuticles had low chitin contents, 11·2 and 3·8% respectively (on a water-free basis). The composition of the cuticles and the properties of the proteins are discussed in relation to the stretching which they undergo.  相似文献   

9.
Arabidopsis eceriferum (cer) mutants with unique alterations in their rosette leaf cuticular wax accumulation and composition established by gas chromatography have been investigated using attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectroscopy in combination with univariate and multivariate analysis. Objectives of this study were to evaluate the utility of ATR-FTIR for detection of chemical diversity in leaf cuticles, obtain spectral profiles of cer mutants in comparison with the wild type, and identify changes in leaf cuticles caused by drought stress. FTIR spectra revealed both genotype- and treatment-dependent differences in the chemical make-up of Arabidopsis leaf cuticles. Drought stress caused specific changes in the integrated area of the CH3 peak, asymmetrical and symmetrical CH2 peaks, ester carbonyl peak and the peak area ratio of ester CO to CH2 asymmetrical vibration. CH3 peak positively correlated with the total wax accumulation. Thus, ATR-FTIR spectroscopy is a valuable tool that can advance our understanding of the role of cuticle chemistry in plant response to drought and allow selection of superior drought-tolerant varieties from large genetic resources.  相似文献   

10.
Penetration of 3H-labeled water (3H2O) and the 14C-labeled organic acids benzoic acid ([14C]BA), salicylic acid ([14C]SA), and 2,4-dichlorophenoxyacetic acid ([14C]2,4-D) were measured simultaneously in isolated cuticular membranes of Prunus laurocerasus L., Ginkgo biloba L., and Juglans regia L. For each of the three pairs of compounds (3H2O/[14C]BA, 3H2O/[14C]SA, and 3H2O/[14C]2,4-D) rates of cuticular water penetration were highly correlated with the rates of penetration of the organic acids. Therefore, water and organic acids penetrated the cuticles by the same routes. With the combination 3H2O/[14C]BA, co-permeability was measured with isolated cuticles of nine other plant species. Permeances of 3H2O of all 12 investigated species were highly correlated with the permeances of [14C]BA (r2 = 0.95). Thus, cuticular transpiration can be predicted from BA permeance. The application of this experimental method, together with the established prediction equation, offers the opportunity to answer several important questions about cuticular transport physiology in future investigations.  相似文献   

11.
The isoelectric points of isolated cuticles from Citrus aurantium L. (3.15), Prunus armeniaca L. (3.45), and Pyrus communis L. (2.90) leaves were determined from membrane potentials. At pH values below the isoelectric point, cuticular membranes carry a net positive charge and are permselective to anions (determined using 82Br). Above the isoelectric point, they carry a net negative charge and are permselective to cations (determined using 24Na+). There are no gradients of fixed charges across the cuticular membranes as indicated by the absence of asymmetry potentials. Positive charges in the membranes originate from residues of basic amino acids of proteins or polypeptides contained in a nonextractable form within the cuticle. The exchange capacity of basic fixed groups in the cuticles of six species (Lycopersicon esculentum Mill., Capsicum annuum L. fruit cuticles, and Brassaia spec. leaf cuticles in addition to the above species) varied between 0.010 and 0.025 meq g−1 cuticle. Fixed acidic groups were donated by residues of acidic amino acids, polygalacturonic acid, and nonesterified -COOH groups of the cutin polymer. At pH 8, total cation exchange capacity as determined using 45Ca2+ varied between 0.26 (Citrus) and 0.30 (apricot) meq g−1.  相似文献   

12.
The abdominal cuticles of the adult female ticks Argas (Persicargas) robertsi and Boophilus microplus, sp der Badumna insignis, tsetse fly Glossina morsitans morsitans, sheep ked Melophagus ovinus and locust Locusta migratoria migratorioides and of the fifth-instar larva of the bug Rhodnius prolixus stretch greatly, some of them quite rapidly, when they are feeding, laying eggs or carrying a developing larva or egg mass. During this expansion the epicuticle, which is convoluted, unfolds and the underlying endocuticle stretches. There is an increase in the volume of each of the cuticles on expansion. The fine structures of those cuticles which go through cycles of expansion and contraction do not become disrupted. Cuticles with acidic proteins have much higher chitin contents than those with basic proteins. Plasticization, i.e. breaking of intermolecular non-covalent bonds, precedes rapid expansion of cuticles but is unnecessary for slow expansion. The compositions of the cuticles and the properties of the proteins are discussed in relation to the expansions which take place in the cuticles.  相似文献   

13.
Summary Cuticle/water partition coefficients (Kc/w) for d-limonene, -pinene and -pinene were determined by an extrapolation and a desorption method. The sorption experiments were carried out with isolated angiosperm and gymnosperm cuticles and with [14C]-labelled monoterpenes, which were obtained biosynthetically. Both methods were suitable for the determination of the Kc/w of volatile hydrophobic compounds. For the angiosperm cuticles the partition coefficients are of the order of 104, which indicates a high accumulation of monoterpenes in the cuticle. The values of the conifer cuticles of Picea abies (L.) Karst. and Abies alba Mill., however, are lower due to their high lignin content. This is proved by the increase of the partition coefficients after removal of polar and phenolic components. The Kc/w can be estimated with good accuracy from the octanol/water partition coefficient, which was determined experimentally.  相似文献   

14.
GILLY  C.; ROHR  R.; CHAMEL  A. 《Annals of botany》1997,80(2):139-145
Cuticle ultrastructure and radiolabelling of isolated cuticlesafter incorporation of [14C] acetate in foliar discs were investigatedwith ivy plants grownin vitrothenex vitro. Results show an increasein thickness, mass and wax content, between young and expandedleaves, for bothin vitroandex vitrocuticles. The cuticle ofinvitrounexpanded leaves was very thin and only constituted alamellate zone. The ultrastructure ofin vitroyoung and expandedleaf cuticles showed characteristics similar toin situcuticles.The thickness of the lamellate zone remained fairly constantand represented 33% of the cuticle thickness in young leaves,but only 11.4% in expanded leaves. The number of lamellar unitsdecreased from 14 to nine between these two growth stages. Themain difference between young leaves developedin vitroorex vitrowasa thinner lamellate zone forex vitrocuticles. However, theselatter cuticles had an intermediary zone between the lamellateand reticulate zones. The cuticle thickness of expanded leaveswas greater forin vitrocuticles suggesting a temporary decreasein cuticle biosynthesis after transfer of the plant fromin vitrotoexvitro.Results from cuticle radiolabelling show higher radioactivityincorporation in cuticles isolated from leaves developedex vitrocomparedtoin vitro. This radiolabelling was particularly marked forexvitroyoung leaf cuticles and depended on the duration of theexvitrogrowth period revealing a progressive activation of cuticlebiosynthesis in response to new environmental conditions. Hedera helix; ivy leaf cuticle; in vitroplants; electron microscopy; radiolabelling; isolated cuticles  相似文献   

15.
We present a continuous model for the diffusion of sugars across intact plant leaf cuticles. It is based on the flow of sugars from a source, representing the leaf apoplast, to a sink, in the shape of a hemispherical drop of water on the outside of the cuticle. Flow is a function of the difference between sugar concentrations CSource and CSink, permeability P of the cuticle, volume VSink of the water drop, as well as its contact angle α with the cuticle surface. Using a bacterial bioreporter for fructose, and a two‐compartment experimental set‐up consisting of isolated cuticles of walnut (Juglans regia) carrying water droplets while floating on solutions with increasing concentrations of fructose, we determined a value of 1 × 10?6 m h?1 for P. Using this value, we explored different scenarios for the leaching of sugars across plant leaf cuticles to reveal in quantitative terms how diffusion takes longer when VSink increases, P decreases or α increases. Bacterial growth was modelled as a function of changes in P, α and VSink and was consistent with observations or suggestions from the literature in relation to the availability of free water on leaves. These results are discussed in the light of bacteria as ecosystem engineers, i.e. with the ability to modify the plant leaf surface environment in favour of their own survival, e.g. by increasing cuticle leakage or leaf wetness. Our model represents a first step towards a more comprehensive model which will enhance our quantitative understanding of the factors that play a role in nutrient availability to bacterial colonizers of the phyllosphere, or plant leaf surface.  相似文献   

16.
Bird A.F. and Stynes B.A. 1981. The life cycle of Anguina agrostis: Development in the host plant. Internationaljournal for Parasitology11: 431–440. The growth and development of the infective second stage “dauer” larvae (DL2) of Anguina agrostis into adults have been followed under field conditions in rye grass (Lolium rigidum). Three moults were observed to occur during the parasitic phase of development. From the third (second parasitic) moult onwards, there was much more variability in the size of the female nematodes than in the males and sexual dimorphism became very pronounced. The transition from the DL2 to the second stage parasitic larva (PL2) is marked by the disappearance of the numerous lipid storage granules which are characteristic of the DL2, and the development in the PL2 of an intestine which becomes more pronounced in each succeeding stage, particularly in the adult female. Anguina agrostis is unusual among parasitic nematodes in that the DL2 has the thickest cuticle of all stages, including adults. The L4 and adult males have thicker cuticles than the females at the same stages of development. Moulting appears to involve resorption of the innermost basal zone of the shed cuticle as well as morphological and chemical changes to the epicuticle.  相似文献   

17.
Attenuation of UV radiation by plant cuticles from woody species   总被引:8,自引:0,他引:8  
Transmittance spectra of isolated plant cuticles were measured in the wavelength range from 270 to 600 nm. The cuticles were enzymatically isolated from the leaves of 27 species (26 evergreen or deciduous woody, one succulent herbaceous) and from four species of fruits. With the exception of subtropical and tropical species all plants were cultivated in the field. The cuticles of the species studied strongly attenuated ultraviolet (UV) radiation at wavelengths < 400 nm while they were practically translucent in the visible range. Relatively broad transmittance minima occurred at wavelengths from 280 to 320 nm (UV-B). Spectral transmittances at 300 nm ranged from 0.004 (Ilex aquifolium) to 0.50 (Prunus avium) for leaf cuticles and from 0.00023 (Cydonia oblonga) to 0.005 (Mains domestica) for fruit cuticles. The constitutive UV protection by cuticular pigments may be supplemented, to varying degrees, by pigments located in the epidermal cell wall and protoplast. Thus, it is concluded that only a small fraction of incident UV-B radiation may actually reach the sensitive tissues of the leaves of non-herbaceous species and of fruits.  相似文献   

18.
We examined some biophysical mechanisms of ion migration across leaf cuticles enzymatically isolated from Acer saccharum L. and Citrus aurantium L. leaves. Diffusion potential measurements were used to calculate the permeabilities of Cl-, Li+, Na+, and Cs+ ions all as a ratio with respect to the permeability of K+ in cuticles. In 2 millimolar ionic strength solutions the permeability sequence from high to low was K = Cs > Na > Li » Cl. When the outer and inner surfaces of cuticles were bathed in artificial precipitation and artificial apoplast, respectively, diffusion potentials ranging from −52 to −91 millivolts were measured (inside negative). The Goldman equation predicted that the measured potentials were enough to increase the driving force on the accumulation of heavy metals by a factor of 4 to 7. Other ions migrate with forces 3 to 10 times less than predicted by the Goldman equation for concentration differences alone. Our analysis showed that Ca2+, and perhaps Mg2+, might even be accumulated against concentration gradients under some circumstances. Their uptake was apparently driven by the diffusion potentials created by the outward migration of monovalent salts. We feel that future models predicting leaching of nutrients from trees during acid rain events must be modified to account for the probable influence of diffusion potentials on ion migration.  相似文献   

19.
《Insect Biochemistry》1987,17(3):469-484
Post-translational modifications are a conspicuous feature of the proteins of vertebrate extracellular matrices such as cartilage. Yet this feature remains virtually unexplored with insect cuticle, a situation this paper begins to remedy. Cuticular proteins were extracted from cuticles of Hyalophora cecropia and separated on isoelectrofocusing and 2D gels. Periodic acid-Schiff reagent stained several proteins from flexible cuticles and a few proteins from rigid cuticles, indicating that some proteins were glycosylated. Elucidation of the specific nature of this glycosylation came from probing electrophoretically separated cuticular proteins blotted onto nitrocellulose with biotinylated lectins. Most major cuticular proteins did not react; minor cuticular proteins and molecules which do not stain with Coomassie blue were found to bind lectins specific for mannose and N-acetylgalactosamine. Limited binding was also detected with lectins specific for N-acetylglucosamine, galactose and fucose. No sialic acid was detected using either lectins or neuraminidase digestion. The amount of glycosylation was greatest in proteins extracted from flexible cuticles. Although several proteins stained with Alcian blue indicating presence of sulfation, 35S which had been incorporated at low levels in cuticular proteins corresponded to [35S]methionine. No indication of the presence of mammalian-type glycosaminoglycans in insect cuticles was obtained after treatment with chondroitinase or nitrous acid. The functional significance of the modifications detected remains unknown. No evidence for phosphorylated proteins or lipoproteins was found.  相似文献   

20.
Fick's second law has been used to predict the time course of electrical conductance change in isolated cuticles following the rapid change in bathing solution (KCI) from concentration C to 0.1 C. The theoretical time course is dependent on the coefficient of diffusion of KCI in the cuticle and the cuticle thickness. Experimental results, obtained from cuticles isolated from sour orange (Citrus aurantium), fit with a diffusion model of an isolated cuticle in which about 90% of the conductance change following a solution change is due to salts diffusing from polar pores in the wax, and 10% of the change is due to salt diffusion from the wax. Short and long time constants for the washout of KCI were found to be 0.11 and 3.8 hours, respectively. These time constants correspond to KCI diffusion coefficients of 1 × 10−15 and 3 × 10−17 square meters per second, respectively. The larger coefficient is close to the diffusion coefficient for water in polar pores of Citrus reported elsewhere (M Becker, G Kerstiens, J Schönherr [1986] Trees 1: 54-60). This supports our interpretation of the washout kinetics of KCI following a change in concentration of bathing solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号